Remote Radio-Physical Harbingers of Drought in Steppes of the South of Western Siberia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Brief Analysis of Existing Indices and Methods
2.2. Study Area
2.3. Approach
2.4. Satellite Sensing Data
2.4.1. SMOS Data
2.4.2. MODIS Data
2.5. Meteorological Data
2.6. Field Data
2.7. Laboratory Measurements of Dielectric Characteristics of Soils
3. Results
3.1. Dependence of χ(W)
3.2. Long-Term Seasonal Dynamics of Brightness Temperatures for the Test Site
3.3. Spatial and Temporal Patterns of Brightness Temperature Distribution in the South of Western Siberia
3.4. Assessing Meteorological Parameters’ Effect on Brightness Temperatures of Soil Cover
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Commission; Joint Research Centre. World Atlas of Desertification: Rethinking Land Degradation and Sustainable Land Management; Hill, J., Von Maltitz, G., Sommer, S., Reynolds, J., Hutchinson, C., Cherlet, M., Eds.; Publications Office: Luxembourg, 2018. [Google Scholar] [CrossRef]
- Tarpley, J.D.; Schneider, S.R.; Money, R.L. Global vegetation indices from the NOAA-7 meteorological satellite. J. Clim. Appl. Meteorol. 1984, 23, 491–494. [Google Scholar] [CrossRef]
- Kogan, F.N. Droughts of the late 1980s in the United States as derived from NOAA polarorbiting satellite data. Bull. Am. Meteorol. Soc. 1995, 76, 655–668. [Google Scholar] [CrossRef]
- Clapp, J. The Global Food Crisis: Governance Challenges and Opportunities. 270 p. January 2009. Available online: https://www.cigionline.org/sites/default/files/the_global_food_crisis.pdf (accessed on 1 October 2022).
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World. Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable; FAO: Rome, Italy, 2022. [CrossRef]
- Headey, D.D. The Impact of the Global Food Crisis on Self-Assessed Food Security. World Bank Econ. Rev. 2013, 27, 1–27. Available online: http://www.jstor.org/stable/43774096 (accessed on 1 October 2022). [CrossRef]
- Chandrasekar, K.; Sesha Sai, M.V.R.; Roy, P.S.; Dwevedi, R.S. Land Surface Water index (LSWI) response to rainfall and NDVI using the MODIS vegetation index product. Int. J. Remote Sens. 2010, 31, 3987–4005. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A Normalized Difference Water Index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO); Global Water Partnership (GWP). Handbook of Drought Indicators and Indices; Svoboda, M., Fuchs, B.A., Eds.; Integrated Drought Management Tools and Guidelines Series 2; Integrated Drought Management Programme (IDMP): Geneva, Switzerland, 2016; 45p. [Google Scholar]
- Hao, Z.; Kouchak, A.A. Multivariate Standardized Drought Index: A multi-index parametric approach for drought analysis. Adv. Water Resour. 2013, 57, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Begueria, S.; Lopez-Moreno, J.I. A multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Woli, P.; Jones, J.W.; Ingram, K.T.; Fraisse, C.W. Agricultural Reference Index for Drought (ARID). Agron. J. 2012, 104, 287–300. [Google Scholar] [CrossRef]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A review of drought indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef] [Green Version]
- Kchouk, S.; Melsen, L.; Walker, D.; van Oel, P. A review of drought indices: Predominance of drivers over impacts and the importance of local context. Nat. Hazards Earth Syst. Sci. Discuss. 2021, 1–28. [Google Scholar] [CrossRef]
- Yilmaz, B. Proposed index for drought assessment: Modified reconnaissance drought index (mRDI). J. Environ. Prot. Ecol. 2018, 19, 1796–1804. [Google Scholar]
