Lidar Ratio Regional Transfer Method for Extinction Coefficient Accuracy Improvement in Lidar Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lidar Ratio Regional Transfer Method
2.2. Screening of Different Lidar Ratio Data
2.3. Retrieval Method of Aerosol Fraction and Data Screening
3. Results
3.1. Development of a Non-Linear Regression Model
3.2. Usage Conditions of the Model
3.2.1. Screening of AERONET Sites
3.2.2. Distribution of the Aerosol Fraction and Distance Usage Conditions
3.3. Error Analysis
4. Discussion
4.1. The Influence of the LR-AFNR Model on the Lidar Ratio
4.2. The Influence of Different Types of Aerosols on the LR-AFNR Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Number | Site Name | Latitude (°) | Longitude (°) | Altitude (m) | Selection Period | |
---|---|---|---|---|---|---|
① Eastern U.S. | 1 | MD Science Center | 39.28N | 76.61W | 15 | January 2001–March 2021 |
2 | UMBC | 39.25N | 76.71W | 79 | July 2009–June 2016 | |
3 | GSFC | 38.99N | 76.84W | 87 | January 2001–March 2021 | |
4 | SERC | 38.89N | 76.56W | 36.5 | May 2001–March 2021 | |
5 | Easton-MDE | 38.80N | 76.08W | 4.5 | August 2014–September 2020 | |
6 | NEON_SCBI | 38.89N | 78.14W | 354 | December 2014–March 2021 | |
7 | Wallops | 37.93N | 75.47W | 13.5 | June 2001–January 2021 | |
8 | NASA LaRC | 37.11N | 76.38W | 5 | November 2004–March 2021 | |
9 | COVE SEAPRISM | 36.90N | 75.71W | 24 | April 2005–January 2016 | |
10 | CCNY | 40.82N | 73.95W | 100 | December 2001–March 2021 | |
11 | LISCO | 40.95N | 73.34W | 12 | October 2009–March 2021 | |
12 | Brookhaven | 40.87N | 72.88W | 37 | September 2002–March 2021 | |
13 | EPA-Res_Triangle_Pk | 35.88N | 78.87W | 109 | June 2013–March 2021 | |
② Central Europe | 1 | Mainz | 50.00N | 8.30E | 150 | November 2003–March 2021 |
2 | Karlsruhe | 49.09N | 8.43E | 140 | March 2005–March 2021 | |
3 | FZJ-JOYCE | 50.91N | 6.41E | 111 | July 2012–February 2021 | |
4 | Bure OPE | 48.56N | 5.51E | 393 | February 2021–March 2021 | |
5 | Brussels | 50.78N | 4.35E | 120 | July 2006–March 2021 | |
6 | Cabauw | 51.97N | 4.93E | -0.7 | February 2005–November 2020 | |
7 | Leipzig | 51.35N | 12.44E | 125 | May 2005–March 2021 | |
8 | The_Hague | 52.11N | 4.33E | 18 | February 2003–April 2006 | |
9 | Lille | 50.61N | 3.14E | 60 | May 2005–March 2021 | |
10 | Zeebrugge-MOW1 | 51.36N | 3.12E | 15 | February 2014–September 2019 | |
11 | Oostende | 51.23N | 2.93E | 23 | February 2005–June 2015 | |
12 | Thornton C-power | 51.53N | 2.96E | 30 | April 2015–November 2018 | |
13 | Hamburg | 53.57N | 9.97E | 120 | March 2005–September 2019 | |
14 | Dunkerque | 51.04N | 2.37E | 5 | May 2005–March 2021 | |
15 | Berlin FUB | 52.46N | 13.31E | 80 | July 2014–March 2021 | |
16 | Fontainebleau | 48.41N | 2.68E | 85 | February 2003–September 2008 | |
17 | Paris | 48.85N | 2.36E | 50 | January 2005–March 2021 | |
18 | Palaiseau | 48.71N | 2.22E | 156 | February 2005–March 2021 | |
19 | Helgoland | 54.18N | 7.89E | 33 | August 2005–June 2015 | |
20 | MetObs Lindenberg | 52.21N | 14.12E | 120 | September 2013–March 2021 | |
③ Northern Europe | 1 | Carpentras | 44.08N | 5.06E | 107 | February 2003–November 2018 |
2 | Avignon | 43.93N | 4.88E | 32 | December 2009–February 2013 | |
3 | Salon de Provence | 43.61N | 5.12E | 60 | January 2003–October 2012 | |
4 | La Crau | 43.58N | 4.82E | 32 | July 2010–January 2017 | |
