Multiple Superpixel Graphs Learning Based on Adaptive Multiscale Segmentation for Hyperspectral Image Classification
Abstract
:1. Introduction
- (1)
- The proposed MSGLAMS adopts the multiscale-superpixel-based framework, which can reduce the adverse effect of improper selection of a superpixel segmentation scale on the classification accuracy while saving the cost to manually seek a suitable segmentation scale.
- (2)
- To make full use of the spatial information of different segmentation scales, a novel two-steps multiscale selection strategy is designed to adaptively select a set of complementary multiscales. Specifically, an optimal reference scale selection algorithm (ORSSA) which can select the single basic scale suitable for different data sets is proposed to select an optimal reference scale (ORS). Then, the multiscale selection method base on sparse representation (MSSR) is proposed to select fusion scales that have positive contribution to supplement the spatial information of ORS.
- (3)
- Multiple superpixel-based graphical models (SGL-based model), which are created via constructed superpixel contracted graph of determined scales (fusion scales pool), are adopted to jointly predict the final classification results, that is, pixel-level labels are determined via the voting results of these different models. This Boosting-like fusion strategy can significantly reduce the bias and instability of the final results, and keep the similar inductive bias of models.
2. Proposed Method
2.1. Construction of the Candidate Scale Pool
2.2. Optimal Reference Scale Selection
Algorithm 1 ORSSA |
|
2.3. Superpixel Graph Learning
2.3.1. Graph Construction
2.3.2. Label Propagation
2.4. Multiscale Selection Based on Sparse Representation
2.5. A Pixel-Level Fusion Strategy for Multiple Graphical Models
Algorithm 2 The proposed MSGLAMS |
|
3. Experimental Results and Analysis
3.1. Datasets
- The dataset was collected by an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over an agricultural site in Indiana. The dataset consists of 145 × 145 pixels, 200 spectral channels in the wavelength range of 0.4–2.45 m. The spatial resolution of the data is 20 m. The ground truth map utilizes 10,249 labeled pixels with 16 different surface classes.
- This image was also collected by the AVIRIS sensor over Salinas Valley, California. It contains 512 × 217 pixels with a spatial resolution of 3.7 m and 200 spectral channels over 0.4–2.5 m. The dataset has a spatial resolution of 3.7 m/pixel. Its ground truth contains 54,129 labeled pixels and 16 classes.
- This dataset was acquired by the Reflective Optics System Imaging Spectrometer (ROSIS) sensor over the urban area surrounding the University of Pavia, Italy. The spatial size of the data is 610 × 340, and the spatial resolution is as high as 1.3 m/pixel. The image contains 115 spectral channels from 0.43 to 0.86 μm and has a spatial resolution of 1.3 m. Its ground truth contains 42,776 labeled pixels and 9 classes.
- The Houston 2013 dataset was captured by an airborne spectrographic image sensor, which covers the area of University of Houston and its neighboring urban area. Houston 2013 dataset include pixels with a spatial resolution of 2.5 m and consists of 144 spectral channels ranging from 0.38 to 1.05 m, and the ground truth map utilizes 15,029 labeled pixels with 15 different land-cover classes. It adopted the standard training and testing sets given by the 2013 GRSS Data Fusion Contest.
