Seismo-Lineaments in Egypt: Analysis and Implications for Active Tectonic Structures and Earthquake Magnitudes
Abstract
:1. Introduction
2. Geological and Structural Settings
3. Regional Tectonics And Seismicity
4. Materials and Methods
4.1. Geological and Geophysical Data
4.2. Collected Seismic Activity
4.3. Data Acquisition
4.4. Automatic Surface Lineaments Extraction
5. Capable Faulting Potential Assessment
6. Results and Discussion
Estimation of Maximum Magnitude for the Capable Faults of Egypt
7. Conclusions and Recommendations
- The automated lineament extraction failed to detect the faults or fault zones that exist in the region. Moreover, the length and pattern of the defects were the issues that this study had to deal with. Consequently, we conducted further studies using the manually derived lineaments.
- A manual approach was anticipated to be successful in extracting the lineaments in the mapped area. The fault map of the area derived from the literature was compared to the resultant lineament map.
- According to the lineament maps, any fault zones in the plotted region exist with equivalent densities to the Egypt fault zone. These zones may be found in the area’s southwestern, northeastern, and southern regions. The middle areas of the area, it was found, had more faults than the fault map of the area indicated. Due to extensive foliage and rugged topography, these faults are unlikely to be mapped. In the area, a fault trend different than the NE-SW direction (the Egypt fault zone pattern) is stressed. This is an NW-SE tendency that is typically seen in the area’s central areas.
- Satellite techniques can be used to examine active faults in a weakly active tectonic region, contributing to significant engineering projects and neotectonic research.
- Field investigations (ground truth studies) are recommended as the most effective method of determining the correctness of the extracted lineaments.
- There is no consensus on how to choose the best band for manual lineament extraction. As a result, it is suggested that the geology, topographic, and vegetation cover of the chosen location be taken into consideration.
- Manual lineament extraction is a technique that is entirely reliant on the user. The expert’s knowledge improves the map’s overall trustworthiness.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moustafa, S.S.; Abdalzaher, M.S.; Naeem, M.; Fouda, M.M. Seismic hazard and site suitability evaluation based on multicriteria decision analysis. IEEE Access 2022, 10, 69511–69530. [Google Scholar] [CrossRef]
- Moustafa, S.S.; Abdalzaher, M.S.; Khan, F.; Metwaly, M.; Elawadi, E.A.; Al-Arifi, N.S. A Quantitative Site-Specific Classification Approach Based on Affinity Propagation Clustering. IEEE Access 2021, 9, 155297–155313. [Google Scholar] [CrossRef]
- Angelier, J.; Chu, H.T.; Lee, J.C.; Hu, J.C. Active faulting and earthquake hazard: The case study of the Chihshang fault, Taiwan. J. Geodyn. 2000, 29, 151–185. [Google Scholar] [CrossRef]
- Baker, J.W.; Abrahamson, N.A.; Whitney, J.W.; Board, M.P.; Hanks, T.C. Use of fragile geologic structures as indicators of unexceeded ground motions and direct constraints on probabilistic seismic hazard analysis. Bull. Seismol. Soc. Am. 2013, 103, 1898–1911. [Google Scholar] [CrossRef]
- Butler, R.; Spencer, S.; Griffiths, H. Transcurrent fault activity on the Dead Sea Transform in Lebanon and its implications for plate tectonics and seismic hazard. J. Geol. Soc. 1997, 154, 757–760. [Google Scholar] [CrossRef]
