Extreme Change Events of Stratospheric HCl and N2O in the Mid-Latitude Region of the Northern Hemisphere
Abstract
:1. Introduction
2. Data and Methods
3. Results
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kerr, J.B.; McElroy, C.T. Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion. Science 1993, 262, 1032–1034. [Google Scholar] [CrossRef]
- Bais, A.F.; Bernhard, G.; McKenzie, R.L.; Aucamp, P.J.; Young, P.J.; Ilyas, M.; Jöckel, P.; Deushi, M. Ozone–climate interactions and effects on solar ultraviolet radiation. Photochem. Photobiol. Sci. 2019, 18, 602–640. [Google Scholar] [CrossRef] [Green Version]
- Lucas, R.M.; Yazar, S.; Young, A.R.; Norval, M.; de Gruijl, F.R.; Takizawa, Y.; Rhodes, L.E.; Sinclair, C.A.; Neale, R. Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochem. Photobiol. Sci. 2019, 18, 641–680. [Google Scholar] [CrossRef]
- de F. Forster, P.M.; Shine, K.P. Radiative forcing and temperature trends from stratospheric ozone changes. J. Geophys. Res. Atmos. 1997, 102, 10841–10855. [Google Scholar]
- Son, S.-W.; Polvani, L.M.; Waugh, D.W.; Akiyoshi, H.; Garcia, R.; Kinnison, D.; Pawson, S.; Rozanov, E.; Shepherd, T.G.; Shibata, K. The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science 2008, 320, 1486–1489. [Google Scholar] [CrossRef]
- Son, S.-W.; Polvani, L.M.; Waugh, D.W.; Birner, T.; Akiyoshi, H.; Garcia, R.R.; Gettelman, A.; Plummer, D.A.; Rozanov, E. The impact of stratospheric ozone recovery on tropopause height trends. J. Clim. 2009, 22, 429–445. [Google Scholar] [CrossRef] [Green Version]
- Hu, D.Z.; Tian, W.S.; Xie, F.; Wang, C.X.; Zhang, J.K. Impacts of stratospheric ozone depletion and recovery on wave propagation in the boreal winter stratosphere. J. Geophys. Res. Atmos. 2015, 120, 8299–8317. [Google Scholar] [CrossRef] [Green Version]
- Nowack, P.J.; Abraham, N.L.; Maycock, A.C.; Braesicke, P.; Gregory, J.M.; Joshi, M.J.; Osprey, A.; Pyle, J.A. A large ozone-circulation feedback and its implications for global warming assessments. Nat. Clim. Chang. 2015, 5, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Nowack, P.J.; Abraham, N.L.; Braesicke, P.; Pyle, J.A. The impact of stratospheric ozone feedbacks on climate sensitivity estimates. J. Geophys. Res. Atmos. 2018, 123, 4630–4641. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Li, J.P.; Tian, W.S.; Fu, Q.; Jin, F.-F.; Hu, Y.Y.; Zhang, J.K.; Wang, W.K.; Sun, C.; Feng, J. A connection from Arctic stratospheric ozone to El Niño-Southern oscillation. Environ. Res. Lett. 2016, 11, 124026. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Li, J.P.; Zhang, J.K.; Tian, W.S.; Hu, Y.Y.; Zhao, S.; Sun, C.; Ding, R.Q.; Feng, J.; Yang, Y. Variations in North Pacific sea surface temperature caused by Arctic stratospheric ozone anomalies. Environ. Res. Lett. 2017, 12, 114023. [Google Scholar] [CrossRef]
