Exploring Park Visit Variability Using Cell Phone Data in Shenzhen, China
Abstract
:1. Introduction
2. Study Area and Datasets
3. Methods
4. Results
4.1. Spatial and Temporal Characteristics of Park Visitation
4.1.1. Characteristics of Recreation Trips to Parks
4.1.2. Efficiency of Park Services
4.2. Spatial Correlation between Recreation Trips to Parks and the Built Environmental Factors
4.3. Factors Affecting the Attractiveness of the Park Surroundings
5. Discussion
5.1. Park Visits Are Heterogeneous for Different User Groups
5.2. Human Activity and Remote Sensing Data Can Work Together to Explain the Attractiveness of the Park
5.3. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
ID | Name | ID | Name |
---|---|---|---|
1 | Lianhua Mountain Park | 30 | Honghu Park |
2 | Jinxiuzhonghua Folk Village | 31 | Weiling Park |
3 | Happy Valley | 32 | Qiushuishan Park |
4 | Rose Coast | 33 | Shiyaling Xinyi Sports Park |
5 | Shenzhen Wild Animal Park | 34 | Dayun Park |
6 | Lizhi Park | 35 | Longcheng Park |
7 | Yangtaishan Forest Park | 36 | Guanlan Shanshui Tian Yuan Tourism and Culture Park |
8 | International Garden and Flower Expo | 37 | Guangming New Town Park |
9 | Eastern Overseas Chinese Town | 38 | Tiezai Mountain Park |
10 | Fenghuangshan Forest Park | 39 | Baoan Park |
11 | Wutong Mountain | 40 | Lingzhi Park |
12 | Dameisha | 41 | Xiaonanshan Park |
13 | Xiaomesha | 42 | Wen Tianxiang Memorial Park |
14 | Xianhu Botanical Garden | 43 | Nanshan Park |
15 | Guanlan Printmaking Village | 44 | Pinglun Mountain Park |
16 | Dutch Flower Town | 45 | Lixin Lake Park |
17 | Mangrove Nature Reserve | 46 | Wangniuting Park |
18 | Window of the World | 47 | Sea Field Park |
19 | Shenzhen Bay Park | 48 | Qilin Mountain Park |
20 | Talent Park | 49 | Pinghu Ecological Park |
21 | Zhongshan Park | 50 | Julongsan Ecological Park |
22 | Lixiang Park | 51 | Yanziling Ecological Park |
23 | Dashahe Park | 52 | Pingshan Central Park |
24 | Yanhanshan Country Park | 53 | Baxianling Park |
25 | Bijia Mountain Park | 54 | Malushan Country Park |
26 | Shenzhen Central Park | 55 | Tanglang Mountain Park |
27 | Huanggang Park | 56 | Sihai Park |
28 | Cuizhu Park | ||
29 | Donghu Park |
AREA | TF | RD | Tree Height | EVI | SS | LS | SLS | SECS | HCS | CS | AS | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Sum | Mean | Sum | |||||||||||
No buffer | √ | √ | √ | |||||||||||
200 m | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |||
400 m | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |||
600 m | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |||
800 m | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |||
1000 m | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ |
References
- Wang, J.; Wang, J.; Foley, K. Assessing the performance of urban open space for achieving sustainable and resilient cities: A pilot study of two urban parks in Dublin, Ireland. Urban For. Urban Green. 2021, 62, 127180. [Google Scholar] [CrossRef]
- Tian, M.; Yuan, L.; Guo, R.; Wu, Y.; Liu, X. Sustainable development: Investigating the correlations between park equality and mortality by multilevel model in Shenzhen, China. Sustain. Cities Soc. 2021, 75, 103385. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Jin, S.T.; Liu, Y. Spatial pattern of leisure activities among residents in Beijing, China: Exploring the impacts of urban environment. Sustain. Cities Soc. 2020, 52, 101806. [Google Scholar] [CrossRef]
- Rigolon, A.; Browning, M.; Jennings, V. Inequities in the quality of urban park systems: An environmental justice investigation of cities in the United States. Landsc. Urban Plan. 2018, 178, 156–169. [Google Scholar] [CrossRef]
- Song, Y.; Huang, B.; Cai, J.; Chen, B. Dynamic assessments of population exposure to urban greenspace using multi-source big data. Sci. Total Environ. 2018, 634, 1315–1325. [Google Scholar] [CrossRef] [PubMed]
- Kaczynski, A.T.; Potwarka, L.R.; Saelens, B.E. Association of Park Size, Distance, and Features with Physical Activity in Neighborhood Parks. Am. J. Public Health 2008, 98, 1451–1456. [Google Scholar] [CrossRef] [PubMed]
- Cohen, D.A.; Marsh, T.; Williamson, S.; Derose, K.P.; Martinez, H.; Setodji, C.; McKenzie, T.L. Parks and physical activity: Why are some parks used more than others? Prev. Med. 2010, 50 (Suppl. S), S9–S12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giles-Corti, B.; Broomhall, M.H.; Knuiman, M.; Collins, C.; Douglas, K.; Ng, K.; Lange, A.; Donovan, R.J. Increasing walking: How important is distance to, attractiveness, and size of public open space? Am. J. Prev. Med. 2005, 28, 169–176. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for Classification of Urban Green Space; China Architecture Publishing & Media Co, Ltd.: Beijing, China, 2017.