- Cello, G.; Mazzoli, S.; Tondi, E.; Turco, E. Active tectonics in the central Apennines and possible implications for seismic hazard analysis in peninsular Italy. Tectonophysics 1997, 272, 43–68. [Google Scholar] [CrossRef]
- Giona Bucci, M.; Schoenbohm, L.M. Tectono-Geomorphic Analysis in Low Relief, Low Tectonic Activity Areas: Case Study of the Temiskaming Region in the Western Quebec Seismic Zone (WQSZ), Eastern Canada. Remote Sens. 2022, 14, 3587. [Google Scholar] [CrossRef]
- Abdalzaher, M.S.; El-Hadidy, M.; Gaber, H.; Badawy, A. Seismic hazard maps of Egypt based on spatially smoothed seismicity model and recent seismotectonic models. J. Afr. Earth Sci. 2020, 170, 103894. [Google Scholar] [CrossRef]
- Abdalzaher, M.S.; Elsayed, H.A. Employing data communication networks for managing safer evacuation during earthquake disaster. Simul. Model. Pract. Theory 2019, 94, 379–394. [Google Scholar] [CrossRef]
- Machette, M.N. Active, capable, and potentially active faults—a paleoseismic perspective. J. Geodyn. 2000, 29, 387–392. [Google Scholar] [CrossRef]
- Skobelev, S.; Hanon, M.; Klerkx, J.; Govorova, N.; Lukina, N.; Kazmin, V. Active faults in Africa: A review. Tectonophysics 2004, 380, 131–137. [Google Scholar] [CrossRef]
- Bossennec, C.; Frey, M.; Seib, L.; Bär, K.; Sass, I. Multiscale Characterisation of Fracture Patterns of a Crystalline Reservoir Analogue. Geosciences 2021, 11, 371. [Google Scholar] [CrossRef]
- Arnous, M.O.; Green, D.R. GIS and remote sensing as tools for conducting geo-hazards risk assessment along Gulf of Aqaba coastal zone, Egypt. J. Coast. Conserv. 2011, 15, 457–475. [Google Scholar] [CrossRef]
- Elmahdy, S.I.; Mohamed, M.M. Mapping of tecto-lineaments and investigate their association with earthquakes in Egypt: A hybrid approach using remote sensing data. Geomat. Nat. Hazards Risk 2016, 7, 600–619. [Google Scholar] [CrossRef] [Green Version]
- Rabie, S.I.; Ammar, A.A. Pattern of the main tectonic trends from remote geophysics, geological structures and satellite imagery, Central Eastern Desert, Egypt. Int. J. Remote Sens. 1990, 11, 669–683. [Google Scholar] [CrossRef]
- Abdalzaher, M.S.; Elsayed, H.A.; Fouda, M.M. Employing Remote Sensing, Data Communication Networks, AI, and Optimization Methodologies in Seismology. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 9417–9438. [Google Scholar] [CrossRef]
- Nath, B.; Singh, R.P.; Gahalaut, V.K.; Singh, A.P. Dynamic Relationship Study between the Observed Seismicity and Spatiotemporal Pattern of Lineament Changes in Palghar, North Maharashtra (India). Remote Sens. 2021, 14, 135. [Google Scholar] [CrossRef]
- Liu, Z.; Han, L.; Du, C.; Cao, H.; Guo, J.; Wang, H. Fractal and multifractal characteristics of lineaments in the Qianhe Graben and its tectonic significance using remote sensing images. Remote Sens. 2021, 13, 587. [Google Scholar] [CrossRef]
- Kokinou, E.; Panagiotakis, C. Automatic Pattern Recognition of Tectonic Lineaments in Seafloor Morphology to Contribute in the Structural Analysis of Potentially Hydrocarbon-Rich Areas. Remote Sens. 2020, 12, 1538. [Google Scholar] [CrossRef]
- Masoud, A.; Koike, K. Tectonic architecture through Landsat-7 ETM+/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt. J. Afr. Earth Sci. 2006, 45, 467–477. [Google Scholar] [CrossRef]
- Moustafa, S.S.; Alarifi, N.; Naeem, M.; Jafri, M.K. An integrated technique for delineating groundwater contaminated zones using geophysical and remote sensing techniques: A case study of Al-Quway’iyah, central Saudi Arabia. Can. J. Earth Sci. 2014, 51, 797–808. [Google Scholar] [CrossRef]