- Maleska, S.; Smith, K.L.; Virgin, J. Impacts of stratospheric ozone extremes on Arctic high cloud. J. Clim. 2020, 33, 8869–8884. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, Y.; Huang, Y.; Hu, Y.Y.; Bian, J.C.; Zhao, C.F.; Sun, C. Significant contribution of stratospheric water vapor to the poleward expansion of the Hadley circulation in autumn under greenhouse warming. Geophys. Res. Lett. 2021, 48, e2021GL094008. [Google Scholar] [CrossRef]
- Friedel, M.; Chiodo, G.; Stenke, A.; Domeisen, D.I.; Fueglistaler, S.; Anet, J.G.; Peter, T. Springtime arctic ozone depletion forces northern hemisphere climate anomalies. Nat. Geosci. 2022, 15, 541–547. [Google Scholar] [CrossRef]
- Oh, J.; Son, S.-W.; Choi, J.; Lim, E.-P.; Garfinkel, C.; Hendon, H.; Kim, Y.; Kang, H.-S. Impact of stratospheric ozone on the subseasonal prediction in the southern hemisphere spring. Prog. Earth Planet. Sc. 2022, 9, 1–9. [Google Scholar] [CrossRef]
- Molina, M.J.; Rowland, F.S. Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone. Nature 1974, 249, 810–812. [Google Scholar] [CrossRef]
- Solomon, S.; Ivy, D.J.; Kinnison, D.; Mills, M.J.; Neely, R.R.; Schmidt, A. Emergence of healing in the Antarctic ozone layer. Science 2016, 353, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Weatherhead, E.C.; Andersen, S.B. The search for signs of recovery of the ozone layer. Nature 2006, 441, 518–522. [Google Scholar] [CrossRef]
- WMO. Scientific Assessment of Ozone Depletion: 2007; Report No. 50, Global Ozone Research and Monitoring Project; WMO: Geneva, Switzerland, 2007. [Google Scholar]
- WMO. Scientific Assessment of Ozone Depletion: 2010; Report No. 52, Global Ozone Research and Monitoring Project; WMO: Geneva, Switzerland, 2011; p. 517. [Google Scholar]
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef] [Green Version]
- Revell, L.E.; Tummon, F.; Salawitch, R.J.; Stenke, A.; Peter, T. The changing ozone depletion potential of N2O in a future climate. Geophys. Res. Lett. 2015, 42, 10047–10055. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.K.; Tian, W.S.; Xie, F.; Chipperfield, M.P.; Feng, W.H.; Son, S.-W.; Abraham, N.L.; Archibald, A.T.; Bekki, S.; Butchart, N.; et al. Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift. Nat. Commun. 2018, 9, 489. [Google Scholar] [CrossRef]
- Froidevaux, L.; Livesey, N.J.; Read, W.G.; Salawitch, R.J.; Waters, J.W.; Drouin, B.; MacKenzie, I.A.; Pumphrey, H.C.; Bernath, P.; Boone, C. Temporal decrease in upper atmospheric chlorine. Geophys. Res. Lett. 2006, 33, L23812. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.; Urban, J.; Murtagh, D.P.; Sanchez, C.; Walker, K.A.; Livesay, L.; Froidevaux, L.; Santee, M. Analysis of HCl and ClO time series in the upper stratosphere using satellite data sets. Atmos. Chem. Phys. 2011, 10, 5321–5333. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, L.J.; Reismann, S.; Burkholder, J.B.; Clerbaux, C.; Hall, B.D.; Hossaini, R.; Laube, J.C.; Yvon-Lewis, S.A. Ozone-Depleting Substances (ODSs) and other gases of interest to the Montreal Protocol. 2014. 1.1-1.101. Available online: https://hal.archives-ouvertes.fr/hal-01130807 (accessed on 1 January 2021).