5 | Frioul | 43.27N | 5.29E | 40 | June 2006–August 2019 | |
6 | Toulon | 43.14N | 6.01E | 50 | September 2003–March 2021 | |
7 | Porquerolles | 43.00N | 6.16E | 22 | May 2007–November 2014 | |
④ Northern China | 1 | Beijing | 39.98N | 116.38E | 92 | January 2010–March 2021 |
2 | Beijing RADI | 40.00N | 116.38E | 59 | January 2010–March 2021 | |
3 | Beijing PKU | 39.99N | 116.31E | 53 | June 2016–October 2019 | |
4 | Beijing CAMS | 39.93N | 116.32E | 106 | August 2012–March 2021 | |
⑤ Eastern China | 1 | Taihu | 31.42N | 120.22E | 20 | September 2005–October 2018 |
2 | Shanghi Minhang | 31.13N | 121.40E | 49 | March 2008–March 2010 | |
3 | Hangzhou City | 30.29N | 120.16E | 30 | April 2008–February 2012 | |
4 | Hangzhou-ZFU | 30.26N | 119.73E | 42 | August 2007–August 2009 | |
5 | NUIST | 32.21N | 118.72E | 62 | September 2007–December 2009 | |
6 | Ningbo | 29.86N | 121.55E | 37 | August 2007–September 2009 | |
7 | Hefei | 31.90N | 117.16E | 36 | December 2007–2009November | |
8 | Shouxian | 32.56N | 116.78E | 22.7 | May 2007–December 2009 | |
⑥ South Korea | 1 | Yonsei University | 37.56N | 126.93E | 97 | February 2011–February 2021 |
2 | Seoul SNU | 37.46N | 126.95E | 116 | February 2009–March 2021 | |
3 | Hankuk UFS | 37.34N | 127.27E | 167 | June 2012–March 2021 | |
4 | Anmyon | 36.54N | 126.33E | 47 | January 2014–March 2021 | |
5 | Gangneung WNU | 37.77N | 128.87E | 60 | June 2012–March 2021 | |
6 | DRAGON_Kunsan NU | 35.94N | 126.68E | 32 | March 2016–February 2017 | |
7 | Socheongcho | 37.42N | 124.74E | 28 | October 2015–March 2021 | |
8 | Gwangju GIST | 35.23N | 126.84E | 67 | April 2011–March 2021 | |
9 | KORUS Mokpo NU | 34.91N | 126.44E | 26 | March 2016–January 2017 | |
10 | KORUS UNIST Ulsan | 35.58N | 129.19E | 106 | March 2016–March 2021 | |
11 | Pusan NU | 35.24N | 129.08E | 78 | June 2012–February 2017 |
Specification | Value | |
---|---|---|
Transmitter | (mJ) | 15 |
Laser wavelength (nm) | 532 | |
(mm) | 2 | |
(mrad) | 0.3 | |
Optical axis spacing (m) | 0.2 | |
Receiver | Focal length (mm) | 2800 |
(mm) | 280 | |
(mm) | 95 | |
(mrad) | 0.5 | |
(nm) | 1 | |
Photoelectric Detection | (unit) | 0.15 |
Radiant (mA/W) | 75 | |
Gain (unit) | 5 × 104 | |
Wide bandwidth Amplifier | Bandwidth (MHz) | 150 |
Conversion Factor (mV/mA) | 4000 | |
Data Acquisition | (MHz) | 20 |
Resolution (bit) | 16 | |
Other parameters | Planck’s constant (J·s) | 6.626 × 10−34 |
Speed of light (m/s) | 3 × 108 | |
(Wm−2Sr−1nm−1) | 0.46 × 10−6 |
References
- Weitkamp, C. Introduction to lidar. In Lidar, Range-Resolved Optical Remote Sensing of the Atmosphere; Springer: Berlin/Heidelberg, Germany, 2005; Volume 102, pp. 1–18. [Google Scholar]
- Sugimoto, N.; Matsui, I.; Shimizu, A.; Nishizawa, T.; Hara, Y.; Uno, I. Lidar network observation of tropospheric aerosols. Proc. SPIE-Int. Soc. Opt. Eng. 2010, 7860, 78600J. [Google Scholar]
- Bösenberg, J.; Hoff, R.; Ansmann, A.; Müller, D.; Freudenthaler, V. Plan for the implementation of the GAW Aerosol Lidar Observation Network GALION. In Proceedings of the GAW Programme Reports, Hamburg, Germany, 27–29 March 2007. [Google Scholar]