- Valkanou, K.; Karymbalis, E.; Papanastassiou, D.; Soldati, M.; Chalkias, C.; Gaki-Papanastassiou, K. Assessment of neotectonic landscape deformation in Evia Island, Greece, using GIS-based multi-criteria analysis. ISPRS Int. J. Geo-Inf. 2021, 10, 118. [Google Scholar] [CrossRef]
- Moustafa, S.S.; Al-Arifi, N.S.; Jafri, M.K.; Naeem, M.; Alawadi, E.A.; Metwaly, M.A. First level seismic microzonation map of Al-Madinah province, western Saudi Arabia using the geographic information system approach. Environ. Earth Sci. 2016, 75, 251. [Google Scholar] [CrossRef]
- Ahmadi, H.; Pekkan, E. Fault-based geological lineaments extraction using remote sensing and GIS—A review. Geosciences 2021, 11, 183. [Google Scholar] [CrossRef]
- Javhar, A.; Chen, X.; Bao, A.; Jamshed, A.; Yunus, M.; Jovid, A.; Latipa, T. Comparison of multi-resolution optical Landsat-8, Sentinel-2 and radar Sentinel-1 data for automatic lineament extraction: A case study of Alichur area, SE Pamir. Remote Sens. 2019, 11, 778. [Google Scholar] [CrossRef] [Green Version]
- Elhadidy, M.; Abdalzaher, M.S.; Gaber, H. Up-to-date PSHA along the Gulf of Aqaba-Dead Sea transform fault. Soil Dyn. Earthq. Eng. 2021, 148, 106835. [Google Scholar] [CrossRef]
- Kulke, H. Regional Petroleum Geology of the World. Part II, Africa, America, Australia and Antarctica; G. Borntraeger: Berlin, Germany, 1995. [Google Scholar]
- Said, R. The Geology of Egypt; Routledge: London, UK, 2017. [Google Scholar]
- Selim, E.S.; Abouad, E.; Moustafa, S.S.; Al-Arifi, N.S. Active tectonic trends and crustal modeling of the eastern Mediterranean Sea deduced from geophysical data. Environ. Earth Sci. 2016, 75, 1–13. [Google Scholar] [CrossRef]
- Lazos, I.; Papanikolaou, I.; Sboras, S.; Foumelis, M.; Pikridas, C. Geodetic Upper Crust Deformation Based on Primary GNSS and INSAR Data in the Strymon Basin, Northern Greece—Correlation with Active Faults. Appl. Sci. 2022, 12, 9391. [Google Scholar] [CrossRef]
- Wilkinson, M.W.; McCaffrey, K.J.; Jones, R.R.; Roberts, G.P.; Holdsworth, R.E.; Gregory, L.C.; Walters, R.J.; Wedmore, L.; Goodall, H.; Iezzi, F. Near-field fault slip of the 2016 Vettore Mw 6.6 earthquake (Central Italy) measured using low-cost GNSS. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef]
- Mcclusky, S.; Balassanian, S.; Barka, A.; Demir, C.; Ergintav, S.; Georgiev, I.; Gurkan, O.; Hamburger, M.; Hurst, K.; Kahle, H.; et al. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res. Solid Earth 2000, 105, 5695–5719. [Google Scholar] [CrossRef]
- Müller, M.; Geiger, A.; Kahle, H.G.; Veis, G.; Billiris, H.; Paradissis, D.; Felekis, S. Velocity and deformation fields in the North Aegean domain, Greece, and implications for fault kinematics, derived from GPS data 1993–2009. Tectonophysics 2013, 597, 34–49. [Google Scholar] [CrossRef]
- Hollenstein, C.; Müller, M.; Geiger, A.; Kahle, H.G. Crustal motion and deformation in Greece from a decade of GPS measurements, 1993–2003. Tectonophysics 2008, 449, 17–40. [Google Scholar] [CrossRef]
- Nyst, M.; Thatcher, W. New constraints on the active tectonic deformation of the Aegean. J. Geophys. Res. Solid Earth 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Reilinger, R.; McClusky, S.; Paradissis, D.; Ergintav, S.; Vernant, P. Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone. Tectonophysics 2010, 488, 22–30. [Google Scholar] [CrossRef]
- Hussein, H.; Abou Elenean, K.; Marzouk, I.; Korrat, I.; El-Nader, I.A.; Ghazala, H.; ElGabry, M. Present-day tectonic stress regime in Egypt and surrounding area based on inversion of earthquake focal mechanisms. J. Afr. Earth Sci. 2013, 81, 1–15. [Google Scholar] [CrossRef]
