Application of Resistivity and Seismic Refraction Tomography for Landslide Stability Assessment in Vallcebre, Spanish Pyrenees
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. Geophysical Methods
3.2. Landslide Stability Analysis
- Borehole data: Borehole data were inserted directly in the Slide3 software using the Borehole Manager tool, which allows inserting the coordinates, formations, and water elevation of each borehole;
- Digital elevation model (DEM) from airborne LIDAR data for adding surface topography to the model. DEM has a 2X2 m mesh with an absolute vertical accuracy of 0.15 m [41];
- Electric resistivity tomography profiles: Each material in these profiles has an electric resistivity range that represents it. Data were filtered and divided into four data sets, where each data set represents a material, then finally, the coordinates of the upper limit were saved as XYZ data GRID;
- Seismic refraction profiles: as each seismic refraction velocity range represents a material, velocity data were filtered and divided into four data sets. Each dataset is representing one of the subsurface formations. Finally, the coordinates of the upper limit of each layer were saved as XYZ data GRID.
4. Results and Discussion
4.1. Geophysics
4.1.1. ERT
- An upper layer, generally with low resistivity values (<40 Ω·m) and with a thickness varying between 13 m (ERT 7) and more than 40 m (ERT 8).
- A lower layer, with high resistivity values (more than 300 Ω·m), was observed in all the cross-sections.
4.1.2. SRT
4.2. Landslide Stability Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kjekstad, O.; Highland, L. Economic and Social Impacts of Landslides. In Landslides—Disaster Risk Reduction; Sassa, K., Canuti, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 573–587. ISBN 978-3-540-69970-5. [Google Scholar]
- Zhao, C.; Lu, Z. Remote Sensing of Landslides—A Review. Remote Sens. 2018, 10, 279. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, V.; Arosio, D.; Tresoldi, G.; Hojat, A.; Zanzi, L.; Papini, M.; Longoni, L. Investigation on the Role of Water for the Stability of Shallow Landslides—Insights from Experimental Tests. Water 2020, 12, 1203. [Google Scholar] [CrossRef] [Green Version]
- Pazzi, V.; Morelli, S.; Fanti, R. A Review of the Advantages and Limitations of Geophysical Investigations in Landslide Studies. Int. J. Geophys. 2019, 2019, 2983087. [Google Scholar] [CrossRef] [Green Version]
- Caris, J.P.T.; Van Asch, T.W.J. Geophysical, geotechnical and hydrological investigations of a small landslide in the French Alps. Eng. Geol. 1991, 31, 249–276. [Google Scholar] [CrossRef]
- Whiteley, J.S.; Chambers, J.E.; Uhlemann, S.; Wilkinson, P.B.; Kendall, J.M. Geophysical Monitoring of Moisture-Induced Landslides: A Review. Rev. Geophys. 2019, 57, 106–145. [Google Scholar] [CrossRef] [Green Version]
- Di Maio, R.; De Paola, C.; Forte, G.; Piegari, E.; Pirone, M.; Santo, A.; Urciuoli, G. An integrated geological, geotechnical and geophysical approach to identify predisposing factors for flowslide occurrence. Eng. Geol. 2020, 267, 105473. [Google Scholar] [CrossRef]
- Havenith, H.-B.; Torgoev, I.; Ischuk, A. Integrated Geophysical-Geological 3D Model of the Right-Bank Slope Downstream from the Rogun Dam Construction Site, Tajikistan. Int. J. Geophys. 2018, 2018, 1641789. [Google Scholar] [CrossRef] [Green Version]