- Shcherbenko, E.V. Remote methods for detecting agricultural drought. Mod. Probl. Remote Sens. Earth Space 2007, 4, 408–419. (In Russian) [Google Scholar]
- Zolotokrylin, A.N.; Titkova, T.B.; Cherenkova, E.A.; Vinogradova, V.V. Comparative study of droughts 2010 and 2012 in the European Russia from meteorological and MODIS data. Mod. Probl. Remote Sens. Earth Space 2013, 10, 246–253. (In Russian) [Google Scholar]
- Zolotokrylin, A.N.; Titkova, T.B. Satellite climatic extremes index of dryland. Arid. Ecosyst. 2012, 4, 203–208. [Google Scholar] [CrossRef]
- Zolotokrylin, A.N.; Titkova, T.B.; Cherenkova, E.A.; Vinogradova, V.V. Satellite index for assessing climatic extremes in arid lands (on the example of the Kuma-Manych depression). Mod. Probl. Remote Sens. Earth Space 2012, 9, 114–121. (In Russian) [Google Scholar]
- Wen, W.; Timmermans, J.; Chen, Q.; Bodegom, P. M A Review of Remote Sensing Challenges for Food Security with Respect to Salinity and Drought Threats. Remote Sens. 2021, 13, 6. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, A.; Trenberth, K.E. Climate change and drought: A perspective on drought indices. Curr. Clim. Change Rep. 2018, 4, 145–163. [Google Scholar] [CrossRef]
- Romanov, A.N. Dielectric Behavior of Sodic Solonchak at 1.41 GHz in the South of Western Siberia. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9517–9523. [Google Scholar] [CrossRef]
- Yang, J.; Chang, J.; Wang, Y.; Yao, J. Comprehensive drought characteristics analysis based on a nonlinear multivariate drought index. J. Hydrol. 2017, 557, 651–667. [Google Scholar] [CrossRef]
- Wu, B.; Ma, Z.; Yan, N. Agricultural drought mitigating indices derived from the changes in drought characteristics. Remote Sens. Environ. 2020, 244, 111813. [Google Scholar] [CrossRef]
- Romanov, A.N.; Khvostov, I.V. Microwave remote monitoring of Altai catastrophic flood dynamics using SMOS data. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2036–2040. [Google Scholar] [CrossRef]
- Aladaileh, H.; Al Qinna, M.; Karoly, B.; Al-Karablieh, E.; Al Bakri, J.; Rakonczai, J. Applicability of a combined drought index to monitoring drought in Jordan. J. Eng. Res. Appl. 2019, 9, 20–39. [Google Scholar]
- Chattopadhyay, N.; Malathi, K.; Tidke, N.; Attri, S.D.; Ray, K. Monitoring agricultural drought using combined drought index in India. J. Earth Syst. Sci. 2020, 129, 155. [Google Scholar] [CrossRef]
- Zhang, H.W.; Chen, H.L. The Review of Drought Index in Advance. In Proceedings of the International Conference on Ecological Protection of Lakes-Wetlands-Watershed and Application of 3S Technology (EPLWW3S 2011), Nanchang, China, 25–26 June 2011; Volume 2, pp. 533–537. [Google Scholar]
- Wei, W.; Zhang, J.; Zhou, L.; Xie, B.; Zhou, J.; Li, C. Comparative evaluation of drought indices for monitoring drought based on remote sensing data. Environ. Sci. Pollut. Res. 2021, 28, 20408–20425. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Han, Y.; Hao, T. Assessing the Consistency of Remotely Sensed Multiple Drought Indices for Monitoring Drought Phenomena in Continental China. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5490–5502. [Google Scholar] [CrossRef]
- Wang, Z.D.; Guo, P.; Wan, H. Improved drought monitoring method based on multisource remote sensing data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Virtual, 26 September–2 October 2020; pp. 5282–5285. [Google Scholar]
- Kouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote sensing of drought: Progress, challenges and opportunities. Rev. Geophys. 2015, 53, 452–480. [Google Scholar] [CrossRef] [Green Version]