- Pappalardo, G.; Amodeo, A.; Apituley, A.; Comeron, A.; Freudenthaler, V.; Linné, H.; Ansmann, A.; Boesenberg, J.; D’Amico, G.; Mattis, I.; et al. EARLINET: Towards an advanced sustainable European aerosol lidar network. Atmos. Meas. Tech. 2014, 7, 2929–2980. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, A.; Nishizawa, T.; Jin, Y.; Kim, S.W.; Wang, Z.; Batdorj, D.; Sugimoto, N. Evolution of a lidar network for tropospheric aerosol detection in East Asia. Opt. Eng. 2016, 56, 031219. [Google Scholar] [CrossRef]
- Welton, E.J.; Campbell, J.R.; Berkoff, T.A.; Valencia, S.; Spinhirne, J.D.; Holben, B.; Tsay, S.C.; Schmid, B. The NASA Micro-Pulse Lidar Network (MPLNET): An overview and recent results. Opt. Pura Apl. 2006, 39, 67–72. [Google Scholar]
- Nishizawa, T.; Sugimoto, N.; Matsui, I.; Shimizu, A.; Higurashi, A.; Jin, Y. The Asian Dust and Aerosol Lidar Observation Network (AD-NET): Strategy and progress. EPJ Web Conf. 2016, 119, 19001. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Shen, X.; Xiao, D.; Veselovskii, I.; Zhao, C.; Chen, F.; Liu, C.; Rong, Y.; Ke, J.; Wang, B.; et al. Development of ZJU high-spectral-resolution lidar for aerosol and cloud: Feature detection and classification. J. Quant. Spectrosc. Radiat. Transf. 2021, 261, 107513. [Google Scholar] [CrossRef]
- Böckmann, C.; Wandinger, U.; Ansmann, A.; Bösenberg, J.; Wiegner, M. Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms. Appl. Opt. 2004, 43, 977–989. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, D.; Luo, J.; Yang, Y.; Su, L.; Yang, L.; Huang, H.; Shen, Y. Effects of spectral discrimination in high-spectral-resolution lidar on the retrieval errors for atmospheric aerosol optical properties. Appl. Opt. 2014, 53, 4386. [Google Scholar] [CrossRef]
- Fernald, F.G. Analysis of atmospheric lidar observations: Some comments. Appl. Opt. 1984, 23, 652. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, D.; Luo, J.; Yang, Y.; Zhou, Y.; Zhang, Y.; Duan, L.; Su, L.; Yang, L.; Shen, Y. Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: Theoretical framework. Opt. Express 2015, 23, 12117–12134. [Google Scholar] [CrossRef]
- Siomos, N.; Balis, D.S.; Poupkou, A.; Liora, N.; Dimopoulos, S.; Melas, D.; Giannakaki, E.; Filioglou, M.; Basart, S.; Chaikovsky, A. Investigating the quality of modeled aerosol profiles based on combined lidar and sunphotometer data. Atmos. Chem. Phys. 2017, 17, 7003–7023. [Google Scholar] [CrossRef] [Green Version]
- Groß, S.; Tesche, M.; Freudenthaler, V.; Toledano, C.; Wiegner, M.; Ansmann, A.; Althausen, D.; Seefeldner, M. Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2. Tellus B 2011, 63, 706–724. [Google Scholar] [CrossRef]
- Bahadur, R.; Praveen, P.S.; Xu, Y.; Ramanathan, V. Solar absorption by elemental and brown carbon determined from spectral observations. Proc. Natl. Acad. Sci. USA. 2012, 109, 17366–17371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goloub, P.; Li, Z.; Dubovik, O.; Blarel, L.; Ramos, R. PHOTONS/AERONET sunphotometer network overview. Description—Activities—Results. Proc. SPIE-Int. Soc. Opt. Eng. 2008, 6935, 69360V. [Google Scholar]
- Lopes, F.J.S.; Landulfo, E.; Vaughan, M.A. Evaluating CALIPSO’s 532 nm lidar ratio selection algorithm using AERONET sun photometers in Brazil. Atmos. Meas. Tech. 2013, 6, 3281–3299. [Google Scholar] [CrossRef] [Green Version]