- Guo, S.; Yang, G.; Pei, T.; Ma, T.; Song, C.; Shu, H.; Du, Y.; Zhou, C. Analysis of factors affecting urban park service area in Beijing: Perspectives from multi-source geographic data. Landsc. Urban Plan. 2019, 181, 103–117. [Google Scholar] [CrossRef]
- Veitch, J.; Bagley, S.; Ball, K.; Salmon, J. Where do children usually play? A qualitative study of parents’ perceptions of influences on children’s active free-play. Health Place 2006, 12, 383–393. [Google Scholar] [CrossRef] [Green Version]
- Bertram, C.; Meyerhoff, J.; Rehdanz, K.; Wüstemann, H. Differences in the recreational value of urban parks between weekdays and weekends: A discrete choice analysis. Landsc. Urban Plan. 2017, 159, 5–14. [Google Scholar] [CrossRef]
- Czerniak, J.; Hargreaves, G.; Beardsley, J. Large Parks; Princeton Architectural Press: New York, NY, USA, 2007. [Google Scholar]
- Xing, L.; Liu, Y.; Liu, X. Measuring spatial disparity in accessibility with a multi-mode method based on park green spaces classification in Wuhan, China. Appl. Geogr. 2018, 94, 251–261. [Google Scholar] [CrossRef]
- Lin, Y.; Zhou, Y.; Lin, M.; Wu, S.; Li, B. Exploring the disparities in park accessibility through mobile phone data: Evidence from Fuzhou of China. J. Environ. Manag. 2021, 281, 111849. [Google Scholar] [CrossRef]
- Liu, B.; Tian, Y.; Guo, M.; Tran, D.; Alwah, A.A.Q.; Xu, D. Evaluating the disparity between supply and demand of park green space using a multi-dimensional spatial equity evaluation framework. Cities 2022, 121, 103484. [Google Scholar] [CrossRef]
- Sister, C.; Wolch, J.; Wilson, J. Got green? addressing environmental justice in park provision. GeoJournal 2010, 75, 229–248. [Google Scholar] [CrossRef]
- Maroko, A.R.; Maantay, J.A.; Sohler, L.N.; Grady, K.L.; Arno, P.S. The complexities of measuring access to parks and physical activity sites in New York City: A quantitative and qualitative approach. Int. J. Health Geogr. 2009, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Wolch, J.R.; Byrne, J.A.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Song, C.; Pei, T.; Liu, Y.; Ma, T.; Du, Y.; Chen, J.; Fan, Z.; Tang, X.; Peng, Y.; et al. Accessibility to urban parks for elderly residents: Perspectives from mobile phone data. Landsc. Urban Plan. 2019, 191, 103642. [Google Scholar] [CrossRef]
- Knapp, M.; Gustat, J.; Darensbourg, R.; Myers, L.; Johnson, C. The Relationships between Park Quality, Park Usage, and Levels of Physical Activity in Low-Income, African American Neighborhoods. Int. J. Environ. Res. Public Health 2018, 16, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Zhou, W. Recreational visits to urban parks and factors affecting park visits: Evidence from geotagged social media data. Landsc. Urban Plan. 2018, 180, 27–35. [Google Scholar] [CrossRef]
- Cheng, L.; Chen, X.; Yang, S.; Cao, Z.; De Vos, J.; Witlox, F. Active travel for active ageing in China: The role of built environment. J. Transp. Geogr. 2019, 76, 142–152. [Google Scholar] [CrossRef]
- Lee, K.H.; Schuett, M.A. Exploring spatial variations in the relationships between residents’ recreation demand and associated factors: A case study in Texas. Appl. Geogr. 2014, 53, 213–222. [Google Scholar] [CrossRef]