- Gerhards, M.; Schlerf, M.; Rascher, U.; Udelhoven, T.; Juszczak, R.; Alberti, G.; Miglietta, F.; Inoue, Y. Analysis of Airborne Optical and Thermal Imagery for Detection of Water Stress Symptoms. Remote Sens. 2018, 10, 1139. [Google Scholar] [CrossRef] [Green Version]
- Gerhards, M.; Schlerf, M.; Mallick, K.; Udelhoven, T. Challenges and Future Perspectives of Multi-/Hyperspectral Thermal Infrared Remote Sensing for Crop Water-Stress Detection: A Review. Remote Sens. 2019, 11, 1240. [Google Scholar] [CrossRef] [Green Version]
- Quemada, C.; Pérez-Escudero, J.M.; Gonzalo, R.; Ederra, I.; Santesteban, L.G.; Torres, N.; Iriarte, J.C. Remote Sensing for Plant Water Content Monitoring: A Review. Remote Sens. 2021, 13, 2088. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, Y.; Gowda, P.H.; Dong, J.; Zhang, G.; Kakani, V.G.; Wagle, P.; Chen, L.; Flynn, K.C.; Jiang, W. Application of the water-related spectral reflectance indices: A review. Ecol. Indic. 2018, 98, 68–79. [Google Scholar] [CrossRef]
- Jiao, W.; Wang, L.; McCabe, M.F. Multi-sensor remote sensing for drought characterization: Current status, opportunities and a roadmap for the future. Remote Sens. Environ. 2021, 256, 112313. [Google Scholar] [CrossRef]
- Holtzman, N.M.; Anderegg, L.D.; Kraatz, S.; Mavrovic, A.; Sonnentag, O.; Pappas, C.; Cosh, M.H.; Langlois, A.; Lakhankar, T.; Tesser, D.; et al. L-band vegetation optical depth as an indicator of plant water potential in a temperate deciduous forest stand. Biogeosciences 2021, 18, 739–753. [Google Scholar] [CrossRef]
- Rao, K.; Anderegg, W.R.; Sala, A.; Martínez-Vilalta, J.; Konings, A.G. Satellite-based vegetation optical depth as an indicator of droughtdriven tree mortality. Remote Sens. Environ. 2019, 227, 125–136. [Google Scholar] [CrossRef]
- Yuan, Y.; Xi, C.; Jing, Q. Advance in Agricultural Drought Monitoring Using Remote Sensing Data. Spectrosc. Spectr. Anal. 2019, 39, 1005–1012. [Google Scholar]
- Zhang, A.Z.; Jia, G.S.; Wang, H.S. Improving meteorological drought monitoring capability over tropical and subtropical water-limited ecosystems: Evaluation and ensemble of the Microwave Integrated Drought Index. Environ. Res. Lett. 2019, 14, 044025. [Google Scholar] [CrossRef]
- Le Page, M.; Zribi, M. Analysis and Predictability of Drought in Northwest Africa Using Optical and Microwave Satellite Remote Sensing Products. Sci. Rep. 2019, 9, 1466. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Liao, J.; Chen, X.; Zhou, G.; Su, Y.; Xiang, Z.; Wang, Z.; Liu, X.; Li, Y.; Wu, J.; et al. The Microwave Temperature Vegetation Drought Index (MTVDI) based on AMSR-E brightness temperatures for long-term drought assessment across China (2003–2010). Remote Sens. Environ. 2017, 199, 302–320. [Google Scholar] [CrossRef]
- Zhang, L.; Jiao, W.; Zhang, H.; Huang, C.; Tong, Q. Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices. Remote Sens. Environ. 2017, 190, 96–106. [Google Scholar] [CrossRef]
- Miao, T.; Zhiming, W.; Kun, Y.; Jingjing, W. Study on the Precipitation Temperature Index and its application in drought and flood disasters. In Proceedings of the 6th International Conference on Agro-Geoinformatics, Fairfax, VA, USA, 7–10 August 2017; pp. 290–293. [Google Scholar]
- Shen, Z.; Zhang, Q.; Singh, V.; Peng, S.; Song, C.; Yu, H. Agricultural drought monitoring across Inner Mongolia, China: Model development, spatiotemporal patterns and impacts. J. Hydrol. 2019, 571. [Google Scholar] [CrossRef]
- Yihdego, Y.; Vaheddoost, B.; Al-Weshah, R.A. Drought indices and indicators revisited. Arab. J. Geosci. 2019, 12, 69. [Google Scholar] [CrossRef]
- Bazilevich, N.I. Geochemistry of Soils with Soda Salinity; Nauka: Moscow, Russia, 1965; 349p. (In Russian) [Google Scholar]