- Kohlhepp, R.; Ruhnke, R.; Chipperfield, M.P.; De Mazière, M.; Notholt, J.; Barthlott, S.; Batchelor, R.L.; Blatherwick, R.D.; Blumenstock, T.; Coffey, M.T.; et al. Observed and simulated time evolution of HCl, ClONO2, and HF total column abundances. Atmos. Chem. Phys. 2012, 12, 3527–3557. [Google Scholar] [CrossRef] [Green Version]
- Mahieu, E.; Chipperfield, M.P.; Notholt, J.; Reddmann, T.; Anderson, J.; Bernath, P.F.; Blumenstock, T.; Coffey, M.T.; Dhomse, S.S.; Feng, W.; et al. Recent Northern Hemisphere stratospheric HCl increase due to atmospheric circulation changes. Nature 2014, 515, 104–107. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.Y.; Tian, W.S.; Chipperfield, M.P.; Zhang, J.K.; Wang, F.Y.; Sang, W.J.; Luo, J.L.; Feng, W.H.; Chrysanthou, A.; Tian, H.Y. Attribution of the hemispheric asymmetries in trends of stratospheric trace gases inferred from Microwave Limb Sounder (MLS) measurements. J. Geophys. Res. Atmos. 2019, 124, 6283–6293. [Google Scholar] [CrossRef]
- Han, Y.Y.; Xie, F.; Zhang, J.K. Has Stratospheric HCl in the Northern Hemisphere Been Increasing Since 2005? Front. Earth Sci. 2020, 8, 609411. [Google Scholar] [CrossRef]
- Mount, G.H.; Solomon, S.; Sanders, R.W.; Jakoubek, R.O.; Schmeltekopf, A.L. Observations of Stratospheric NO2 and O3 at Thule, Greenland. Science 1988, 242, 555–558. [Google Scholar] [CrossRef]
- Portmann, R.W.; Daniel, J.S.; Ravishankara, A.R. Stratospheric ozone depletion due to nitrous oxide: Influences of other gases. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2012, 367, 1256–1264. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, D.A.; Ninneman, M.; Chan, H.C. NOx and O3 Trends at US Non-Attainment Areas for 1995–2020: Influence of COVID-19 Reductions and Wildland Fires on Policy-Relevant Concentrations. J. Geophys. Res. Atmos. 2022, 127, e2021JD036385. [Google Scholar] [CrossRef]
- Crutzen, P.J.; Ehhalt, D.H. Effects of nitrogen fertilizers and combustion on the stratospheric ozone layer. Ambio 1977, 6, 112–117. [Google Scholar]
- Portmann, R.W.; Solomon, S. Indirect radiative forcing of theozone layer during the 21st century. Geophys. Res. Lett. 2007, 34, L02813. [Google Scholar] [CrossRef]
- Wang, W.K.; Tian, W.S.; Dhomse, S.S.; Xie, F.; Shu, J.C.; Austin, J. Stratospheric ozone depletion from future nitrous oxide increases. Atmos. Chem. Phys. 2014, 14, 12967–12982. [Google Scholar] [CrossRef] [Green Version]
- Wargan, K.; Orbe, C.; Pawson, S.; Ziemke, J.R.; Oman, L.D.; Olsen, M.A.; Coy, L.; Knowland, K.E. Recent decline in extratropical lower stratospheric ozone attributed to circulation changes. Geophys. Res. Lett. 2018, 45, 5166–5176. [Google Scholar] [CrossRef] [PubMed]
- Ball, W.T.; Alsing, J.; Mortlock, D.J.; Staehelin, J.; Haigh, J.D.; Peter, T.; Yummon, F.; Stübi, R.; Stenke, A.; Anderson, J.; et al. Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery. Atmos. Chem. Phys. 2018, 18, 1379–1394. [Google Scholar] [CrossRef] [Green Version]
- Chipperfield, M.P.; Dhomse, S.; Hossaini, R.; Feng, W.H.; Santee, M.L.; Weber, M.; Burrows, J.P.; Wild, J.D.; Loyola, D.; Coldewey-Egbers, M. On the cause of recent variations in lower stratospheric ozone. Geophys. Res. Lett. 2018, 45, 5718–5726. [Google Scholar] [CrossRef]
- Orbe, C.; Wargan, K.; Pawson, S.; Oman, L.D. Mechanisms linked to recent ozone decreases in the Northern Hemisphere lower stratosphere. J. Geophys. Res. 2022, 125, e2019JD031631. [Google Scholar] [CrossRef]