- Donahue, M.L.; Keeler, B.L.; Wood, S.A.; Fisher, D.M.; Hamstead, Z.A.; McPhearson, T. Using social media to understand drivers of urban park visitation in the Twin Cities, MN. Landsc. Urban Plan. 2018, 175, 1–10. [Google Scholar] [CrossRef]
- Liu, H.; Li, F.; Xu, L.; Han, B. The impact of socio-demographic, environmental, and individual factors on urban park visitation in Beijing, China. J. Clean. Prod. 2017, 163, S181–S188. [Google Scholar] [CrossRef]
- Irvine, K.N.; Warber, S.L.; Devine-Wright, P.; Gaston, K.J. Understanding Urban Green Space as a Health Resource: A Qualitative Comparison of Visit Motivation and Derived Effects among Park Users in Sheffield, UK. Int. J. Environ. Res. Public Health 2013, 10, 417–442. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, B.; Sun, Z.; Bao, Z. Landscape perception and recreation needs in urban green space in Fuyang, Hangzhou, China. Urban For. Urban Green. 2013, 12, 44–52. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, J.; Ma, L.; Huang, C. Factors affecting the use of urban green spaces for physical activities: Views of young urban residents in Beijing. Urban For. Urban Green. 2015, 14, 851–857. [Google Scholar] [CrossRef]
- Martí, P.; Serrano-Estrada, L.; Nolasco-Cirugeda, A. Using locative social media and urban cartographies to identify and locate successful urban plazas. Cities 2017, 64, 66–78. [Google Scholar] [CrossRef]
- Hamstead, Z.A.; Fisher, D.; Ilieva, R.T.; Wood, S.A.; McPhearson, T.; Kremer, P. Geolocated social media as a rapid indicator of park visitation and equitable park access. Comput. Environ. Urban Syst. 2018, 72, 38–50. [Google Scholar] [CrossRef]
- Liu, H.; Li, F.; Li, J.; Zhang, Y. The relationships between urban parks, residents’ physical activity, and mental health benefits: A case study from Beijing, China. J. Environ. Manag. 2017, 190, 223–230. [Google Scholar] [CrossRef]
- García-Palomares, J.C.; Gutiérrez, J.; Mínguez, C. Identification of tourist hot spots based on social networks: A comparative analysis of European metropolises using photo-sharing services and GIS. Appl. Geogr. 2015, 63, 408–417. [Google Scholar] [CrossRef]
- Li, F.; Li, F.; Li, S.; Long, Y. Deciphering the recreational use of urban parks: Experiments using multi-source big data for all Chinese cities. Sci. Total Environ. 2020, 701, 134896. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Ullah, H.; Wan, W.; Peng, Z.; Hou, L.; Qu, T.; Haidery, S.A. Analysis of Green Spaces by Utilizing Big Data to Support Smart Cities and Environment: A Case Study About the City Center of Shanghai. ISPRS Int. J. Geo-Inf. 2020, 9, 360. [Google Scholar] [CrossRef]
- Liu, Q.; Ullah, H.; Wan, W.; Peng, Z.; Muzahid, A.A.M. Categorization of green spaces for a sustainable environment and smart city architecture by utilizing big data. Electronics 2020, 9, 1028. [Google Scholar] [CrossRef]
- Ćwik, A.; Kasprzyk, I.; Wójcik, T.; Borycka, K.; Cariñanos, P. Attractiveness of urban parks for visitors versus their potential allergenic hazard: A case study in Rzeszów, Poland. Urban For. Urban Green. 2018, 35, 221–229. [Google Scholar] [CrossRef]
- Wu, L.; Kim, S.K. Health outcomes of urban green space in China: Evidence from Beijing. Sustain. Cities Soc. 2021, 65, 102604. [Google Scholar] [CrossRef]
- Urban Administration and Law Enforcement Bureau of Shenzhen Municipality. Available online: http://cgj.sz.gov.cn/xsmh/szgy/index.html (accessed on 23 December 2021).