- Ghamry, E.; Mohamed, E.K.; Abdalzaher, M.S.; Elwekeil, M.; Marchetti, D.; De Santis, A.; Hegy, M.; Yoshikawa, A.; Fathy, A. Integrating pre-earthquake signatures from different precursor tools. IEEE Access 2021, 9, 33268–33283. [Google Scholar] [CrossRef]
- Stern, R.J.; Gottfried, D.; Hedge, C.E. Late Precambrian rifting and crustal evolution in the Northeastern Desert of Egypt. Geology 1984, 12, 168–172. [Google Scholar] [CrossRef]
- Tassy, A.; Crouzy, E.; Gorini, C.; Rubino, J.L. Mesozoic carbonate-siliciclastic platform to basin systems of a South Tethyan margin (Egypt, East Mediterranean). In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 12–17 April 2015; p. 3720. [Google Scholar]
- Abd-Allah, A.M.; Aal, M.H.A.; Ghandour, A. Structural characteristics and tectonic evolution of the northwestern margin of the Nile Delta, Egypt. J. Afr. Earth Sci. 2012, 68, 82–95. [Google Scholar] [CrossRef]
- Moustafa, A.R. Structural architecture and tectonic evolution of the Maghara inverted basin, Northern Sinai, Egypt. J. Struct. Geol. 2014, 62, 80–96. [Google Scholar] [CrossRef]
- Fergany, E.; Mekkawi, M.; Azeem, M.A.; Khalil, A. Integrated geologic and geophysical studies of north unstable shelf seismicity, Egypt. Arab. J. Geosci. 2015, 8, 5475–5490. [Google Scholar] [CrossRef]
- Sestini, G. Tectonic and sedimentary history of the NE African margin (Egypt—Libya). Geol. Soc. Lond. Spec. Publ. 1984, 17, 161–175. [Google Scholar] [CrossRef]
- Collins, A.S.; Blades, M.L.; Merdith, A.S. The Arabian–Nubian Shield Within the Neoproterozoic Plate Tectonic Circuit. In The Geology of the Arabian-Nubian Shield; Springer: Berlin/Heidelberg, Germany, 2021; pp. 195–202. [Google Scholar]
- Asim, K.M.; Moustafa, S.S.; Niaz, I.A.; Elawadi, E.A.; Iqbal, T.; Martínez-Álvarez, F. Seismicity analysis and machine learning models for short-term low magnitude seismic activity predictions in Cyprus. Soil Dyn. Earthq. Eng. 2020, 130, 105932. [Google Scholar] [CrossRef]
- Azer, M.K. Tectonic significance of Late Precambrian calc-alkaline and alkaline magmatism in Saint Katherina area, southern Sinai, Egypt. Geol. Acta Int. Earth Sci. J. 2007, 5, 255–272. [Google Scholar]
- Kröner, A.; Krüger, J.; Rashwan, A.e.A.A. Age and tectonic setting of granitoid gneisses in the Eastern Desert of Egypt and south-west Sinai. Geol. Rundsch. 1994, 83, 502–513. [Google Scholar] [CrossRef]
- Fowler, A.; Hassen, I.; Hassan, M. Tectonic evolution and setting of the Sa’al Complex, southern Sinai, Egypt: A Proterozoic continental back-arc rift model. J. Afr. Earth Sci. 2015, 104, 103–131. [Google Scholar] [CrossRef]
- Morsy, M.; Hussein, H.; Abou Elenean, K.; El-Hady, S. Stress field in the central and northern parts of the Gulf of Suez area, Egypt from earthquake fault plane solutions. J. Afr. Earth Sci. 2011, 60, 293–302. [Google Scholar] [CrossRef]
- Omran, M.A.; El Sharawy, M.S. Tectonic evolution of the Southern Gulf of Suez, Egypt: A comparison between depocenter and near peripheral basins. Arab. J. Geosci. 2014, 7, 87–107. [Google Scholar] [CrossRef]
- Steinberg, J.; Gvirtzman, Z.; Garfunkel, Z. Flexural response of a continental margin to sedimentary loading and lithospheric rupturing: The mountain ridge between the Levant Basin and the Dead Sea Transform. Tectonics 2014, 33, 166–186. [Google Scholar] [CrossRef]
- El Khrepy, S.; Koulakov, I.; Al-Arifi, N. Crustal structure in the area of the Cannon Earthquakes of Abu Dabbab (northern Red Sea, Egypt), from seismic tomography inversion. Bull. Seismol. Soc. Am. 2015, 105, 1870–1882. [Google Scholar] [CrossRef]