- Hu, D.Z.; Guan, Z.Y.; Liu, M.C.; Feng, W.H. Dynamical mechanisms for the recent ozone depletion in the Arctic stratosphere linked to North Pacific sea surface temperatures. Clim. Dyn. 2022, 58, 2663–2679. [Google Scholar] [CrossRef]
- McLinden, C.A.; Prather, M.J.; Liley, J.B.; Olsen, S.C. Understanding trends in stratospheric NOy and NO2. J. Geophys. Res-Biogeo. 2001, 106, 27787–27794. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Croteau, P.; Boering, K.A.; Etheridge, D.M.; Ferretti, D.; Fraser, P.J.; Kim, K.-R.; Krummel, P.B.; Langenfelds, R.L.; Ommen, T.D.V.; et al. Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nat. Geosci. 2012, 5, 261–265. [Google Scholar] [CrossRef]
- Nedoluha, G.E.; Boyd, I.S.; Parrish, A.; Gomez, R.M.; Allen, D.R.; Froidevaux, L.; Connor, B.J.; Querel, R.R. Unusual stratospheric ozone anomalies observed in 22 years of measurements from Lauder, New Zealand. Atmos. Chem. Phys. 2015, 15, 7817–7827. [Google Scholar] [CrossRef] [Green Version]
- Kracher, D.; Reick, C.H.; Manzini, E.; Schultz, M.G.; Stein, O. Climate change reduces warming potential of nitrous oxide by an enhanced Brewer-Dobson circulation. Geophys. Res. Lett. 2016, 43, 5851–5859. [Google Scholar] [CrossRef]
- Livesey, N.J.; Read, W.G.; Froidevaux, L.; Lambert, A.; Santee, M.L.; Schwartz, M.J.; Millán, L.F.; Jarnot, R.F.; Wagner, P.A.; Hurst, D.F. Investigation and amelioration of long-term instrumental drifts in water vapor and nitrous oxide measurements from the Aura Microwave Limb Sounder (MLS) and their implications for studies of variability and trends. Atmos. Chem. Phys. 2021, 21, 15409–15430. [Google Scholar] [CrossRef]
- Livesey, N.J.; Read, W.G.; Wagner, P.A.; Froidevaux, L.; Santee, M.L.; Schwartz, M.J. Version 5.0 x Level 2 and 3 Data Quality and Description Document; Tech. Rep. No. JPL D-105336 Rev. A; Jet Propulsion Laboratory: Pasadena, CA, USA, 2020. [Google Scholar]
- Chipperfield, M.P. New version of the TOMCAT/SLIMCAT off-line chemical transport model: Intercomparison of stratospheric tracer experiments. Q. J. R. Meteorol. Soc. 2006, 132, 1179–1203. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Simmons, A. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Feng, W.H.; Dhomse, S.S.; Arosio, C.; Weber, M.; Burrows, J.P.; Santee, M.L.; Chipperfield, M.P. Arctic ozone depletion in 2019/20: Roles of chemistry, dynamics and the Montreal Protocol. Geophys. Res. Lett. 2021, 48, e2020GL091911. [Google Scholar] [CrossRef]
- Prather, M.J. Numerical advection by conservation of second-order moments. J. Geophys. Res. Atmos. 1986, 91, 6671–6681. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Chipperfield, M.P.; Davies, S.; Gathen, P.v.d.; Kyrö, E.; Volk, C.M.; Ulanovsky, A.; Belyaev, G. Large chemical ozone loss in 2004/2005 Arctic winter/spring. Geophys. Res. Lett. 2007, 34, L09803. [Google Scholar] [CrossRef]
- Dhomse, S.S.; Chipperfield, M.P.; Feng, W.; Hossaini, R.; Mann, G.W.; Santee, M.L.; Weber, M. A single-peak-structured solar cycle signal in stratospheric ozone based on Microwave Limb Sounder observations and model simulations. Atmos. Chem. Phys. 2022, 22, 903–916. [Google Scholar] [CrossRef]
- Holton, J.R.; Tan, H.-C. The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci. 1980, 37, 2200–2208. [Google Scholar] [CrossRef]