- Chambers, J.E.; Wilkinson, P.B.; Kuras, O.; Ford, J.R.; Gunn, D.A.; Meldrum, P.I.; Pennington, C.V.L.; Weller, A.L.; Hobbs, P.R.N.; Ogilvy, R.D. Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin, UK. Geomorphology 2011, 125, 472–484. [Google Scholar] [CrossRef] [Green Version]
- Di Maio, R.; Piegari, E. Water storage mapping of pyroclastic covers through electrical resistivity measurements. J. Appl. Geophys. 2011, 75, 196–202. [Google Scholar] [CrossRef]
- Grandjean, G.; Gourry, J.C.; Sanchez, O.; Bitri, A.; Garambois, S. Structural study of the Ballandaz landslide (French Alps) using geophysical imagery. J. Appl. Geophys. 2011, 75, 531–542. [Google Scholar] [CrossRef]
- Himi, M.; Casado, I.; Sendrós, A.; Lovera, R.; Rivero, L.; Casas, A. Assessing preferential seepage and monitoring mortar injection through an earthen dam settled over a gypsiferous substrate using combined geophysical methods. Eng. Geol. 2018, 246, 212–221. [Google Scholar] [CrossRef]
- Jongmans, D.; Garambois, S. Geophysical investigation of landslides: A review. Bull. Société Géologique Fr. 2007, 178, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Hack, R. Geophysics for slope stability. Surv. Geophys. 2000, 21, 423–448. [Google Scholar] [CrossRef]
- Perrone, A.; Lapenna, V.; Piscitelli, S. Electrical resistivity tomography technique for landslide investigation: A review. Earth-Sci. Rev. 2014, 135, 65–82. [Google Scholar] [CrossRef]
- Hibert, C.; Grandjean, G.; Bitri, A.; Travelletti, J.; Malet, J.-P. Characterizing landslides through geophysical data fusion: Example of the La Valette landslide (France). Eng. Geol. 2012, 128, 23–29. [Google Scholar] [CrossRef]
- Jongmans, D.; Bièvre, G.; Renalier, F.; Schwartz, S.; Beaurez, N.; Orengo, Y. Geophysical investigation of a large landslide in glaciolacustrine clays in the Trièves area (French Alps). Eng. Geol. 2009, 109, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Cahyaningsih, C.; Riau, U.I.; Asteriani, F.; Crensonni, P.F.; Choanji, T. Safety factor characterization of landslide in Riau-West of Sumatra highway. Int. J. Geomate 2019, 17, 323–330. [Google Scholar] [CrossRef]
- Chowdhury, R.; Flentje, P. Geotechnical analysis of slopes and landslides: Achievements and challenges Geologically Active. In 11th IAEG Congress of the International Association of Engineering Geology and the Environment; Taylor and Francis: Oxford, UK, 2010; Volume 31. [Google Scholar]
- Johansson, J. Impact of Water-Level Variations on Slope Stability. Licentiate Thesis, Luleå University of Technology, Luleå, Sweden, 2014. [Google Scholar]
- Corominas, J.; Moya, J.; Ledesma, A.; Lloret, A.; Gili, J.A. Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides 2005, 2, 83–96. [Google Scholar] [CrossRef]
- Gili, J.A.; Moya, J.; Corominas, J.; Crosetto, M.; Monserrat, O. Past, Present and Future Monitoring at the Vallcebre Landslide (Eastern Pyrenees, Spain). Appl. Sci. 2021, 11, 571. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslides-Investigation and Mitigation, Special Report No. 247; National Academy Press: Washington, WA, USA, 1996; ISBN 9780309061513. [Google Scholar]
- Ferrari, A.; Ledesma, A.; González, D.A.; Corominas, J. Effects of the foot evolution on the behaviour of slow-moving landslides. Eng. Geol. 2011, 117, 217–228. [Google Scholar] [CrossRef]
- ICGC. Mapa Geològic de Catalunya 1:50,000. Available online: www.icgc.cat (accessed on 3 October 2021).
- ICGC. Topography Map 1:5000 and DEM 2X2. Institut Cartogràfic i Geològic de Catalunya. Available online: www.icgc.cat (accessed on 2 December 2020).