3.2. Experimental Settings
3.2.1. Experimental Settings for Comparing with Other State of the Arts
3.2.2. Experimental Settings of ORSSA
3.2.3. Experimental Settings of MSSR
3.3. Comparison of Results of Different Methods
3.4. Analysis of Experimental Results of the ORASS and MSSR
3.5. Parameter Analysis
3.5.1. Parameter Analysis of and
3.5.2. Effect of Different Number of Training Samples
3.5.3. Running Time Comparison
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, W.; Du, Q. Gabor-Filtering-Based Nearest Regularized Subspace for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1012–1022. [Google Scholar] [CrossRef]
- Jafarzadeh, H.; Mahdianpari, M.; Gill, E.; Mohammadimanesh, F.; Homayouni, S. Bagging and Boosting Ensemble Classifiers for Classification of Multispectral, Hyperspectral and PolSAR Data: A Comparative Evaluation. Remote Sens. 2021, 13, 4405. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, Z.; Jia, X.; Xu, Y.; Wei, Z. From Local to Global: Class Feature Fused Fully Convolutional Network for Hyperspectral Image Classification. Remote Sens. 2021, 13, 5043. [Google Scholar] [CrossRef]
- Song, M.; Yu, C.; Xie, H.; Chang, C.I. Progressive Band Selection Processing of Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1762–1766. [Google Scholar] [CrossRef]
- Xue, B.; Yu, C.; Wang, Y.; Song, M.; Li, S.; Wang, L.; Chen, H.M.; Chang, C.I. A Subpixel Target Detection Approach to Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5093–5114. [Google Scholar] [CrossRef]
- Haboudane, D. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Merentitis, A.; Debes, C.; Heremans, R. Ensemble Learning in Hyperspectral Image Classification: Toward Selecting a Favorable Bias-Variance Tradeoff. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1089–1102. [Google Scholar] [CrossRef]
- Ellis, R.J.; Scott, P.W. Evaluation of hyperspectral remote sensing as a means of environmental monitoring in the St. Austell China clay (kaolin) region, Cornwall, UK. Remote Sens. Environ. 2004, 93, 118–130. [Google Scholar] [CrossRef]
- Shao, Z.; Fu, H.; Li, D.; Altan, O.; Cheng, T. Remote sensing monitoring of multi-scale watersheds impermeability for urban hydrological evaluation. Remote Sens. Environ. 2019, 232, 111338. [Google Scholar] [CrossRef]
- Schneider, S.; Murphy, R.J.; Melkumyan, A. Evaluating the performance of a new classifier—The GP-OAD: A comparison with existing methods for classifying rock type and mineralogy from hyperspectral imagery. ISPRS J. Photogramm. Remote Sens. 2014, 98, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Tang, Y.; Zou, X.; Huang, Z.; Zhou, H.; Chen, S. 3D global mapping of large-scale unstructured orchard integrating eye-in-hand stereo vision and SLAM. Comput. Electron. Agric. 2021, 187, 106237. [Google Scholar] [CrossRef]
- Cao, X.; Yan, H.; Huang, Z.; Ai, S.; Xu, Y.; Fu, R.; Zou, X. A Multi-Objective Particle Swarm Optimization for Trajectory Planning of Fruit Picking Manipulator. Agronomy 2021, 11, 2286. [Google Scholar] [CrossRef]
- Wu, F.; Duan, J.; Chen, S.; Ye, Y.; Ai, P.; Yang, Z. Multi-Target Recognition of Bananas and Automatic Positioning for the Inflorescence Axis Cutting Point. Front. Plant Sci. 2021, 12, 705021. [Google Scholar] [CrossRef] [PubMed]
- Rasti, B.; Hong, D.; Hang, R.; Ghamisi, P.; Kang, X.; Chanussot, J.; Benediktsson, J.A. Feature Extraction for Hyperspectral Imagery: The Evolution From Shallow to Deep: Overview and Toolbox. IEEE Geosci. Remote Sens. Mag. 2020, 8, 60–88. [Google Scholar] [CrossRef]