- Choi, W.; Lee, H.; Grant, W.B.; Park, J.H.; Holton, J.R.; Lee, K.-M.; Naujokat, B. On the secondary meridional circulation associated with the quasi-biennial oscillation. Tellus B 2002, 54, 395–406. [Google Scholar] [CrossRef]
- Charlton, A.J.; Polvani, L.M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate 2007, 20, 449–469. [Google Scholar] [CrossRef]
- Andrews, D.G.; Holton, J.R.; Leovy, C.B. Middle Atmosphere Dynamics; Academic: San Diego, CA, USA, 1987; 489p. [Google Scholar]
- Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, Ø.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, A.T.; Volk, C.M.; Schoeberl, M.R.; Boone, C.D.; Bernath, P.F. Stratospheric lifetimes of CFC-12, CCl4, CH4, CH3Cl and N2O from measurements made by the Atmospheric Chemistry Experiment-Fourier transform spectrometer (ACE-FTS). Atmos. Chem. Phys. 2013, 13, 6921–6950. [Google Scholar] [CrossRef] [Green Version]
- Prather, M.J.; Froidevaux, L.; Livesey, N.J. Observed changes in stratospheric circulation: Decreasing lifetime of N2O, 2005–2021. Atmos. Chem. Phys. Discuss. 2022; in review. [Google Scholar] [CrossRef]
- Ko, M.; Newman, P.; Reimann, S.; Strahan, S. (Eds.) SPARC: Report on the Lifetimes of Stratospheric Ozone-Depleting Substances, Their Replacements, and Related Species; SPARC Report No. 6, WCRP-15; SPARC: Zurich, Switzerland, 2013. [Google Scholar]
- Randel, W.J.; Wu, F.; Voemel, H.; Nedoluha, G.E.; Forster, P. Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer–Dobson circulation. J. Geophys. Res. Atmos. 2006, 111, D12312. [Google Scholar] [CrossRef] [Green Version]
- Shu, J.C.; Tian, W.S.; Austin, J.; Chipperfield, M.P.; Xie, F.; Wang, W.K. Effects of sea surface temperature and greenhouse gas changes on the transport between the stratosphere and troposphere. J. Geophys. Res. Atmos. 2011, 116, D02124. [Google Scholar] [CrossRef] [Green Version]
- Seviour, W.J.M.; Butchart, N.; Hardiman, S.C. The Brewer–Dobson circulation inferred from ERA-Interim. Q. J. R. Meteorol. Soc. 2012, 138, 878–888. [Google Scholar] [CrossRef]
- Lin, P.; Fu, Q. Changes in various branches of the Brewer–Dobson circulation from an ensemble of chemistry climate models. J. Geophys. Res. Atmos. 2013, 118, 73–84. [Google Scholar] [CrossRef]
- Remsberg, E.E. Methane as a diagnostic tracer of changes in the Brewer–Dobson circulation of the stratosphere. Atmos. Chem. Phys. 2015, 15, 3739–3754. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.Y.; Tian, W.S.; Zhang, J.K.; Hu, D.Z.; Wang, F.Y.; Sang, W.J. A case study of the uncorrelated relationship between tropical tropopause temperature anomalies and stratospheric water vapor anomalies. J. Trop. Meteorol. 2018, 24, 356–368. [Google Scholar]
- Birner, T.; Bönisch, H. Residual circulation trajectories and transit times into the extratropical lowermost stratosphere. Atmos. Chem. Phys. 2011, 11, 817–827. [Google Scholar] [CrossRef] [Green Version]
- Proffitt, M.H.; Margitan, J.J.; Kelly, K.K.; Loewenstein, M.; Podolske, J.R.; Chan, K.R. Ozone loss in the Arctic polar vortex inferred from high-altitude aircraft measurements. Nature 1990, 347, 31–36. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, C.H.; Wang, Y.; Erkki, K. The quasi-biennial and semi-annual oscillation features of tropical O3, NO2, and NO3 revealed by GOMOS satellite observations for 2002–2008. Chin. Sci. Bull. 2011, 56, 1921–1929. [Google Scholar] [CrossRef] [Green Version]