- Crosetto, M.; Gili, J.A.; Monserrat, O.; Cuevas-González, M.; Corominas, J.; Serral, D. Interferometric SAR monitoring of the Vallcebre landslide (Spain) using corner reflectors. Nat. Hazards Earth Syst. Sci. 2013, 13, 923–933. [Google Scholar] [CrossRef]
- Moya, J.; Corominas, J.; Gili, J.A.; Ledesma, A.; Lloret, A. Twenty years of continuous monitoring of the Vallcebre landslide (Eastern Pyrenees): Lessons learned. In Proceedings of the JTC1 Workshop on Advances in Landslide Understanding, Barcelona, Spain, 24–26 May 2017; pp. 101–104. [Google Scholar]
- Cho, I.-K.; Yeom, J.-Y. Crossline resistivity tomography for the delineation of anomalous seepage pathways in an embankment dam. Geophysics 2007, 72, G31–G38. [Google Scholar] [CrossRef]
- Loke, M.H.; Dahlin, T. A comparison of the Gauss–Newton and quasi-Newton methods in resistivity imaging inversion. J. Appl. Geophys. 2002, 49, 149–162. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, D.H.; Barker, R.D. Two-dimensional resistivity imaging and modelling in areas of complex geology. J. Appl. Geophys. 1993, 29, 211–226. [Google Scholar] [CrossRef]
- Loke, M.H.; Barker, R.D. Practical techniques for 3D resistivity surveys and data inversion. Geophys. Prospect. 1996, 44, 499–523. [Google Scholar] [CrossRef]
- Sjödahl, P.; Dahlin, T.; Johansson, S.; Loke, M.H. Resistivity monitoring for leakage and internal erosion detection at Hällby embankment dam. J. Appl. Geophys. 2008, 65, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Bedrosian, P.A.; Burton, B.L.; Powers, M.H.; Minsley, B.J.; Phillips, J.D.; Hunter, L.E. Geophysical investigations of geology and structure at the Martis Creek Dam, Truckee, California. J. Appl. Geophys. 2012, 77, 7–20. [Google Scholar] [CrossRef] [Green Version]
- Martorana, R.; Fiandaca, G.; Casas Ponsati, A.; Cosentino, P.L. Comparative tests on different multi-electrode arrays using models in near-surface geophysics. J. Geophys. Eng. 2009, 6, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Loke, M.H.; Barker, R.D. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys. Prospect. 1996, 44, 131–152. [Google Scholar] [CrossRef]
- Loke, M.H.; Acworth, I.; Dahlin, T. A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor. Geophys. 2003, 34, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Oldenburg, D.W.; Li, Y. Estimating depth of investigation in DC resistivity and IP surveys. Geophysics 1999, 64, 403–416. [Google Scholar] [CrossRef]
- Morgenstern, N.R.; Price, V.E. The Analysis of the Stability of General Slip Surfaces. Géotechnique 1965, 15, 79–93. [Google Scholar] [CrossRef]
- Anagnosti, P. Three dimensional stability of fill dams. In Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, Mexico, 4–8 May 1969; International Society for Soil Mechanics and Geotechnical Engineering: London, UK, 1969; pp. 275–280. [Google Scholar]
- ICGC. Model d’Elevacions del Terreny de Catalunya 2x2metres (MET-2), version 1.0; Institut Cartogràfic i Geològic de Catalunya: Barcelona, Spain, 2016.
- Corominas, J.; Moya, J.; Lloret, A.; Gili, J.A.; Angeli, M.G.; Pasuto, A.; Silvano, S. Measurement of landslide displacements using a wire extensometer. Eng. Geol. 2000, 55, 149–166. [Google Scholar] [CrossRef]
- Cheng, Y.M.; Yip, C.J. Three-Dimensional Asymmetrical Slope Stability Analysis Extension of Bishop’s, Janbu’s, and Morgenstern–Price’s Techniques. J. Geotech. Geoenvironmental Eng. 2007, 133, 1544–1555. [Google Scholar] [CrossRef]
- Bishop, A.W. The use of the Slip Circle in the Stability Analysis of Slopes. Géotechnique 1955, 5, 7–17. [Google Scholar] [CrossRef]
- Janbu, N.; Bjerrum, L.; Kjaernsli, B. Soil Mechanics Applied to some Engineering Problems; Norwegian Geotechnical Institute: Oslo, Norway, 1956. [Google Scholar]
- Spencer, E. Thrust line criterion in embankment stability analysis. Géotechnique 1973, 23, 85–100. [Google Scholar] [CrossRef]
- Wu, A. Locating General Failure Surfaces in Slope Analysis via Cuckoo Search. Available online: https://static.rocscience.cloud/assets/verification-and-theory/Slide2/Cuckoo-Search.pdf (accessed on 3 November 2022).