- Liu, B.; Yu, A.; Yu, X.; Wang, R.; Gao, K.; Guo, W. Deep Multiview Learning for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 7758–7772. [Google Scholar] [CrossRef]
- Yu, C.; Zhao, M.; Song, M.; Wang, Y.; Li, F.; Han, R.; Chang, C.I. Hyperspectral Image Classification Method Based on CNN Architecture Embedding with Hashing Semantic Feature. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1866–1881. [Google Scholar] [CrossRef]
- Liu, D.; Han, G.; Liu, P.; Yang, H.; Sun, X.; Li, Q.; Wu, J. A Novel 2D-3D CNN with Spectral-Spatial Multi-Scale Feature Fusion for Hyperspectral Image Classification. Remote Sens. 2021, 13, 4621. [Google Scholar] [CrossRef]
- Audebert, N.; Le Saux, B.; Lefevre, S. Deep Learning for Classification of Hyperspectral Data: A Comparative Review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Ben Hamida, A.; Benoit, A.; Lambert, P.; Ben Amar, C. 3-D Deep Learning Approach for Remote Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4420–4434. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Zhu, W.; Feng, S. Hyperspectral Image Classification Based on Kernel-Guided Deformable Convolution and Double-Window Joint Bilateral Filter. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Zhang, Z.; Crawford, M.M. A Batch-Mode Regularized Multimetric Active Learning Framework for Classification of Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6594–6609. [Google Scholar] [CrossRef]
- Tu, B.; Zhang, X.; Kang, X.; Zhang, G.; Wang, J.; Wu, J. Hyperspectral Image Classification via Fusing Correlation Coefficient and Joint Sparse Representation. IEEE Geosci. Remote Sens. Lett. 2018, 15, 340–344. [Google Scholar] [CrossRef]
- Hao, Q.; Li, S.; Kang, X. Multilabel Sample Augmentation-Based Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4263–4278. [Google Scholar] [CrossRef]
- Zhang, S.; Kang, X.; Duan, P.; Sun, B.; Li, S. Polygon Structure-Guided Hyperspectral Image Classification with Single Sample for Strong Geometric Characteristics Scenes. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–12. [Google Scholar] [CrossRef]
- Imani, M.; Ghassemian, H. Band Clustering-Based Feature Extraction for Classification of Hyperspectral Images Using Limited Training Samples. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1325–1329. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y. Multiscale Weighted Adjacent Superpixel-Based Composite Kernel for Hyperspectral Image Classification. Remote Sens. 2021, 13, 820. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, F. Hyperspectral Image Classification Based on Sparse Superpixel Graph. Remote Sens. 2021, 13, 3592. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, M.; Gao, T.; Chen, J.; Zhang, J. Multiscale-Superpixel-Based SparseCEM for Hyperspectral Target Detection. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Yu, H.; Gao, L.; Liao, W.; Zhang, B.; Pizurica, A.; Philips, W. Multiscale Superpixel-Level Subspace-Based Support Vector Machines for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2142–2146. [Google Scholar] [CrossRef]
- Shi, C.; Pun, C.M. Multiscale Superpixel-Based Hyperspectral Image Classification Using Recurrent Neural Networks With Stacked Autoencoders. IEEE Trans. Multimed. 2020, 22, 487–501. [Google Scholar] [CrossRef]