- Resource and Environment Science and Data Center (RESDC), Chinese Academy of Sciences. Available online: http://www.resdc.cn (accessed on 23 December 2021).
- Liu, K.; Yin, L.; Lu, F.; Mou, N. Visualizing and exploring POI configurations of urban regions on POI-type semantic space. Cities 2020, 99, 102610. [Google Scholar] [CrossRef]
- Gaode Map Open API Interface. Available online: https://lbs.amap.com/api/webservice/guide/api/search (accessed on 23 December 2021).
- Global Forest Canopy Height Data. Available online: https://glad.umd.edu/dataset/gedi/ (accessed on 23 December 2021).
- Landsat Spectral Indices Products over China. Available online: http://databank.casearth.cn (accessed on 23 December 2021).
- Veitch, J.; Salmon, J.; Ball, K.; Crawford, D.; Timperio, A. Do features of public open spaces vary between urban and rural areas? Prev. Med. 2013, 56, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Ewing, R.; Cervero, R. Travel and the Built Environment: A meta-analysis. J. Am. Plan. Assoc. 2010, 76, 265–294. [Google Scholar] [CrossRef]
- GeoDa. Available online: http://geodacenter.github.io/index.html (accessed on 23 December 2021).
- Lee, G.; Hong, I. Measuring spatial accessibility in the context of spatial disparity between demand and supply of urban park service. Landsc. Urban Plan. 2013, 119, 85–90. [Google Scholar] [CrossRef]
- Alfonzo, M.; Guo, Z.; Lin, L.; Day, K. Walking, obesity and urban design in Chinese neighborhoods. Prev. Med. 2014, 69, S79–S85. [Google Scholar] [CrossRef]
- Pan, H.; Shen, Q.; Zhang, M. Influence of Urban form on Travel Behaviour in Four Neighbourhoods of Shanghai. Urban Stud. 2009, 46, 275–294. [Google Scholar] [CrossRef]
- Wei, X.; Huang, S.; Stodolska, M.; Yu, Y. Leisure Time, Leisure Activities, and Happiness in China: Evidence from a national survey. J. Leis. Res. 2015, 47, 556–576. [Google Scholar] [CrossRef]
- Yin, X. New Trends of Leisure Consumption in China. J. Fam. Econ. Issues 2005, 26, 175–182. [Google Scholar] [CrossRef]
- Li, F.; Yao, N.; Liu, D.; Liu, W.; Sun, Y.; Cheng, W.; Li, X.; Wang, X.; Zhao, Y. Explore the recreational service of large urban parks and its influential factors in city clusters—Experiments from 11 cities in the Beijing-Tianjin-Hebei region. J. Clean. Prod. 2021, 314, 128261. [Google Scholar] [CrossRef]
- Yang, L.; Liu, J.; Lu, Y.; Ao, Y.; Guo, Y.; Huang, W.; Zhao, R.; Wang, R. Global and local associations between urban greenery and travel propensity of older adults in Hong Kong. Sustain. Cities Soc. 2020, 63, 102442. [Google Scholar] [CrossRef]
- Lancaster, R.A. Recreation, Park and Open Space Standards and Guidelines; National Recreation and Park Association: Ashburn, VA, USA, 1983; pp. 141–168. [Google Scholar]
- Nicholls, S. Measuring the accessibility and equity of public parks: A case study using GIS. Manag. Leis. 2001, 6, 201–219. [Google Scholar] [CrossRef]
- Dade, M.C.; Mitchell, M.G.E.; Brown, G.; Rhodes, J.R. The effects of urban greenspace characteristics and socio-demographics vary among cultural ecosystem services. Urban For. Urban Green. 2020, 49, 126641. [Google Scholar] [CrossRef]
- Zube, E.H.; Pitt, D.G.; Evans, G.W. A lifespan developmental study of landscape assessment. J. Environ. Psychol. 1983, 3, 115–128. [Google Scholar] [CrossRef]
Group | Gender | Age | Workday | Weekend | National Day |
