Study of the Ionospheric Scintillation Radio Propagation Characteristics with Cosmic Observations
Abstract
:1. Introduction
2. Data and Methods
2.1. The Data Presentation
2.2. Ionospheric Scintillation Intensity
2.3. Parzen Window
2.4. Root Mean Square Error (RMSE)
2.5. Kurtosis and Information Entropy
2.6. Fitting Interval Analysis
3. Experimental Results
3.1. Temporal Statistical Feature of Amplitude Scintillation Index S4
3.2. Statistical Analysis for SNR
3.3. Goodness of Fit for Different Distributions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yeh, K.C.; Liu, C.-H. Radio wave scintillation in the ionosphere. Proc. IEEE 1982, 70, 324–360. [Google Scholar] [CrossRef]
- Kintner, P.M.; Ledvina, B.M.; de Paula, E.R. GPS and ionospheric scintillations. Space Weather 2007, 5, S09003. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, L.; Wang, J.; Zhang, C. Studying ionosphere responses to a geomagnetic storm in June 2015 with multi-constellation observations. Remote Sens. 2018, 10, 666. [Google Scholar] [CrossRef] [Green Version]
- Guo, K.; Aquino, M.; Veettil, S.V. Ionospheric scintillation intensity fading characteristics and GPS receiver tracking performance at low latitudes. GPS Solut. 2019, 23, 43. [Google Scholar] [CrossRef] [Green Version]
- Aquino, M.; Monico, J.F.G.; Dodson, A.H.; Marques, H.; de Franceschi, G.; Alfonsi, L.; Romano, V.; Andreotti, M. Improving the GNSS positioning stochastic model in the presence of ionospheric scintillation. J. Geod. 2009, 83, 953–966. [Google Scholar] [CrossRef]
- Balan, N.; Liu, L.; Le, H. A brief review of equatorial ionization anomaly and ionospheric irregularities. Earth Planet. Phys. 2018, 2, 257–275. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, C.; Xu, T.; Tang, Q.; Deng, Z.; Chen, G.; Wang, Z. Review of ionospheric irregularities and ionospheric electrodynamic coupling in the middle latitude region. Earth Planet. Phys. 2021, 5, 462–482. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, C.; Xu, T.; Wang, Z.; Tang, Q.; Deng, Z.; Chen, G. Investigation of midlatitude nighttime ionospheric E-F coupling and interhemispheric coupling by using COSMIC gps radio occultation measurements. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027625. [Google Scholar] [CrossRef]
- Woodman, R.F.; Yamamoto, M.; Fukao, S. Gravity wave modulation of gradient drift instabilities in mid-latitude sporadic E irregularities. Geophys. Res. Lett. 1991, 18, 1197–1200. [Google Scholar] [CrossRef]
- Maruyama, T.; Fukao, S.; Yamamoto, M. A possible mechanism for echo striation generation of radar backscatter from midlatitude sporadic E. Radio Sci. 2000, 35, 1155–1164. [Google Scholar] [CrossRef]
- Cosgrove, R.B.; Tsunoda, R.T. Wind-shear-driven, closed-current dynamos in midlatitude sporadic E. Geophys. Res. Lett. 2002, 29, 7-1. [Google Scholar] [CrossRef]
- Basu, S.; Kelley, M.C. A review of recent observations of equatorial scintillations and their relationship to current theories of F region irregularity generation. Radio Sci. 1979, 14, 471–485. [Google Scholar] [CrossRef]