- Yang, C.; Bruzzone, L.; Zhao, H.; Tan, Y.; Guan, R. Superpixel-Based Unsupervised Band Selection for Classification of Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 7230–7245. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, K.; Dong, Y.; Wu, K.; Hu, X. Semisupervised Classification Based on SLIC Segmentation for Hyperspectral Image. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1440–1444. [Google Scholar] [CrossRef]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Susstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.Y.; Tuzel, O.; Ramalingam, S.; Chellappa, R. Entropy rate superpixel segmentation. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 2097–2104. [Google Scholar] [CrossRef]
- He, Z.; Shen, Y.; Zhang, M.; Wang, Q.; Wang, Y.; Yu, R. Spectral-spatial hyperspectral image classification via SVM and superpixel segmentation. In Proceedings of the 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, Montevideo, Uruguay, 12–15 May 2014; pp. 422–427. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, N.; Cui, J. Hyperspectral Image Classification with Small Training Sample Size Using Superpixel-Guided Training Sample Enlargement. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7307–7316. [Google Scholar] [CrossRef]
- Liu, Q.; Xiao, L.; Yang, J.; Wei, Z. CNN-Enhanced Graph Convolutional Network with Pixel- and Superpixel-Level Feature Fusion for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 8657–8671. [Google Scholar] [CrossRef]
- Sellars, P.; Aviles-Rivero, A.I.; Schonlieb, C.B. Superpixel Contracted Graph-Based Learning for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4180–4193. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Feng, R.; Wang, L.; Zhong, Y.; Zhang, L. Superpixel-Based Reweighted Low-Rank and Total Variation Sparse Unmixing for Hyperspectral Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2021, 59, 629–647. [Google Scholar] [CrossRef]
- Cui, B.; Xie, X.; Ma, X.; Ren, G.; Ma, Y. Superpixel-Based Extended Random Walker for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3233–3243. [Google Scholar] [CrossRef]
- Fang, L.; Li, S.; Duan, W.; Ren, J.; Benediktsson, J.A. Classification of Hyperspectral Images by Exploiting Spectral–Spatial Information of Superpixel via Multiple Kernels. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6663–6674. [Google Scholar] [CrossRef] [Green Version]
- Jia, S.; Deng, X.; Zhu, J.; Xu, M.; Zhou, J.; Jia, X. Collaborative Representation-Based Multiscale Superpixel Fusion for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7770–7784. [Google Scholar] [CrossRef]
- Liu, T.; Gu, Y.; Chanussot, J.; Dalla Mura, M. Multimorphological Superpixel Model for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6950–6963. [Google Scholar] [CrossRef]
- Lu, Q.; Wei, L. Multiscale Superpixel-Based Active Learning for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Lu, T.; Li, S.; Fang, L.; Jia, X.; Benediktsson, J.A. From Subpixel to Superpixel: A Novel Fusion Framework for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4398–4411. [Google Scholar] [CrossRef]
- Jia, S.; Deng, B.; Zhu, J.; Jia, X.; Li, Q. Superpixel-Based Multitask Learning Framework for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2575–2588. [Google Scholar] [CrossRef]
- Leng, Q.; Yang, H.; Jiang, J.; Tian, Q. Adaptive MultiScale Segmentations for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5847–5860. [Google Scholar] [CrossRef]