- Loke, M.H. RES2DInv, Rapid 2D Resistivity and IP Inversion Using the Least Squares Method; Geotomo Software: Tanjung Penaga, Malaysia, 2004. [Google Scholar]
- Nurul Nida, H.; Asta Yogantara, M.; Otolomo, M.A.P.; Sanny, T.A. Application of Refraction Seismic Tomography Method Using Wavepath Eikonal Traveltime Inversion for Modelling the Subsurface. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bali, Indonesia, 7–10 August 2018; Sule, R., Ed.; Institute of Physics Publishing (IOP): Bali, Indonesia, 2019; Volume 318, p. 012016. [Google Scholar]
- Caylak, C.; Kocaslan, A.; Gorgulu, K.; Buyuksarac, A.; Arpaz, E. Importance of ground properties in the relationship of ground vibration–structural hazard and land application. J. Appl. Geophys. 2014, 104, 6–16. [Google Scholar] [CrossRef]
- Yilmaz, S.; Okyar, M.; Gurbuz, M. Electrical resistivity imaging for investigation of seepage paths in the Yukari Gökdere Dam, Isparta, Turkey. Bull. Eng. Geol. Environ. 2021, 80, 115–125. [Google Scholar] [CrossRef]
- Santacana, N. Análisis de la Suceptibilidad del Terreno a la Formación de Deslizamientos Superficiales y Grandes Deslizamientos Mediante el uso de Sistemas de Información Geográfica. Aplicación a la Cuenca alta del Río Llobregat. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2001. [Google Scholar]
- Arief, M. Studi pengaruh geometri Lereng Pada analisis Kemantapan Lereng 2D Dan 3D Dengan Metode Kesetimbangan Batas. Indones. Min. Prof. J. 2020, 2, 51–56. [Google Scholar] [CrossRef]
- Bar, N.; McQuillan, A. 3D Limit Equilibrium Slope Stability Analysis for Anisotropic and Faulted Rock Masses in Australian Coal and Iron Ore Mines. In Proceedings of the ISRM International Symposium-10th Asian Rock Mechanics Symposium, Singapore, 29 October–3 November 2018. [Google Scholar]
- Firincioglu, B.S.; Ercanoglu, M. Insights and perspectives into the limit equilibrium method from 2D and 3D analyses. Eng. Geol. 2021, 281, 105968. [Google Scholar] [CrossRef]
- Xie, M.; Esaki, T.; Zhou, G.; Mitani, Y. Geographic Information Systems-Based Three-Dimensional Critical Slope Stability Analysis and Landslide Hazard Assessment. J. Geotech. Geoenvironmental Eng. 2003, 129, 1109–1118. [Google Scholar] [CrossRef]
Unit Name | Unit Weight (kN/m3) | Cohesion (kPa) | Phi (°) |
---|---|---|---|
Limestone *1 | 20 | - *1 | - *1 |
Clayey Siltstone | 18 | 0 | 14.7 |
Fissured Shales | 19 | 0 | 11.8 |
Debris of Gravel | 20 | 0 | 14.7 |
Group | Parameter | Value |
---|---|---|
Unit weight of water | 9.81 kN/m3 | |
Convergence | Number of columns in X or Y | 50 |
Maximum Iterations | 50 | |
Tolerance | 0.01 | |
Intercolumn force function | Half Sine | |
Surface options | Search method | Cuckoo Search |
Maximum Iterations | 30 | |
Iteration tolerance | 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Himi, M.; Anton, M.; Sendrós, A.; Abancó, C.; Ercoli, M.; Lovera, R.; Deidda, G.P.; Urruela, A.; Rivero, L.; Casas, A. Application of Resistivity and Seismic Refraction Tomography for Landslide Stability Assessment in Vallcebre, Spanish Pyrenees. Remote Sens. 2022, 14, 6333. https://doi.org/10.3390/rs14246333
Himi M, Anton M, Sendrós A, Abancó C, Ercoli M, Lovera R, Deidda GP, Urruela A, Rivero L, Casas A. Application of Resistivity and Seismic Refraction Tomography for Landslide Stability Assessment in Vallcebre, Spanish Pyrenees. Remote Sensing. 2022; 14(24):6333. https://doi.org/10.3390/rs14246333
Chicago/Turabian StyleHimi, Mahjoub, Mickel Anton, Alex Sendrós, Clàudia Abancó, Maurizio Ercoli, Raúl Lovera, Gian Piero Deidda, Aritz Urruela, Lluís Rivero, and Albert Casas. 2022. "Application of Resistivity and Seismic Refraction Tomography for Landslide Stability Assessment in Vallcebre, Spanish Pyrenees" Remote Sensing 14, no. 24: 6333. https://doi.org/10.3390/rs14246333
APA StyleHimi, M., Anton, M., Sendrós, A., Abancó, C., Ercoli, M., Lovera, R., Deidda, G. P., Urruela, A., Rivero, L., & Casas, A. (2022). Application of Resistivity and Seismic Refraction Tomography for Landslide Stability Assessment in Vallcebre, Spanish Pyrenees. Remote Sensing, 14(24), 6333. https://doi.org/10.3390/rs14246333