- Hosny, A.; Nyblade, A. Crustal structure in southeastern Egypt: Symmetric thinning of the northern Red Sea rifted margins. Geology 2014, 42, 219–222. [Google Scholar] [CrossRef]
- Khalil, S.; McClay, K. Extensional fault-related folding, northwestern Red Sea, Egypt. J. Struct. Geol. 2002, 24, 743–762. [Google Scholar] [CrossRef]
- Papadopoulos, G. Subduction-related large tsunamis in the Mediterranean Sea: A review. In Proceedings of the AGU Spring Meeting Abstracts, Cancun, Mexico, 14–17 May 2013; Volume 2013, p. NH41A–04. [Google Scholar]
- Tende, A.W.; Mustapha, T.; Fru, M.I.N.; Gajere, J.N.; Aminu, M.D. Hybrid extraction of tectonic lineaments from digital elevation model. Appl. Geomat. 2022, 1–18. [Google Scholar] [CrossRef]
- Gharib, A.A. Crustal structure of Tushka Region, Abu-Simbel, Egypt, inferred from spectral ratios of P waves of local earthquakes. Acta Geophys. 2006, 54, 361–377. [Google Scholar] [CrossRef]
- Mostafa, M.E.; Bishta, A.Z. Significance of lineament patterns in rock unit classification and designation: A pilot study on the Gharib-Dara area, northern Eastern Desert, Egypt. Int. J. Remote Sens. 2005, 26, 1463–1475. [Google Scholar] [CrossRef]
- Saleh, S. 3D crustal structure and its tectonic implication for Nile delta and greater Cairo regions, Egypt, from geophysical data. Acta Geod. Geophys. Hung. 2012, 47, 402–429. [Google Scholar] [CrossRef]
- Araffa, S.A.S. Delineation of groundwater aquifer and subsurface structures on North Cairo, Egypt, using integrated interpretation of magnetic, gravity, geoelectrical and geochemical data. Geophys. J. Int. 2013, 192, 94–112. [Google Scholar] [CrossRef] [Green Version]
- Badawy, A. Status of the crustal stress in Egypt as inferred from earthquake focal mechanisms and borehole breakouts. Tectonophysics 2001, 343, 49–61. [Google Scholar] [CrossRef]
- Sakr, K. Crustal deformation associated with the earthquake activity at Dahshour area, Southwest Cairo, Egypt. J. Geol. Soc. India 2007, 69, 397–401. [Google Scholar]
- Sultan, S.A.; Santos, F.A.M. Evaluating subsurface structures and stratigraphic units using 2D electrical and magnetic data at the area north Greater Cairo, Egypt. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 56–67. [Google Scholar] [CrossRef]
- Sawires, R.; Peláez, J.; Fat-Helbary, R.; Ibrahim, H.; García-Hernández, M. An updated seismic source model for Egypt. In Earthquake Engineering—From Engineering Seismology to Optimal Seismic Design of Engineering Structures; InTech: Rijeka, Croatia, 2015; pp. 1–51. [Google Scholar]
- Sawires, R.; Ibrahim, H.; Fat-Helbary, R.; Peláez, J. A seismological database for Egypt including updated seismic and focal mechanism catalogues. In Proceedings of the 8th Spanish-Portuguese Assembly of Geodesy and Geophysics, Évora, Portugal, 29–31 January 2014; pp. 29–31. [Google Scholar]
- Badawy, A. Historical seismicity of Egypt. Acta Geod. Et Geophys. Hung. 1999, 34, 119–135. [Google Scholar]
- Moustafa, S.S.; Mohamed, G.E.A.; Metwaly, M. Production of a homogeneous seismic catalog based on machine learning for northeast Egypt. Open Geosci. 2021, 13, 1084–1104. [Google Scholar] [CrossRef]
- Mazza, R. The Supposed Egyptian Earthquakes of 184 and 95 BC Critical Review and Some Lines of Research in Historical Seismology Using Greek Papyri from Egypt. 1998. Available online: https://doaj.org/article/5526e619df8d42eb9ea4fe610d3917b2 (accessed on 1 March 2022).
- El-Isa, Z. Seismicity and seismotectonics of the Red Sea Region. Arab. J. Geosci. 2015, 8, 8505–8525. [Google Scholar] [CrossRef]