- Kovda, V.A. Problems of Combating Desertification and Salinization of Irrigated Soils; Kolos: Moscow, Russia, 1984; 304p. (In Russian) [Google Scholar]
- Glushkova, N.V.; Chupina, D.A.; Pchelnikov, D.V.; Boldyrev, I.I.; Selyatitskaya, N.A. Mapping and monitoring of aridization processes in the south of the West Siberian plain. Geogr. Nat. Resour. 2016, 1, 133–140. (In Russian) [Google Scholar]
- Anopchenko, L.Y.; Yakutin, M.V. Aridization of the climate in the south of Western Siberia and soil salinization. Interexpo Geo-Sib. 2012, 2, 207–211. (In Russian) [Google Scholar]
- Njoku, E.G.; Kong, J.A. Theory for passive microwave remote ensign of near-surface soil moisture. J. Geophys. Res. 1977, 82, 3108–3118. [Google Scholar] [CrossRef]
- Sharkov, E.A. Passive Microwave Remote Sensing of the Earth: Physical Foundations; Springer: Berlin, Germany, 2003. [Google Scholar]
- Gutierrez, A.; Castro, R.; Vieira, P.; Lopes, G.; Barbosa, J. SMOS L1 Processor L1c Data Processing Model. SO-DS-DME-L1OP-0009. No. 2.17. 2017. Available online: https://earth.esa.int/eogateway/documents/20142/37627/SMOS-L1c-Data-Processing-Models.pdf (accessed on 1 October 2022).
- Sahr, K.; White, D.; Kimerling, A.J. Geodesic Discrete Global Grid Systems. Cartogr. Geogr. Inf. Sci. 2003, 30, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z. MODIS Land-Surface Temperature Algorithm Theoretical Background Document (LST ATBD); Institute for Computational Earth System Science, University of California: Santa Barbara, CA, USA, 1999. Available online: https://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf (accessed on 1 October 2022).
- Basharinov, A.E.; Tuchkov, L.T.; Polyakov, V.S.; Ananov, N.I. Measurement of Radiothermal and Plasma Microwave Radiation; Soviet Edition: Moscow, Russia, 1968; 390p. (In Russian) [Google Scholar]
- Basharinov, A.E.; Gurvich, A.S.; Egorov, S.T. Radiothermal Radiation of the Earth as a Planet; Nauka: Moscow, Russia, 1974; 188p. (In Russian) [Google Scholar]
- Schmugge, T.J.; Gloersen, P.W.; Wilheit, T.; Geiger, F. Remote Sensing of Soil Moisture with Microwave Radiometry. J. Geophys. Res. 1974, 79, 317–323. [Google Scholar] [CrossRef] [Green Version]
- Jackson, T.J.; Schmugge, T.J. Passive Microwave Remote Sensing Sistem for Soil Moisture: Some Supporting Research. IEEE Trans. Geosci. Remote Sens. 1989, 27, 225–235. [Google Scholar] [CrossRef]
- Ulaby, F.T. Passive Microwave Remote Sensing of the Earth’s Surface. IEEE Trans. Antennas Propag. 1976, 24, 112–115. [Google Scholar] [CrossRef]
- Schmuge, T.J. Effect of Texture on Microwave Emission from Soils. IEEE Trans. Geosci. Remote Sens. 1980, GE-18, 353–361. [Google Scholar] [CrossRef]
- Komarov, S.A.; Mironov, V.L.; Romanov, A.N.; Rychkova, N.V. Remote determination of moisture content of soil in the Altai Krai. Eurasian Soil Sci. 1993, 25, 39–44. [Google Scholar]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive: Volume 3—From Theory to Applications; Artech House Inc.: Norwood, MA, USA, 1986; pp. 1065–2162. ISBN 0890061920. [Google Scholar] [CrossRef]
- Wang, J.R.; Shmugge, T.J. An Empirical Model for the Complex Dielectric Permittivity of Soils as a Function of Water Content. IEEE Trans. Geosci. Remote Sens. 1980, GE-18, 288–295. [Google Scholar] [CrossRef] [Green Version]
- Njoku, E.G.; Entekhabi, D. Passive microwave remote sensing of soil moisture. J. Hydrol. 1996, 184, 101–129. [Google Scholar] [CrossRef]
- Ho, P.P. (Ed.) Geoscience and Remote Sensing; IntechOpen: London, UK, 2009; Available online: https://www.intechopen.com/books/3345 (accessed on 1 October 2022).