- Fejer, B.G.; Kelley, M.C. Ionospheric irregularities. Rev. Geophys. 1980, 18, 401–454. [Google Scholar] [CrossRef]
- Abdu, M.A. Outstanding problems in the equatorial ionosphere thermosphere electrodynamics relevant to spread F. J. Atmos. Sol. -Terr. Phys. 2001, 63, 869–884. [Google Scholar] [CrossRef]
- Kelley, M.C.; Fukao, S. Turbulent upwelling of the mid-latitude ionosphere: 2. Theoretical framework. J. Geophys. Res. 1991, 96, 3747–3753. [Google Scholar] [CrossRef]
- Makela, J.J.; Otsuka, Y. Overview of nighttime ionospheric instabilities at low- and mid-latitudes: Coupling aspects resulting in structuring at the mesoscale. Space Sci. Rev. 2011, 168, 419–440. [Google Scholar] [CrossRef]
- Perkins, F. Spread F and ionospheric current. J. Geophys. Res. 1973, 78, 218–226. [Google Scholar] [CrossRef]
- Bowman, G.G. Ionospheric frequency spread and its relationship with range spread in mid-latitude regions. J. Geophys. Res. 1991, 96, 9745–9753. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, C.; Tang, Q.; Kong, J.; Gu, X.; Ni, B.; Yao, Y.; Zhao, Z. Evidence of mid- and low-latitude nighttime ionospheric E–F coupling: Coordinated observations of sporadic E layers, F-region field-aligned irregularities, and medium-scale traveling ionospheric disturbances. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7547–7557. [Google Scholar] [CrossRef]
- Yokoyama, T.; Stolle, C. Low and midlatitude ionospheric plasma density irregularities and their effects on geomagnetic field. Space Sci. Rev. 2017, 206, 495–519. [Google Scholar] [CrossRef]
- Aarons, J. The role of the ring current in the generation or inhibition of equatorial F layer irregularities during magnetic storms. Radio Sci. 1991, 26, 1131–1149. [Google Scholar] [CrossRef]
- Rastogi, R.G. Geomagnetic storms and electric fields in the equatorial ionosphere. Nature 1977, 268, 422–424. [Google Scholar] [CrossRef]
- Wei, Y.; Zhao, B.; Li, G.; Wan, W. Electric field penetration into Earth’s ionosphere: A brief review for 2000–2013. Sci. Bull. 2015, 60, 748–761. [Google Scholar] [CrossRef] [Green Version]
- Blanc, M.; Richmond, A.D. The ionospheric disturbance dynamo. J. Geophys. Res. 1980, 85, 1669–1686. [Google Scholar] [CrossRef]
- De Oliveira Moraes, A.; Costa, E.; Abdu, M.A.; Rodrigues, F.S.; de Paula, E.R.; Oliveira, K.; Perrella, W.J. The variability of low-latitude ionospheric amplitude and phase scintillation detected by a triple-frequency GPS receiver. Radio Sci. 2017, 52, 439–460. [Google Scholar] [CrossRef]
- De Oliveira Moraes, A.; Costa, E.; de Paula, E.R.; Perrella, W.J.; Galera Monico, J.F. Extended ionospheric amplitude scintillation model for GPS receivers. Radio Sci. 2013, 49, 315–329. [Google Scholar] [CrossRef]
- De Oliveira Moraes, A.; Sousasantos, J.; de Paula, E.R.; da Cunha, J.J.P.P.; Lima Filho, V.C.; Vani, B.C. Performance analysis of κ-μ distribution for Global Positioning System (GPS) L1 frequency-related ionospheric fading channels. Space Weather 2019, 9, A15. [Google Scholar] [CrossRef]