- Youssef, S.E.H. Seismicity and seismotectonic setting of the Red Sea and adjacent areas. In The Red Sea; Springer: Berlin/Heidelberg, Germany, 2015; pp. 151–159. [Google Scholar]
- Hurukawa, N.; Seto, N.; Inoue, H.; Nishigami, K.; Marzouk, I.; Megahed, A.; Ibrahim, E.; Murakami, H.; Nakamura, M.; Haneda, T.; et al. Seismological observations in and around the southern part of the Gulf of Suez, Egypt. Bull. Seismol. Soc. Am. 2001, 91, 708–717. [Google Scholar] [CrossRef]
- Awad, M.; Mizoue, M. Earthquake activity in the Aswan region, Egypt. Pure Appl. Geophys. 1995, 145, 69–86. [Google Scholar] [CrossRef]
- Badawi, H.S.; Mourad, S.A. Observations from the 12 October 1992 Dahshour earthquake in Egypt. Nat. Hazards 1994, 10, 261–274. [Google Scholar] [CrossRef]
- Tsimi, C.; Ganas, A. Using the ASTER global DEM to derive empirical relationships among triangular facet slope, facet height and slip rates along active normal faults. Geomorphology 2015, 234, 171–181. [Google Scholar] [CrossRef]
- Moustafa, S.S. Application of the analytic hierarchy process for evaluating geo-hazards in the Greater Cairo area, Egypt. Electron. J. Geotech. Eng. 2015, 20, 1921–1938. [Google Scholar]
- Rahnama, M.; Gloaguen, R. TecLines: A MATLAB-based toolbox for tectonic lineament analysis from satellite images and DEMs, part 1: Line segment detection and extraction. Remote Sens. 2014, 6, 5938–5958. [Google Scholar] [CrossRef] [Green Version]
- Rahnama, M.; Gloaguen, R. Teclines: A MATLAB-based toolbox for tectonic lineament analysis from satellite images and DEMs, part 2: Line segments linking and merging. Remote Sens. 2014, 6, 11468–11493. [Google Scholar] [CrossRef] [Green Version]
- Elkhrachy, I. Vertical accuracy assessment for SRTM and ASTER Digital Elevation Models: A case study of Najran city, Saudi Arabia. Ain. Shams Eng. J. 2018, 9, 1807–1817. [Google Scholar] [CrossRef]
- Andreani, L.; Stanek, K.P.; Gloaguen, R.; Krentz, O.; Domínguez-González, L. DEM-based analysis of interactions between tectonics and landscapes in the Ore Mountains and Eger Rift (East Germany and NW Czech Republic). Remote Sens. 2014, 6, 7971–8001. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.F.; Lin, C.W.; Chen, Y.H.; He, T.C.; Fei, L.Y. Detecting and characterizing active thrust fault and deep-seated landslides in dense forest areas of southern Taiwan using airborne LiDAR DEM. Remote Sens. 2015, 7, 15443–15466. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Han, L.; Yang, Z.; Cao, H.; Guo, F.; Guo, J.; Ji, Y. Evaluating the vertical accuracy of DEM generated from ZiYuan-3 stereo images in understanding the tectonic morphology of the Qianhe Basin, China. Remote Sens. 2021, 13, 1203. [Google Scholar] [CrossRef]
- Farahbakhsh, E.; Chandra, R.; Olierook, H.K.; Scalzo, R.; Clark, C.; Reddy, S.M.; Müller, R.D. Computer vision-based framework for extracting tectonic lineaments from optical remote sensing data. Int. J. Remote Sens. 2020, 41, 1760–1787. [Google Scholar] [CrossRef]
- Shetty, S.; Umesh, P.; Shetty, A. Lineament Extraction from Open-Source Digital Elevation Models: A Comparative Analysis. In Proceedings of the 2021 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), Online, 19–20 November 2021; pp. 66–71. [Google Scholar]
- Abdullah, A.; Akhir, J.M.; Abdullah, I. Automatic mapping of lineaments using shaded relief images derived from digital elevation model (DEMs) in the Maran-Sungi Lembing area, Malaysia. Electron. J. Geotech. Eng. 2010, 15, 949–958. [Google Scholar]