- Jia, S.; Deng, B.; Zhu, J.; Jia, X.; Li, Q. Local Binary Pattern-Based Hyperspectral Image Classification with Superpixel Guidance. IEEE Trans. Geosci. Remote Sens. 2018, 56, 749–759. [Google Scholar] [CrossRef]
- Li, J.; Du, Q.; Li, Y.; Li, W. Hyperspectral Image Classification with Imbalanced Data Based on Orthogonal Complement Subspace Projection. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3838–3851. [Google Scholar] [CrossRef]
- Prasad, S.; Labate, D.; Cui, M.; Zhang, Y. Morphologically Decoupled Structured Sparsity for Rotation-Invariant Hyperspectral Image Analysis. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4355–4366. [Google Scholar] [CrossRef]
- Dundar, T.; Ince, T. Sparse Representation-Based Hyperspectral Image Classification Using Multiscale Superpixels and Guided Filter. IEEE Geosci. Remote Sens. Lett. 2019, 16, 246–250. [Google Scholar] [CrossRef]
- Yu, H.; Shang, X.; Song, M.; Hu, J.; Jiao, T.; Guo, Q.; Zhang, B. Union of Class-Dependent Collaborative Representation Based on Maximum Margin Projection for Hyperspectral Imagery Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 553–566. [Google Scholar] [CrossRef]
- Tropp, J.; Gilbert, A. Signal Recovery From Random Measurements via Orthogonal Matching Pursuit. IEEE Trans. Inf. Theory 2008, 53, 4655–4666. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Yu, Y.; Du, Q.; Du, P. Ensemble Learning for Hyperspectral Image Classification Using Tangent Collaborative Representation. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3778–3790. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, J.; Wang, Z.; Chen, C.; Liu, X. Hyperspectral Image Classification in the Presence of Noisy Labels. IEEE Trans. Geosci. Remote Sens. 2019, 57, 851–865. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Ma, C.; Chen, Y.; Shim, H.J.; Wu, Z.; Jeon, B. Adjacent Superpixel-Based Multiscale spatial–spectral Kernel for Hyperspectral Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1905–1919. [Google Scholar] [CrossRef]
Color | Land Cover Type | Numbers |
---|---|---|
Stone-Steel-Towers | 93 | |
Hay-windrowed | 478 | |
Corn-mintill | 830 | |
Soybean-notill | 972 | |
Alfalfa | 46 | |
Soybean-clean | 593 | |
Grass-pasture | 483 | |
Woods | 1265 | |
Buildings-Grass-Tree-Drives | 386 | |
Grass-pasture-mowed | 28 | |
Corn | 237 | |
Oats | 20 | |
Corn-notill | 1428 | |
Soybean-mintill | 1257 | |
Grass-trees | 1257 | |
Wheat | 205 | |
Total Number | 10,249 |
Color | Land Cover Type | Numbers |
---|---|---|
Brocoli_green_weeds_1 | 2009 | |
Brocoli_green_weeds_2 | 3726 | |
Fallow | 1976 | |
Fallow_rough_plow | 1394 | |
Fallow_smooth | 2678 | |
Stubble | 3959 | |
Celery | 3579 | |
Grapes_untrained | 11,271 | |
Soil_vinyard_develop | 6203 | |
Corn_senesced_green_weeds | 3278 | |
Lettuce_romaine_4wk | 1068 | |
Lettuce_romaine_5wk | 1927 | |
Lettuce_romaine_6wk | 916 | |
Lettuce_romaine_7wk | 1070 | |
Vinyard_untrained | 7268 | |
Vinyard_vertical_trellis | 1807 | |
Total Number | 54,129 |
Color | Land Cover Type | Numbers |
---|---|---|
Asphalt | 6631 | |
Meadows | 18,649 | |
Gravel | 2099 | |
Trees | 3064 | |
Painted metal sheets | 1345 | |
Bare Soil | 5029 | |
Bitumen | 1330 | |
Self-Blocking Bricks | 3682 | |
Shadows | 947 | |
Total Number | 42,776 |
Color | Land Cover Type | Numbers |
---|---|---|
Healthy grass | 1251 | |