- Wernik, A.W.; Grzesiak, M.L. Scintillation caused by the ionosphere with non-Gaussian statistics of irregularities. Radio Sci. 2011, 46, RS6011. [Google Scholar] [CrossRef] [Green Version]
- Guo, K.; Zhao, Y.; Liu, Y.; Wang, J.; Zhang, C.; Zhu, Y. Study of ionospheric scintillation characteristics in Australia with GNSS during 2011–2015. Adv. Space Res. 2017, 59, 2909–2922. [Google Scholar] [CrossRef]
- Yacoub, M.D. The α-µ distribution: A physical fading model for the stacy distribution. IEEE Trans. Veh. Technol. 2007, 56, 27–34. [Google Scholar] [CrossRef]
- Yacoub, M.D. The κ-μ distribution and the η-μ distribution. IEEE Antennas Propag. Mag. 2007, 49, 68–81. [Google Scholar] [CrossRef]
- Ludwig-Barbosa, V.; Sievert, T.; Rasch, J.; Carlström, A.; Pettersson, M.I.; Vu, V.T. Evaluation of ionospheric scintillation in GNSS radio occultation measurements and simulations. Radio Sci. 2020, 55, e2019RS006996. [Google Scholar] [CrossRef]
- Wu, D.L. Ionospheric S4 scintillations from GNSS radio occultation (RO) at slant path. Remote Sens. 2020, 12, 2373. [Google Scholar] [CrossRef]
- Xiong, C.; Xu, J.S.; Stolle, C.; van den Ijssel, J.; Yin, F.; Kervalishvili, G.N.; Zangerl, F. On the occurrence of GPS signal amplitude degradation for receivers on board LEO satellites. Space Weather 2020, 18, e2019SW002398. [Google Scholar] [CrossRef]
- Zeng, Z.; Sokolovskiy, S. Effect of sporadic E clouds on GPS radio occultation signals. Geophys. Res. Lett. 2010, 37, L18817. [Google Scholar] [CrossRef]
- Yue, X.; Schreiner, W.S.; Pedatella, N.M.; Kuo, Y.-H. Characterizing GPS radio occultation loss of lock due to ionospheric weather. Space Weather 2016, 14, 285–299. [Google Scholar] [CrossRef] [Green Version]
- Watson, C.; Pedatella, N.M. Climatology and characteristics of medium-scale F region ionospheric plasma irregularities observed by COSMIC radio occultation receivers. J. Geophys. 2018, 123, 8610–8630. [Google Scholar] [CrossRef]
- Arras, C.; Wickert, J.; Beyerle, G.; Heise, S.; Schmidt, T.; Jacobi, C. A global climatology of ionospheric irregularities derived from GPS radio occultation. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Wu, D.; Wang, R. A study of amplitude scintillation based on COSMIC occultation data during 2007–2013. Chin. J. Radio Sci. 2019, 34, 655–662. [Google Scholar] [CrossRef]
- De Oliveira Nascimento Brassarote, G.; de Souza, E.M.; Galera Monico, J.F. S4 index: Does it only measure ionospheric scintillation? GPS Solut. 2018, 22, 8. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira Moraes, A.; de Paula, E.R.; de Assis Honorato Muella, M.T.; Perrella, W.J. On the second order statistics for GPS ionospheric scintillation modeling. Radio Sci. 2014, 49, 94–105. [Google Scholar] [CrossRef]
- De Oliveira Moraes, A.; de Paula, E.R.; Perrella, W.J.; da Silveira Rodrigues, F. On the distribution of GPS signal amplitudes during low-latitude ionospheric scintillation. GPS Solut. 2013, 17, 499–510. [Google Scholar] [CrossRef]
- Maurizi, A. On the dependence of third-and fourth-order moments on stability in the turbulent boundary layer. Nonlinear Process Geophys. 2006, 13, 119–123. [Google Scholar] [CrossRef]