- Ha, S.; Son, M.; Seong, Y.B. Active Fault Trace Identification Using a LiDAR High-Resolution DEM: A Case Study of the Central Yangsan Fault, Korea. Remote Sens. 2022, 14, 4838. [Google Scholar] [CrossRef]
- Suzen, M.; Toprak, V. Filtering of satellite images in geological lineament analyses: An application to a fault zone in Central Turkey. Int. J. Remote Sens. 1998, 19, 1101–1114. [Google Scholar] [CrossRef]
- Fujisada, H.; Bailey, G.B.; Kelly, G.G.; Hara, S.; Abrams, M.J. Aster dem performance. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2707–2714. [Google Scholar] [CrossRef]
- Das, S.; Pardeshi, S.D. Comparative analysis of lineaments extracted from Cartosat, SRTM and ASTER DEM: A study based on four watersheds in Konkan region, India. Spat. Inf. Res. 2018, 26, 47–57. [Google Scholar] [CrossRef]
- Yoeli, P. The mechanisation of analytical hill shading. Cartogr. J. 1967, 4, 82–88. [Google Scholar] [CrossRef]
- Oguchi, T.; Aoki, T.; Matsuta, N. Identification of an active fault in the Japanese Alps from DEM-based hill shading. Comput. Geosci. 2003, 29, 885–891. [Google Scholar] [CrossRef]
- Geomatica, P. PCI Geomatica User’s Guide Version 12.0.2; Richmond Hill: Calgary, Alberta, 2012. [Google Scholar]
- Mohapatra, A.K.; Mohanty, W.K.; Verma, A.K. Estimation of maximum magnitude (M max): Impending large earthquakes in northeast region, India. J. Geol. Soc. India 2014, 83, 635–640. [Google Scholar] [CrossRef]
- Båth, M. Earthquake magnitude—recent research and current trends. Earth-Sci. Rev. 1981, 17, 315–398. [Google Scholar] [CrossRef]
- Wheeler, R.L. Methods of Mmax estimation east of the Rocky Mountains. US Geol. Surv. Open-File Rep. 2009, 1018, 44. [Google Scholar]
- Kijko, A.; Singh, M. Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophys. 2011, 59, 674–700. [Google Scholar] [CrossRef] [Green Version]
- Klügel, J.U. Problems in the application of the SSHAC probability method for assessing earthquake hazards at Swiss nuclear power plants. Eng. Geol. 2005, 78, 285–307. [Google Scholar] [CrossRef]
- Abdalzaher, M.S.; Soliman, M.S.; El-Hady, S.M.; Benslimane, A.; Elwekeil, M. A deep learning model for earthquake parameters observation in IoT system-based earthquake early warning. IEEE Internet Things J. 2021, 9, 8412–8424. [Google Scholar] [CrossRef]
- Hamdy, O.; Gaber, H.; Abdalzaher, M.S.; Elhadidy, M. Identifying exposure of urban area to certain seismic hazard using machine learning and GIS: A case study of greater Cairo. Sustainability 2022, 14, 10722. [Google Scholar] [CrossRef]
- Moustafa, S.S.; Abdalzaher, M.S.; Yassien, M.H.; Wang, T.; Elwekeil, M.; Hafiez, H.E.A. Development of an optimized regression model to predict blast-driven ground vibrations. IEEE Access 2021, 9, 31826–31841. [Google Scholar] [CrossRef]
- Abdalzaher, M.S.; Moustafa, S.S.; Abdelhafiez, H.; Farid, W. An Optimized Learning Model Augment Analyst Decisions for Seismic Source Discrimination. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5920212. [Google Scholar] [CrossRef]
- Abdalzaher, M.S.; Moustafa, S.S.; Abd-Elnaby, M.; Elwekeil, M. Comparative performance assessments of machine-learning methods for artificial seismic sources discrimination. IEEE Access 2021, 9, 65524–65535. [Google Scholar] [CrossRef]
- Day, R.W. Geotechnical Earthquake Engineering Handbook; McGraw-Hill Education: Toronto, ON, Canada, 2002. [Google Scholar]
- Wells, D.L.; Coppersmith, K.J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar]
- Anbazhagan, P.; Bajaj, K.; Moustafa, S.S.; Al-Arifi, N.S. Maximum magnitude estimation considering the regional rupture character. J. Seismol. 2015, 19, 695–719. [Google Scholar] [CrossRef]