- Hoffer, A.; Gelencsér, A.; Guyon, P.; Kiss, G.; Schmid, O.; Frank, G.P.; Artaxo, P.; Andreae, M.O. Optical properties of humic-like substances (HULIS) in biomass-burning aerosols. Atmos. Chem. Phys. 2006, 5, 3563–3570. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Yang, Y.; Cheng, Z.; Huang, H.; Zhang, B.; Ling, T.; Shen, Y. Retrieval and analysis of a polarized high-spectral-resolution lidar for profiling aerosol optical properties. Opt. Express 2013, 21, 13084–13093. [Google Scholar] [CrossRef]
- Xiao, D.; Wang, N.; Shen, X.; Landulfo, E.; Zhong, T.; Liu, D. Development of ZJU High-Spectral-Resolution Lidar for Aerosol and Cloud: Extinction Retrieval. Remote Sens. 2020, 12, 3047. [Google Scholar] [CrossRef]
- Grund, C.J. University of Wisconsin High Spectral Resolution Lidar. Opt. Eng. 1991, 30, 6–12. [Google Scholar] [CrossRef]
- Chen, S.; Russell, L.; Cappa, C.; Zhang, X.; Kleeman, M.; Kumar, A.; Liu, D.; Ramanathan, V. Comparing black and brown carbon absorption from AERONET and surface measurements at wintertime Fresno. Atmos. Environ. 2018, 199, 164–176. [Google Scholar] [CrossRef]
- Chen, X.; Añel, J.; Su, Z.; Torre, L.; Kelder, H.; Peet, J.V.; Ma, Y. The deep atmospheric boundary layer and its significance to the stratosphere and troposphere exchange over the Tibetan Plateau. PLoS ONE 2013, 8, e56909. [Google Scholar] [CrossRef] [PubMed]
- Messager, C.; Parker, D.J.; Reitebuch, O.; Agusti-Panareda, A.; Taylor, C.M.; Cuesta, J. Structure and dynamics of the Saharan atmospheric boundary layer during the West African monsoon onset: Observations and analyses from the research flights of 14 and 17 July 2006. Q. J. R. Meteorol. Soc. 2010, 136, 107–124. [Google Scholar] [CrossRef] [Green Version]
- Zhong, T.; Wang, N.; Shen, X.; Xiao, D.; Liu, D. Determination of planetary boundary layer height with lidar signals using maximum limited height initialization and range restriction (MLHI-RR). Remote Sens. 2020, 12, 2272. [Google Scholar] [CrossRef]
- Tesche, M.; Müller, D.; Groß, S.; Ansmann, A.; Althausen, D.; Freudenthaler, V.; Weinzierl, B.; Lambert, A.; Petzold, A. Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements. Tellus B 2011, 63, 677–694. [Google Scholar] [CrossRef] [Green Version]
- Tesche, M.; Ansmann, A.; Mueller, D.; Althausen, D.; Engelmann, R.; Hu, M.; Zhang, Y. Particle backscatter, extinction, and lidar ratio profiling with Raman lidar in south and north China. Appl. Opt. 2007, 46, 6302–6308. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Gong, W.; Mao, F.; Pan, Z.; Liu, B. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China. Int. J. Environ. Res. Public Health 2016, 13, 508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noh, Y.M.; Kim, Y.J.; Müller, D. Seasonal characteristics of lidar ratios measured with a Raman lidar at Gwangju, Korea in spring and autumn. Atmos. Environ. 2008, 42, 2208–2224. [Google Scholar] [CrossRef]
- Jin, Y.; Krishnamurti, T.N.; Kim, J.; Kai, K.; Shibata, T.; Moriyama, T.; Zhang, K.; Zhou, H. Validation of the dust layer structure over the Taklimakan Desert, China by the CALIOP space-borne lidar using ground-based lidar. Proc. SPIE-Int. Soc. Opt. Eng. 2010, 6, 121–124. [Google Scholar] [CrossRef] [Green Version]
- Burton, S.P.; Ferrare, R.A.; Hostetler, C.A.; Hair, J.W.; Rogers, R.R.; Obland, M.; Butler, C.F.; Cook, A.L.; Harper, D.B.; Froyd, K.D. Aerosol classification using airborne High Spectral Resolution Lidar measurements—Methodology and examples. Atmos. Meas. Tech. 2011, 5, 73–98. [Google Scholar] [CrossRef] [Green Version]