- Hamza, A.M.; Meziane, K. On turbulence in the quasi-perpendicular bow shock. Planet. Space Sci. 2013, 59, 475–481. [Google Scholar] [CrossRef]
- Mezaoui, H.; Hamza, A.M.; Jayachandran, P.T. Investigating high-latitude ionospheric turbulence using global positioning system data. Geophys. Res. Lett. 2014, 41, 6070–6576. [Google Scholar] [CrossRef]
S4 | Ionospheric Scintillation Intensity |
---|---|
<0.3 | Very weak |
0.3–0.5 | Weak |
0.5–0.7 | Moderate |
0.7–1 | Strong |
S4 | α | μ |
---|---|---|
0.3 | 5.3467 | 0.239 |
0.4 | 4.2748 | 0.3481 |
0.5 | 3.788 | 0.3846 |
0.6 | 3.1258 | 0.514 |
0.7 | 2.5877 | 0.8942 |
0.8 | 2.3442 | 1.0059 |
0.9 | 1.9489 | 1.3512 |
1.0 | 1.4625 | 2.1049 |
Year | RMSE | Information Entropy | Kurtosis | ||||||
---|---|---|---|---|---|---|---|---|---|
Nakagami-m | α-μ | κ-μ | Nakagami-m | α-μ | κ-μ | Nakagami-m | α-μ | κ-μ | |
2014 | 0.1405 | 0.0708 | 0.2043 | 0.5060 | 0.1365 | 0.727 | 0.7146 | 0.0245 | 0.0381 |
2019 | 0.1459 | 0.0993 | 0.2021 | 0.6609 | 0.0797 | 0.8777 | 0.1145 | 0.6141 | 0.2618 |
S4 | Intervals in Nakagami-m Distribution | Interval Probability in Nakagami-m Distribution | Intervals in α-μ Distribution | Interval Probability in α-μ Distribution | Intervals in κ-μ Distribution | Interval Probability in κ-μ Distribution |
---|---|---|---|---|---|---|
0.3 | (0,0.32) (0.73,0.8) (1.23,1.35) (1.82,3.63) | 63.91% | (0,3.63) | 100% | (0,0.32) (0.67,0.77) (1.25,1.43) (1.82,3.63) | 66.39% |
0.4 | (0–0.29) (0.65,0.76) (1.24,1.41) (1.78,4.07) | 70.27% | (0,4.07) | 100% | (0,0.29) (0.61,0.75) (1.25,1.45) (1.78,4.07) | 71.74% |
0.5 | (0,0.23) (0.56,0.72) (1.26,1.49) (1.81,4.22) | 71.8% | (0,4.22) | 100% | (0,0.23) (0.55,0.73) (1.26,1.5) (1.81,4.22) | 72.51% |
0.6 | (0.4,0.64) (1.25,1.52) (1.86,4.27) | 68.38% | (0,4.27) | 100% | (0.44,0.67) (1.26,1.5) (1.88,4.27) | 66.98% |
0.7 | (0,0.8) (1.1,3.65) | 91.78% | (0,3.65) | 100% | (0,0.76) (1.17,3.65) | 88.77% |
0.8 | (0,3.54) | 100% | (0,3.54) | 100% | (0,0.76) (1.16,3.54) | 88.7% |
0.9 | (0,3.76) | 100% | (0,3.76) | 100% | (0,0.77) (1.16,3.76) | 89.63% |
1.0 | (0,3.72) | 100% | (0,3.72) | 100% | (0,0.75) (1.13,3.72) | 89.78% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Liu, Y.; Guo, K.; Wang, J. Study of the Ionospheric Scintillation Radio Propagation Characteristics with Cosmic Observations. Remote Sens. 2022, 14, 578. https://doi.org/10.3390/rs14030578
Chen Z, Liu Y, Guo K, Wang J. Study of the Ionospheric Scintillation Radio Propagation Characteristics with Cosmic Observations. Remote Sensing. 2022; 14(3):578. https://doi.org/10.3390/rs14030578
Chicago/Turabian StyleChen, Zhuo, Yang Liu, Kai Guo, and Jinling Wang. 2022. "Study of the Ionospheric Scintillation Radio Propagation Characteristics with Cosmic Observations" Remote Sensing 14, no. 3: 578. https://doi.org/10.3390/rs14030578
APA StyleChen, Z., Liu, Y., Guo, K., & Wang, J. (2022). Study of the Ionospheric Scintillation Radio Propagation Characteristics with Cosmic Observations. Remote Sensing, 14(3), 578. https://doi.org/10.3390/rs14030578