- Mohamed, A.E.E.A.; El-Hadidy, M.; Deif, A.; Abou Elenean, K. Seismic hazard studies in Egypt. NRIAG J. Astron. Geophys. 2012, 1, 119–140. [Google Scholar] [CrossRef] [Green Version]
- El-Eraki, M.A.; Mostafa, S.I.; Abd el-aal, A.e.-a.K. Multi-seismotectonic models, present-day seismicity and seismic hazard assessment for Suez Canal and its surrounding area, Egypt. Bull. Eng. Geol. Environ. 2016, 75, 503–517. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
RADI | 3 (pixel) | FTHR | 2 (pixel) |
GTHR | 15 | ATHR | 10 |
LTHR | 10 (pixel) | DTHR | 20 (pixel) |
Seismogenic Zone Number | by [106] | of Current Study | by [107] | of Current Study | by [65] | of Current Study |
---|---|---|---|---|---|---|
1 | 6.44 | 6.21 | 5.72 | 5.9 | 4.4 | 5.5 |
2 | 5.3 | 5.03 | 6.02 | 6 | 7.2 | 6.89 |
3 | 7 | 6.64 | 4.88 | 5 | VIII-IX | 6.2 |
4 | 4.9 | 4.52 | 6.89 | 6.2 | 4.5 | 5.2 |
5 | 6.6 | 6.43 | 4.9 | 5 | 5.2 | 6.1 |
6 | 6.5 | 6.07 | 6.19 | 6.5 | 4.8 | 5 |
7 | 4.8 | 4.59 | 4.92 | 5.1 | VIII | 5.8 |
8 | 4.1 | 4.02 | 4.38 | 5.2 | XI | 6.7 |
9 | 3.9 | 3.6 | 4.92 | 5 | X | 6 |
10 | 4.2 | 3.83 | 5.41 | 6 | VIII | 5.7 |
11 | 6.1 | 5.77 | 4.95 | 5.5 | IX-X | 7 |
12 | 4.9 | 4.77 | 6.5 | 6.9 | VI-VII | 5.9 |
13 | 5.7 | 5.6 | 4.92 | 5.3 | 4.7 | 5.2 |
14 | 6.13 | 5.77 | 6.54 | 6.8 | 5 | 5.2 |
15 | 5.6 | 5.39 | 4.72 | 6 | 6.8 | 6.7 |
16 | 5.9 | 5.43 | 6.24 | 6.5 | 6.2 | 6 |
17 | 6.2 | 6.05 | 5.41 | 5.7 | 6.6 | 6.1 |
18 | 4.2 | 3.84 | 5.07 | 7.5 | 4.5 | 5.3 |
19 | 6.7 | 6.67 | 7.34 | 7.3 | 3.9 | 5.6 |
20 | 7.2 | 6.93 | 6.4 | 6.5 | 4.7 | 5.6 |
21 | 6.3 | 6 | 7.02 | 7.2 | 6.2 | 6.3 |
22 | 6.6 | 6.38 | 5.42 | 5.7 | 5.8 | 6.1 |
23 | 6 | 6 | 5.3 | 5 | VIII | 5.8 |
24 | 6.6 | 6.3 | 5.7 | 5.5 | IX-X | 6.1 |
25 | 7.7 | 7.39 | 5.79 | 5.6 | X | 6.5 |
26 | 5.6 | 5.59 | 6.53 | 5.9 | 6.5 | 6.5 |
27 | 7.5 | 7.31 | 6.62 | 6.5 | VIII | 5.7 |
28 | 5.2 | 4.9 | 5.92 | 6 | 5.3 | 6.1 |
29 | 4.2 | 4.01 | 6.71 | 6.3 | ||
30 | 4.9 | 4.67 | 6.76 | 6.7 | ||
31 | 4.4 | 4.19 | 6.8 | 6.7 | ||
32 | 7.5 | 7.45 | 5.19 | 5.3 | ||
33 | 7.2 | 7.14 | 6.03 | 6 | ||
34 | 6.8 | 6.48 | 7 | 7 | ||
35 | 6.5 | 6.33 | 6.79 | 6.8 | ||
36 | 6.6 | 6.19 | 8.01 | 7.9 | ||
37 | 7.7 | 7.36 | 7.13 | 7.2 | ||
38 | 5.1 | 4.69 | 4.64 | 6.5 | ||
39 | 7.7 | 7.34 | ||||
40 | 7.3 | 6.96 | ||||
41 | 7.2 | 7.14 | ||||
42 | 7.6 | 7.34 | ||||
43 | 6.5 | 6.51 | ||||
44 | 6.9 | 6.87 | ||||
45 | 6.1 | 6.03 | ||||
46 | 7.2 | 6.93 | ||||
47 | 6.2 | 6.11 | ||||
48 | 5.6 | 5.25 | ||||
49 | 5.8 | 5.74 | ||||
50 | 7 | 6.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moustafa, S.S.R.; Abdalzaher, M.S.; Abdelhafiez, H.E. Seismo-Lineaments in Egypt: Analysis and Implications for Active Tectonic Structures and Earthquake Magnitudes. Remote Sens. 2022, 14, 6151. https://doi.org/10.3390/rs14236151
Moustafa SSR, Abdalzaher MS, Abdelhafiez HE. Seismo-Lineaments in Egypt: Analysis and Implications for Active Tectonic Structures and Earthquake Magnitudes. Remote Sensing. 2022; 14(23):6151. https://doi.org/10.3390/rs14236151
Chicago/Turabian StyleMoustafa, Sayed S. R., Mohamed S. Abdalzaher, and H. E. Abdelhafiez. 2022. "Seismo-Lineaments in Egypt: Analysis and Implications for Active Tectonic Structures and Earthquake Magnitudes" Remote Sensing 14, no. 23: 6151. https://doi.org/10.3390/rs14236151
APA StyleMoustafa, S. S. R., Abdalzaher, M. S., & Abdelhafiez, H. E. (2022). Seismo-Lineaments in Egypt: Analysis and Implications for Active Tectonic Structures and Earthquake Magnitudes. Remote Sensing, 14(23), 6151. https://doi.org/10.3390/rs14236151