- Sicard, M.; Mallet, M.; Vizcaíno, D.; Comeron, A.; Rocadenbosch, F.; Dubuisson, P.; Muñoz-Porcar, C. Intense dust and extremely fresh biomass burning outbreak in Barcelona, Spain: Characterization of their optical properties and estimation of their direct radiative forcing. Environ. Res. Lett. 2012, 7, 34016–34021. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Cheng, C.; Zhang, X.; Su, L.; Tong, B.; Dong, C.; Wang, F.; Chen, B.; Chen, W.; Liu, D. Construction of nighttime cloud layer height and classification of cloud types. Remote Sens. 2020, 12, 668. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.; Hostetler, C.; Cook, A.; Harper, D.; Ferrare, R.; Mack, T.; Welch, W.; Isquierdo, L.; Hovis, F. Airborne high spectral resolution lidar for profiling aerosol optical properties. Appl. Opt. 2009, 47, 6734–6752. [Google Scholar] [CrossRef] [PubMed]
- Dubovik, O.; Smirnov, A.; Holben, B.N.; King, M.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. J. Geophys. Res. 2000, 105, 9791–9806. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Tan, S.C.; Li, J.; Che, H.; Chen, B.; Wang, H. Transport of East Asian dust storms to the marginal seas of China and the southern North Pacific in spring 2010. Atmos. Environ. 2016, 148, 316–328. [Google Scholar] [CrossRef]
- Theodoritsi, G.N.; Posner, L.N.; Robinson, A.L.; Yarwood, G.; Pandis, S.N. Biomass burning organic aerosol from prescribed burning and other activities in the United States. Atmos. Environ. 2020, 241, 117753. [Google Scholar] [CrossRef]
- Taylor, R. Interpretation of the Correlation Coefficient: A Basic Review. J. Diagn. Med. Sonogr. 1990, 6, 35–39. [Google Scholar] [CrossRef]
- Veselovskii, I.; Kolgotin, A.; Griaznov, V.; Müller, D.; Wandinger, U.; Whiteman, D.N. Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding. Appl. Opt. 2002, 41, 3685–3699. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Voelger, P.; Sugimoto, N. Simulations of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment system. Appl. Opt. 2000, 39, 3120–3137. [Google Scholar] [CrossRef]
- Shen, X.; Wang, N.; Veselovskii, I.; Xiao, D.; Liu, D. Development of ZJU high-spectral-resolution lidar for aerosol and cloud: Calibration of overlap function. J. Quant. Spectrosc. Radiat. Transfer 2021, 257, 107338. [Google Scholar] [CrossRef]
- Wu, Y.; Graaf, M.; Menenti, M. The sensitivity of AOD retrieval to aerosol type and vertical distribution over land with MODIS data. Remote Sens. 2016, 8, 765. [Google Scholar] [CrossRef] [Green Version]
- Qiao, Z.; Wan, Z.; Xie, G.; Wang, J.; Qian, L.; Fan, D. Multi-vortex laser enabling spatial and temporal encoding. PhotoniX 2020, 1, 13. [Google Scholar] [CrossRef]
- Gu, C.; Zuo, Z.; Luo, D.; Deng, Z.; Liu, Y.; Hu, M.; Li, W. Passive coherent dual-comb spectroscopy based on optical-optical modulation with free running lasers. PhotoniX 2020, 1, 7. [Google Scholar] [CrossRef]
- Ji, H.; Chen, S.; Zhang, Y.; Chen, H.; Guo, P.; Chen, H. Calibration method for the reference parameter in Fernald and Klett inversion combining Raman and Elastic return. J. Quant. Spectrosc. Radiat. Transfer 2016, 188. [Google Scholar] [CrossRef]
- Liu, Z.; Hunt, W.; Vaughan, M.; Hostetler, C.; Hu, Y. Estimating random errors due to shot noise in backscatter lidar observations. Appl. Opt. 2006, 45, 4437–4447. [Google Scholar] [CrossRef] [PubMed]