Stressed grass | 1254 | |
Synthetic grass | 697 | |
Trees | 1244 | |
Soil | 1242 | |
Water | 5029 | |
Residential | 126 | |
Commercial | 1244 | |
Road | 1252 | |
Highway | 122 | |
Railway | 1235 | |
Parking Lot 1 | 1233 | |
Parking Lot 2 | 469 | |
Tennis Court | 428 | |
Running Track | 660 | |
Total Number | 15,029 |
Class Name | SVM | 3D-CNN | 1D+2D | GCN-M | KDCDWBF | STSE_DWLR | SGL | MSGLAMS |
---|---|---|---|---|---|---|---|---|
Alfalfa | 0.49571 | 0.65940 | 0.50457 | 0.64092 | 1.00000 | 0.44264 | 1.00000 | 1.00000 |
Corn-notill | 0.46833 | 0.29684 | 0.27424 | 0.93793 | 0.87593 | 0.61650 | 0.73484 | 0.93067 |
Corn-mintill | 0.43615 | 0.35215 | 0.30760 | 0.85950 | 0.93172 | 0.69343 | 0.95595 | 0.99578 |
Corn | 0.45338 | 0.42414 | 0.38454 | 0.39823 | 0.95157 | 0.70895 | 0.95595 | 0.99578 |
Grass-pasture | 0.70857 | 0.63286 | 0.48650 | 0.86174 | 0.90497 | 0.55580 | 0.95983 | 0.84058 |
Grass-trees | 0.84465 | 0.84096 | 0.70611 | 0.99067 | 0.99034 | 0.86224 | 0.98194 | 0.99452 |
Grass-pasture-mowed | 0.43256 | 0.35618 | 0.25098 | 0.44103 | 0.88891 | 0.46240 | 1.00000 | 1.00000 |
Hay-windrowed | 0.92244 | 0.95833 | 0.90342 | 0.99914 | 1.00000 | 0.97639 | 1.00000 | 1.00000 |
Oats | 0.18511 | 0.21189 | 0.60169 | 0.32545 | 1.00000 | 0.32312 | 1.00000 | 1.00000 |
Soybean-notill | 0.32139 | 0.40187 | 0.33047 | 0.84658 | 0.85973 | 0.62763 | 0.81393 | 0.85185 |
Soybean-mintill | 0.49923 | 0.50666 | 0.56832 | 0.94420 | 0.75716 | 0.77789 | 0.88630 | 0.95723 |
Soybean-clean | 0.34218 | 0.21864 | 0.24435 | 0.76209 | 0.75133 | 0.53653 | 0.95026 | 0.81619 |
Wheat | 0.87283 | 0.83830 | 0.82577 | 0.99494 | 1.00000 | 0.93417 | 0.97949 | 1.00000 |
Woods | 0.80549 | 0.88882 | 0.80326 | 0.99723 | 0.99928 | 0.80735 | 1.00000 | 0.99921 |
Buildings-Grass-Trees-Drives | 0.38141 | 0.35919 | 0.31423 | 0.73869 | 0.99735 | 0.37927 | 1.00000 | 1.00000 |
Stone-Steel-Towers | 0.86495 | 0.82275 | 0.97096 | 0.85339 | 1.00000 | 0.48141 | 1.00000 | 1.00000 |
OA | 0.54644 | 0.53484 | 0.49926 | 0.89850 | 0.88372 | 0.70582 | 0.89662 | 0.94312 |
AA | 0.56652 | 0.54806 | 0.52981 | 0.74946 | 0.93177 | 0.63661 | 0.94362 | 0.95839 |
Kappa | 0.49372 | 0.48120 | 0.43718 | 0.88360 | 0.86803 | 0.66948 | 0.88228 | 0.92802 |
Class Name | SVM | 3D-CNN | 1D+2D | GCN-M | KDCDWBF | STSE_DWLR | SGL | MSGLAMS |
---|---|---|---|---|---|---|---|---|
Brocoli_green_weeds_1 | 0.97213 | 0.77190 | 0.89575 | 1.00000 | 1.00000 | 1.00000 | 0.99350 | 1.00000 |
Brocoli_green_weeds_2 | 0.97979 | 0.83700 | 0.88249 | 1.00000 | 0.99899 | 0.98541 | 1.00000 | 1.00000 |
Fallow | 0.92227 | 0.69037 | 0.38318 | 1.00000 | 1.00000 | 0.99931 | 1.00000 | 1.00000 |
Fallow_rough_plow | 0.98131 | 0.96011 | 0.99348 | 0.99957 | 0.99931 | 0.99373 | 0.99783 | 0.99498 |
Fallow_smooth | 0.96958 | 0.88974 | 0.94161 | 0.97818 | 0.98884 | 0.99860 | 0.98726 | 0.98208 |
Stubble | 0.99469 | 0.99141 | 0.99750 | 0.99980 | 0.99926 | 0.99913 | 0.99873 | 1.00000 |
Celery | 0.98829 | 0.89513 | 0.92519 | 0.99872 | 0.99727 | 0.94286 | 0.98963 | 0.99888 |
Grapes_untrained | 0.62056 | 0.68778 | 0.70029 | 0.87680 | 0.99156 | 0.87804 | 0.98703 | 0.98501 |
Soil_vinyard_develop | 0.97219 | 0.90053 | 0.17241 | 1.00000 | 1.00000 | 0.99840 | 1.00000 | 1.00000 |
Corn_senesced_green_weeds | 0.82560 | 0.80295 | 0.75480 | 0.93511 | 0.96025 | 0.95372 | 0.97980 | 0.98383 |
Lettuce_romaine_4wk | 0.79953 | 0.62583 | 0.53860 | 0.99659 | 0.98363 | 0.90000 | 0.96408 | 0.99906 |