- Lakhankar, T.; Krakauer, N.; Khanbilvardi, R. Applications of microwave remote sensing of soil moisture for agricultural applications. Int. J. Terraspace Sci. Eng. 2009, 2, 81–91. [Google Scholar]
- Nghiem, S.V.; Wardlow, B.D.; Allured, D.; Svoboda, M.; LeComte, D.; Rosencrans, M.; Chan, S.K.; Neumann, G. Microwave Remote Sensing of Soil Moisture Science and Applications; Drought Mitigation Center Faculty Publications: Lincoln, NE, USA, 2012; p. 104. Available online: http://digitalcommons.unl.edu/droughtfacpub/104 (accessed on 1 October 2022).
- Jackson, T.J. Passive Microwave Remote Sensing of Soil Moisture and Regional Drought Monitoring. In Monitoring and Predicting Agricultural Drought: A Global Study; Oxford Academic: New York, NY, USA, 2005. [Google Scholar] [CrossRef]
Polarization | A | B | R2 | σ | C | D | E | R2 | σ |
---|---|---|---|---|---|---|---|---|---|
Nadir | 0.98594 | 1.09117 | −0.995 | 0.0097 | 1.02285 | 1.3898 | 0.54841 | 0.991 | 0.0096 |
Vertical | 1.0254 | 0.5485 | −0.98 | 0.0096 | 1.07701 | 0.976 | 0.80791 | 0.971 | 0.0087 |
Horizontal | 0.88358 | 1.43197 | −0.998 | 0.0087 | 0.90949 | 1.73483 | 0.73615 | 0.985 | 0.015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanov, A.; Ryabinin, I.; Khvostov, I.; Troshkin, D.; Romanov, D. Remote Radio-Physical Harbingers of Drought in Steppes of the South of Western Siberia. Remote Sens. 2022, 14, 6141. https://doi.org/10.3390/rs14236141
Romanov A, Ryabinin I, Khvostov I, Troshkin D, Romanov D. Remote Radio-Physical Harbingers of Drought in Steppes of the South of Western Siberia. Remote Sensing. 2022; 14(23):6141. https://doi.org/10.3390/rs14236141
Chicago/Turabian StyleRomanov, Andrey, Ivan Ryabinin, Ilya Khvostov, Dmitry Troshkin, and Dmitry Romanov. 2022. "Remote Radio-Physical Harbingers of Drought in Steppes of the South of Western Siberia" Remote Sensing 14, no. 23: 6141. https://doi.org/10.3390/rs14236141
APA StyleRomanov, A., Ryabinin, I., Khvostov, I., Troshkin, D., & Romanov, D. (2022). Remote Radio-Physical Harbingers of Drought in Steppes of the South of Western Siberia. Remote Sensing, 14(23), 6141. https://doi.org/10.3390/rs14236141