- Ern, M.; Diallo, M.; Preusse, P.; Mlynczak, M.G.; Schwartz, M.J.; Wu, Q.; Riese, M. The semiannual oscillation (SAO) in the tropical middle atmosphere and its gravity wave driving in reanalyses and satellite observations. Atmos. Chem. Phys. 2021, 21, 13763–13795. [Google Scholar] [CrossRef]
- Wang, W.K.; Hong, J.; Shangguan, M.; Wang, H.Y.; Jiang, W.; Zhao, S.Y. Zonally asymmetric influences of the quasi-biennial oscillation on stratospheric ozone. Atmos. Chem. Phys. 2022, 22, 13695–13711. [Google Scholar] [CrossRef]
- Ribera, P.; Peña-Ortiz, C.; Garcia-Herrera, R.; Gallego, D.; Gimeno, L.; Hernández, E. Detection of the secondary meridional circulation associated with the quasi-biennial oscillation. J. Geophys. Res. Atmos. 2004, 109, D18112. [Google Scholar] [CrossRef] [Green Version]
- Garfinkel, I.C.; Shaw, A.T.; Hartmann, L.D.; Waugh, W.D. Does the Holton-Tan Mechanism Explain How the Quasi-Biennial Oscillation Modulates the Arctic Polar Vortex? J. Atmos. Sci. 2012, 69, 1713–1731. [Google Scholar] [CrossRef] [Green Version]
Year | ESAO | SPV | Year | ESAO | SPV |
---|---|---|---|---|---|
1979–1980 | 2000–2001 | ||||
1980–1981 | 2001–2002 | ||||
1981–1982 | 2002–2003 | ||||
1982–1983 | 2003–2004 | ||||
1983–1984 | 2004–2005 | ||||
1984–1985 | 2005–2006 | ||||
1985–1986 | 2006–2007 | ||||
1986–1987 | 2007–2008 | ||||
1987–1988 | ✓ | ✓ | 2008–2009 | ||
1988–1989 | 2009–2010 | ||||
1989–1990 | 2010–2011 | ✓ | ✓ | ||
1990–1991 | 2011–2012 | ||||
1991–1992 | 2012–2013 | ||||
1992–1993 | 2013–2014 | ||||
1993–1994 | 2014–2015 | ||||
1994–1995 | 2015–2016 | ||||
1995–1996 | 2016–2017 | ||||
1996–1997 | 2017–2018 | ||||
1997–1998 | 2018–2019 | ||||
1998–1999 | 2019–2020 | ||||
1999–2000 |
Year | WSAO | WPV | Year | WSAO | WPV |
---|---|---|---|---|---|
1979–1980 | 2000–2001 | ||||
1980–1981 | 2001–2002 | ||||
1981–1982 | 2002–2003 | ||||
1982–1983 | 2003–2004 | ||||
1983–1984 | 2004–2005 | ||||
1984–1985 | 2005–2006 | ||||
1985–1986 | 2006–2007 | ||||
1986–1987 | ✓ | ✓ | 2007–2008 | ||
1987–1988 | 2008–2009 | ||||
1988–1989 | 2009–2010 | ||||
1989–1990 | 2010–2011 | ||||
1990–1991 | 2011–2012 | ||||
1991–1992 | 2012–2013 | ||||
1992–1993 | 2013–2014 | ||||
1993–1994 | 2014–2015 | ||||
1994–1995 | 2015–2016 | ||||
1995–1996 | 2016–2017 | ||||
1996–1997 | 2017–2018 | ||||
1997–1998 | 2018–2019 | ||||
1998–1999 | 2019–2020 | ||||
1999–2000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Xie, F.; Cui, F.; Wang, F.; Li, X.; Feng, W. Extreme Change Events of Stratospheric HCl and N2O in the Mid-Latitude Region of the Northern Hemisphere. Remote Sens. 2022, 14, 6114. https://doi.org/10.3390/rs14236114
Han Y, Xie F, Cui F, Wang F, Li X, Feng W. Extreme Change Events of Stratospheric HCl and N2O in the Mid-Latitude Region of the Northern Hemisphere. Remote Sensing. 2022; 14(23):6114. https://doi.org/10.3390/rs14236114
Chicago/Turabian StyleHan, Yuanyuan, Fei Xie, Fei Cui, Feiyang Wang, Xin Li, and Wuhu Feng. 2022. "Extreme Change Events of Stratospheric HCl and N2O in the Mid-Latitude Region of the Northern Hemisphere" Remote Sensing 14, no. 23: 6114. https://doi.org/10.3390/rs14236114
APA StyleHan, Y., Xie, F., Cui, F., Wang, F., Li, X., & Feng, W. (2022). Extreme Change Events of Stratospheric HCl and N2O in the Mid-Latitude Region of the Northern Hemisphere. Remote Sensing, 14(23), 6114. https://doi.org/10.3390/rs14236114