Lettuce_romaine_5wk | 0.97146 | 0.88920 | 0.83733 | 1.00000 | 1.00000 | 0.99715 | 1.00000 | 0.99637 |
Lettuce_romaine_6wk | 0.97738 | 0.80832 | 0.83215 | 0.99668 | 0.97578 | 0.99730 | 0.98675 | 0.98908 |
Lettuce_romaine_7wk | 0.90863 | 0.90656 | 0.94550 | 0.99396 | 0.98775 | 0.97158 | 0.94434 | 0.94393 |
Vinyard_untrained | 0.55898 | 0.25129 | 0.55553 | 0.93584 | 0.87010 | 0.79336 | 0.99559 | 0.99106 |
Vinyard_vertical_trellis | 0.97332 | 0.57847 | 0.86472 | 0.98697 | 1.00000 | 0.82473 | 1.00000 | 1.00000 |
OA | 0.83018 | 0.74808 | 0.70606 | 0.95995 | 0.97665 | 0.93139 | 0.99175 | 0.99217 |
AA | 0.90098 | 0.78041 | 0.76378 | 0.98121 | 0.98467 | 0.95208 | 0.98903 | 0.99152 |
Kappa | 0.81221 | 0.71955 | 0.68856 | 0.95546 | 0.97395 | 0.92355 | 0.99082 | 0.99128 |
Class Name | SVM | 3D-CNN | 1D+2D | GCN-M | KDCDWBF | STSE_DWLR | SGL | MSGLAMS |
---|---|---|---|---|---|---|---|---|
Asphalt | 0.70013 | 0.84315 | 0.82234 | 0.97317 | 0.84083 | 0.87721 | 0.85153 | 0.97240 |
Meadows | 0.79182 | 0.74326 | 0.60375 | 0.89858 | 0.87875 | 0.84716 | 0.87167 | 0.99507 |
Gravel | 0.33954 | 0.81594 | 0.60163 | 0.94129 | 0.99712 | 0.77953 | 0.85543 | 0.92758 |
Trees | 0.64275 | 0.70643 | 0.64811 | 0.95690 | 0.77147 | 0.82180 | 0.89293 | 0.93570 |
Painted metal sheets | 0.98206 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 0.98873 | 0.99551 | 0.99926 |
Bare Soil | 0.43017 | 0.61936 | 0.36057 | 0.99016 | 1.00000 | 0.74031 | 1.00000 | 1.00000 |
Bitumen | 0.46258 | 0.64829 | 0.62409 | 0.99955 | 1.00000 | 0.68226 | 0.99545 | 1.00000 |
Self-Blocking Bricks | 0.71294 | 0.90115 | 0.80587 | 0.98829 | 0.98156 | 0.87564 | 0.88589 | 0.98099 |
Shadows | 0.99965 | 0.99553 | 0.99634 | 0.98975 | 0.52196 | 0.99931 | 0.99146 | 0.99894 |
OA | 0.69445 | 0.75116 | 0.63356 | 0.94319 | 0.89384 | 0.83138 | 0.89591 | 0.98373 |
AA | 0.67352 | 0.80812 | 0.71808 | 0.97085 | 0.88797 | 0.84577 | 0.92665 | 0.97888 |
Kappa | 0.60372 | 0.69162 | 0.55293 | 0.92615 | 0.86203 | 0.78824 | 0.86523 | 0.97843 |
Class Name | SVM | 3D-CNN | 1D+2D | KDCDWBF | STSE_DWLR | SGL | MSGLAMS |
---|---|---|---|---|---|---|---|
Healthy grass | 0.86978 | 0.69503 | 0.89193 | 0.95822 | 0.93328 | 0.95414 | 0.97161 |
Stressed grass | 0.82756 | 0.89545 | 0.96160 | 0.96331 | 0.68559 | 0.87345 | 0.77028 |
Synthetic grass | 0.32008 | 0.83721 | 0.98606 | 0.99064 | 0.92484 | 0.99574 | 0.99748 |
Trees | 0.90607 | 0.80034 | 0.92557 | 0.95275 | 0.47288 | 0.78560 | 0.89952 |
Soil | 0.81166 | 0.84134 | 0.95273 | 0.97953 | 0.72748 | 1.00000 | 1.00000 |
Water | 0.66780 | 0.48551 | 0.91662 | 0.86703 | 0.93313 | 0.89380 | 0.98230 |
Residential | 0.46402 | 0.75479 | 0.73228 | 0.86080 | 0.51978 | 0.72018 | 0.93766 |
Commercial | 0.51150 | 0.39113 | 0.64877 | 0.80451 | 0.33407 | 0.72156 | 0.81905 |
Road | 0.59123 | 0.18508 | 0.61895 | 0.83688 | 0.26036 | 0.70592 | 0.84684 |
Highway | 0.34081 | 0.35746 | 0.66846 | 0.79076 | 0.98727 | 0.98455 | 1.00000 |
Railway | 0.45040 | 0.48471 | 0.57222 | 0.87527 | 0.88303 | 0.87547 | 0.98275 |
Parking Lot 1 | 0.20157 | 0.35746 | 0.45568 | 0.84590 | 0.89429 | 0.83414 | 0.95451 |
Parking Lot 2 | 0.13862 | 0.06155 | 0.24215 | 0.84586 | 0.92604 | 0.83069 | 0.93196 |
Tennis Court | 0.76142 | 0.59532 | 0.88101 | 0.94617 | 0.98210 | 0.99610 | 1.00000 |
Running Track | 0.97148 | 0.94607 | 0.96709 | 0.96433 | 0.96319 | 0.95363 | 0.99248 |
OA | 0.59387 | 0.59493 | 0.75340 | 0.89350 | 0.71886 | 0.86091 | 0.92906 |