- Stihler, C.; Jauregui, C.; Kholaif, S.E.; Limpert, J. Intensity noise as a driver for transverse mode instability in fiber amplifiers. PhotoniX 2020, 1, 8. [Google Scholar] [CrossRef]
- Bian, Q.; Ford, B.; Pierce, J.R.; Kreidenweis, S.M. A decadal climatology of chemical, physical, and optical properties of ambient smoke in the western and southeastern U.S. J. Geophys. Res. Atmos. 2019, 125, e2019JD031372. [Google Scholar]
- Russell, P.B.; Bergstrom, R.W.; Shinozuka, Y.; Clarke, A.D.; Decarlo, P.F.; Jimenez, J.L.; Livingston, J.M.; Redemann, J.; Dubovik, O.; Strawa, A. Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition. Atmos. Chem. Phys. 2010, 10, 1155–1169. [Google Scholar] [CrossRef] [Green Version]
- Reid, J.S.; Eck, T.F.; Christopher, S.A.; Koppmann, R.; Zhang, J. A review of biomass burning emissions part III: Intensive optical properties of biomass burning particles. Atmos. Chem. Phys. 2004, 5, 827–849. [Google Scholar] [CrossRef] [Green Version]
Site Name | System Name | Latitude (°) | Longitude (°) | Selection Period |
---|---|---|---|---|
SGP | BagoHSRL | 36.62 N | 97.49 W | January 2015–October 2017 |
KORUS | AHSRL | 37.56 N | 126.95 E | January 2016–December 2018 |
Madison | BagoHSRL | 43.01 N | 89.41 W | November 2012–June 2019 |
Dust-Dominated Data | Carbonaceous Aerosol-Dominated Data | |
---|---|---|
Height (km) | 0.5–4 | 0.5–4 |
Aerosol depolarization ratio (unit) | 0.15–0.3 | 0.05–0.15 |
Scattering ratio (unit) | 1.2–10 | 1.2–10 |
Lidar ratio (Sr) | 30–60 | 40–100 |
Absorbing mixing ratio (%) | 50–100 (dust) | 50–100 (carbonaceous aerosol) |
Scattering ratio above 4 km (unit) |
Site Name | Location | Latitude (°) | Longitude (°) | Selection Period |
---|---|---|---|---|
Cart | Oklahoma, United States | 36.61 N | 97.49 W | January 2015–December 2018 |
Yonsei University | Seoul, South Korea | 37.56 N | 126.94 E | January 2016–December 2018 |
U of Wisconsin SSEC | Wisconsin, United States | 43.01 N | 89.41 W | November 2012–June 2019 |
BC | BrC | |
---|---|---|
Fresh smoke dominated | ||
AAE1 | 0.495 | 4.095 |
AAE2 | 0.765 | 0 |
SSA | 0.15 | 0.85 |
Aged smoke dominated | ||
AAE1 | 0.605 | 5.005 |
AAE2 | 0.935 | 0 |
SSA | 0.3 | 0.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, Y.; Chen, S.; Xiao, D.; Zhang, K.; Fang, J.; Liu, C.; Shen, Y.; Liu, D. Lidar Ratio Regional Transfer Method for Extinction Coefficient Accuracy Improvement in Lidar Networks. Remote Sens. 2022, 14, 626. https://doi.org/10.3390/rs14030626
Tong Y, Chen S, Xiao D, Zhang K, Fang J, Liu C, Shen Y, Liu D. Lidar Ratio Regional Transfer Method for Extinction Coefficient Accuracy Improvement in Lidar Networks. Remote Sensing. 2022; 14(3):626. https://doi.org/10.3390/rs14030626
Chicago/Turabian StyleTong, Yicheng, Sijie Chen, Da Xiao, Kai Zhang, Jing Fang, Chong Liu, Yibing Shen, and Dong Liu. 2022. "Lidar Ratio Regional Transfer Method for Extinction Coefficient Accuracy Improvement in Lidar Networks" Remote Sensing 14, no. 3: 626. https://doi.org/10.3390/rs14030626
APA StyleTong, Y., Chen, S., Xiao, D., Zhang, K., Fang, J., Liu, C., Shen, Y., & Liu, D. (2022). Lidar Ratio Regional Transfer Method for Extinction Coefficient Accuracy Improvement in Lidar Networks. Remote Sensing, 14(3), 626. https://doi.org/10.3390/rs14030626