---|---|---|---|---|---|
Group 1 (teenagers) | Male | 7–18 | 4379 | 5224 | 5688 |
Female | 7–18 | 3263 | 4222 | 4434 | |
Group 2 (younger adults) | Male | 19–60 | 163,334 | 182,741 | 159,278 |
Female | 19–55 | 122,416 | 146,228 | 125,185 | |
Group 3 (older adults) | Male | >60 | 4136 | 4782 | 4375 |
Female | >55 | 8642 | 9979 | 8830 |
Time Period | Age Group | Age Range | Average Building Height | Road Density | Average Tree Height | EVI Mean | Population Density | POI Diversity |
---|---|---|---|---|---|---|---|---|
Workday | Group 1 | 7–18 | 0.089 | 0.113 | 0.066 | 0.111 | 0.072 | 0.102 |
Group 2 | 19–55/60 | 0.206 | 0.184 | 0.036 | −0.033 | 0.264 | 0.281 | |
Group 3 | >60/55 | 0.075 | 0.115 | 0.092 | 0.133 | 0.089 | 0.08 | |
Weekend | Group 1 | 7–18 | 0.098 | 0.129 | 0.067 | 0.109 | 0.090 | 0.113 |
Group 2 | 19–55/60 | 0.225 | 0.197 | 0.033 | −0.052 | 0.294 | 0.304 | |
Group 3 | >60/55 | 0.082 | 0.134 | 0.100 | 0.128 | 0.116 | 0.105 | |
National Day | Group 1 | 7–18 | 0.105 | 0.113 | 0.068 | 0.100 | 0.088 | 0.120 |
Group 2 | 19–55/60 | 0.229 | 0.195 | 0.025 | −0.070 | 0.304 | 0.311 | |
Group 3 | >60/55 | 0.097 | 0.135 | 0.098 | 0.129 | 0.130 | 0.125 |
Workday | Weekend | National Day | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Group | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | |||||||||
Sex/Age | Male 7–18 | Female 7–18 | Male 19–60 | Female 19–55 | Male >60 | Female >55 | Male 7–18 | Female 7–18 | Male 19–60 | Female 19–55 | Male >60 | Female >55 | Male 7–18 | Female 7–18 | Male 19–60 | Female 19–55 | Male > 60 | Female > 55 |
Adj | 0.710 | 0.615 | 0.760 | 0.737 | 0.770 | 0.799 | 0.669 | 0.587 | 0.655 | 0.661 | 0.723 | 0.719 | 0.752 | 0.663 | 0.676 | 0.660 | 0.723 | 0.718 |
0.733 | 0.640 | 0.774 | 0.754 | 0.785 | 0.812 | 0.685 | 0.600 | 0.666 | 0.682 | 0.741 | 0.737 | 0.779 | 0.685 | 0.691 | 0.686 | 0.740 | 0.736 | |
CS | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | ||
HCS | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | |
SECS | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | ||
AREA | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | |||
SLS | / | / | / | / | / | / | / | / | / | / | / | |||||||
LS | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | ||
SS | / | / | / | / | / | / | / | |||||||||||
EVI | / | / | / | / | / | / | / | / | ||||||||||
THT | / | / | / | / | / | / | / | / | / | / | / | / | ||||||
RD | / | / | / | / | ||||||||||||||
TF | / | / | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, B.; Hu, J.; Liu, K.; Xue, J.; Ning, L.; Fan, J. Exploring Park Visit Variability Using Cell Phone Data in Shenzhen, China. Remote Sens. 2022, 14, 499. https://doi.org/10.3390/rs14030499
He B, Hu J, Liu K, Xue J, Ning L, Fan J. Exploring Park Visit Variability Using Cell Phone Data in Shenzhen, China. Remote Sensing. 2022; 14(3):499. https://doi.org/10.3390/rs14030499
Chicago/Turabian StyleHe, Bing, Jinxing Hu, Kang Liu, Jianzhang Xue, Li Ning, and Jianping Fan. 2022. "Exploring Park Visit Variability Using Cell Phone Data in Shenzhen, China" Remote Sensing 14, no. 3: 499. https://doi.org/10.3390/rs14030499
APA StyleHe, B., Hu, J., Liu, K., Xue, J., Ning, L., & Fan, J. (2022). Exploring Park Visit Variability Using Cell Phone Data in Shenzhen, China. Remote Sensing, 14(3), 499. https://doi.org/10.3390/rs14030499