AA | 0.59464 | 0.57904 | 0.76141 | 0.89880 | 0.75586 | 0.84985 | 0.93905 |
Kappa | 0.55917 | 0.56117 | 0.73349 | 0.88541 | 0.69744 | 0.87520 | 0.92339 |
Samples per Class | Single-Scale Selection Methods | Multiscale Selection Methods | ||||||
---|---|---|---|---|---|---|---|---|
TRS | RES | ASS | ORASS | MSF | AMS | MSNSF | MSSR | |
3 | 0.75198 | 0.74120 | 0.72434 | 0.79413 | 0.83637 | 0.81529 | 0.77793 | 0.86604 |
5 | 0.82860 | 0.80873 | 0.76507 | 0.84099 | 0.85296 | 0.85374 | 0.82847 | 0.87032 |
7 | 0.85636 | 0.84646 | 0.76472 | 0.86877 | 0.87306 | 0.86711 | 0.89814 | 0.92643 |
10 | 0.86539 | 0.85094 | 0.81504 | 0.87135 | 0.91843 | 0.90945 | 0.89975 | 0.94214 |
15 | 0.88001 | 0.88390 | 0.85503 | 0.91358 | 0.95443 | 0.92107 | 0.92955 | 0.95648 |
Samples per Class | Single-Scale Selection Methods | Multiscale Selection Methods | ||||||
---|---|---|---|---|---|---|---|---|
TRS | RES | ASS | ORASS | MSF | AMS | MSNSF | MSSR | |
3 | 0.94556 | 0.95464 | 0.95322 | 0.96771 | 0.98116 | 0.96434 | 0.96227 | 0.99048 |
5 | 0.96358 | 0.95996 | 0.96966 | 0.97008 | 0.98501 | 0.98013 | 0.97572 | 0.99188 |
7 | 0.96379 | 0.97652 | 0.97121 | 0.98809 | 0.98877 | 0.98553 | 0.98108 | 0.99408 |
10 | 0.97297 | 0.98419 | 0.98137 | 0.99043 | 0.99154 | 0.98619 | 0.98423 | 0.99477 |
15 | 0.98973 | 0.98697 | 0.98441 | 0.99061 | 0.99161 | 0.99012 | 0.98683 | 0.99547 |
Samples per Class | Single-Scale Selection Methods | Multiscale Selection Methods | ||||||
---|---|---|---|---|---|---|---|---|
TRS | RES | ASS | ORASS | MSF | AMS | MSNSF | MSSR | |
3 | 0.82787 | 0.81473 | 0.83604 | 0.84376 | 0.90945 | 0.87703 | 0.82612 | 0.94128 |
5 | 0.83131 | 0.83793 | 0.84895 | 0.86153 | 0.91769 | 0.90020 | 0.88813 | 0.94588 |
7 | 0.85337 | 0.84037 | 0.86587 | 0.87798 | 0.92202 | 0.90798 | 0.92776 | 0.95404 |
10 | 0.87185 | 0.88042 | 0.88078 | 0.89451 | 0.93877 | 0.92767 | 0.94735 | 0.96327 |
15 | 0.91360 | 0.91487 | 0.91669 | 0.93349 | 0.95532 | 0.93246 | 0.95841 | 0.96454 |
Data Set | SVM | 3D-CNN | 1D+2D | GCN-M | KDCDWBF | STSE_DWLR | SGL | MSGLAMS |
---|---|---|---|---|---|---|---|---|
Indian Pines | 3.39 | 21.837 | 9.16 | 110.49 | 131.34 | 40.317 | 64.65 | 95.033 |
Salinas | 20.55 | 50.31 | 20.04 | 750.28 | 672.35 | 103.08 | 163.79 | 569.90 |
University of Pavia | 4.14 | 56.57 | 17.61 | 608.22 | 714.35 | 70.05 | 351.76 | 590.53 |
Houston2013 | 34.56 | 101.42 | 42.70 | - | 1157.96 | 70.05 | 520.31 | 874.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Qin, B.; Feng, S.; Zhu, W. Multiple Superpixel Graphs Learning Based on Adaptive Multiscale Segmentation for Hyperspectral Image Classification. Remote Sens. 2022, 14, 681. https://doi.org/10.3390/rs14030681
Zhao C, Qin B, Feng S, Zhu W. Multiple Superpixel Graphs Learning Based on Adaptive Multiscale Segmentation for Hyperspectral Image Classification. Remote Sensing. 2022; 14(3):681. https://doi.org/10.3390/rs14030681
Chicago/Turabian StyleZhao, Chunhui, Boao Qin, Shou Feng, and Wenxiang Zhu. 2022. "Multiple Superpixel Graphs Learning Based on Adaptive Multiscale Segmentation for Hyperspectral Image Classification" Remote Sensing 14, no. 3: 681. https://doi.org/10.3390/rs14030681
APA StyleZhao, C., Qin, B., Feng, S., & Zhu, W. (2022). Multiple Superpixel Graphs Learning Based on Adaptive Multiscale Segmentation for Hyperspectral Image Classification. Remote Sensing, 14(3), 681. https://doi.org/10.3390/rs14030681