The Influence of Climate Change on Forest Fires in Yunnan Province, Southwest China Detected by GRACE Satellites
Abstract
:1. Introduction
2. Study Area
3. Data
3.1. GRACE Data
3.2. Burned Area Data
3.3. In Situ PPT Data
3.4. Evapotranspiration (ET) Data
3.5. Relative Humidity Data
3.6. Atmospheric Column Water Vapor
3.7. Extreme Climate Index
4. Method
4.1. Fusing Different Datasets
4.1.1. The GTCH Method
4.1.2. Data Fusion
4.2. Composite Analysis
4.3. Pearson Correlation Analysis
4.4. Time Series Analysis
5. Results
5.1. GRACE Solutions Fusion
5.2. Spatial and Temporal Distribution of the Burned Area
5.3. The Relationship between Meteorological Factors and Burned Area
5.3.1. Long-Term Trend Change
5.3.2. Seasonal Variations
5.3.3. Interannual Variance
5.3.4. Climate Change before and during Extreme Forest Fire Months
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, T.N. Fire situation in 2004 and tendency as well as counter measures in the future. Fire Sci. Technol. 2005, 24, 263–266. (In Chinese) [Google Scholar]
- Girardin, M.P.; Ali, A.A.; Carcaill, C.; Gauthier, S.; Hely, C.; Le Goff, H.; Terrire, A.; Bergeron, Y. Fire in managed forest of eastern Canada: Risks and option. For. Ecol. Manag. 2013, 294, 238–249. [Google Scholar] [CrossRef]
- Sliva, C.A.; Santill, G.; Sano, E.E.; Laneve, G. Fire occurrences and greenhouse gas emissions from deforestation in the Brazilian Amazon. Remote Sens. 2021, 13, 376. [Google Scholar] [CrossRef]
- Ehsani, M.R.; Arevalo, J.; Risanto, C.B.; Javadian, M.; Denine, C.J.; Arabzadeh, A.; Venegas-Quiñones, H.L.; Dell’Oro, A.P.; Behrangi, A. 2019-2020 Australia Fire and its relationship to hydroclimatological and vergetation variabilities. Water 2020, 12, 3067. [Google Scholar] [CrossRef]
- Balling, R.C.; Meyer, G.A.; Wells, S.G. Relation of surface climate and burned area in Yellowstone National Park. Agric. For. Meteoro. 1992, 60, 285–293. [Google Scholar] [CrossRef]
- Vélez, R. High intensity forest fires in the Mediterranean basin: Natural and socioeconomic causes. Disaster Manag. 1993, 5, 16–20. [Google Scholar]
- Mouillot, F.; Rambal, S.; Joffre, R. Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem. Glob. Chang.Biol. 2002, 8, 423–437. [Google Scholar] [CrossRef]
- Fried, J.S.; Gilless, J.K.; Riley, W.J.; Moody, T.J.; de Blas, C.S.; Hayhoe, K.; Moritz, M.; Stephens, S.; Torn, M. Predicting the effect of climate change on wildfire behavior and initial attack success. Clim. Chang. 2008, 87, 251–264. [Google Scholar] [CrossRef] [Green Version]
- Zhong, S.Y.; Wang, T.; Sciusco, P.; Shen, M.C.; Pei, L.S.; Nikolic, J.; Mckeehan, K.; Kashogwe, H.; Hatami-Beiglou, P.; Camacho, K.; et al. Will land use cover change drive atmospheric conditions to become more conducive to wildfire in the United States? Int. J. Climatol. 2021, 41, 3578–3597. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Stocks, B.J.; Wotton, B.M. Climate change and forest fires. Sci. Total Environ. 2000, 262, 221–229. [Google Scholar] [CrossRef]
- Fried, J.S.; Torn, M.S.; Mills, E. The impact of climate change on wildfire severity: A regional forecast for northern California. Clim. Chang. 2004, 64, 169–191. [Google Scholar] [CrossRef]
- Shu, L.F.; Tian, X.R.; Kou, X.J. The focus and progress on forest fire research. World For. Res. 2003, 16, 37–40. (In Chinese) [Google Scholar]
- Zhao, F.J.; Shu, L.F.; Di, X.Y.; Tian, X.R.; Wang, M.Y. Changes in the occurring data of forest fires in the Inner Mongolia Daxing anling forest region under global warming. Sci. Silvae Sin. 2009, 45, 166–172. (In Chinese) [Google Scholar]
- Roads, J.; Fujioka, F.; Chen, S.; Burgan, R. Seasonal fire danger forecasts for the USA. Int. J. Wildland Fire 2005, 14, 1–18. [Google Scholar] [CrossRef]
- Collins, M.; Omi, P.N.; Chapman, P.L. Regional relationships between climate and wildfire burned area in the Interior West. Canadian J. For. Res. 2006, 36, 699–709. [Google Scholar] [CrossRef]
- Preisler, K.; Westerling, A.L. Statistical model for forecasting monthly large forest fire events in western United States. J. Appl. Meteorol.Climatol. 2007, 46, 1020–1030. [Google Scholar] [CrossRef] [Green Version]
- Badia, A.; Sauri, D.; Cerdan, R.; Llurdés, J.C. Causality and management of forest fires in Mediterranean environments: An example from Catalonia. Environ. Hazards 2002, 4, 23–32. [Google Scholar]
- Soja, J.; Tehebakova, N.M.; French, N.H.F.; Flannigan, M.D.; Shugart, H.H.; Stocks, B.J.; Sukhinin, A.I.; Parfenova, E.I.; Chapin, F.S., III; Stackhouse, P.W., Jr. Climate-induced boreal forest change: Predictions versus current observations. Glob. Planet. Chang. 2007, 56, 274–296. [Google Scholar] [CrossRef] [Green Version]
- Jentsch, A.; Beierkuhnlein, C. Research frontiers in climate change: Effects of extreme meteorological events on ecosystems. Comptes Rendus Geosci. 2008, 340, 621–628. [Google Scholar] [CrossRef]
- Swetnam, T.W.; Betancourt, J.L. Fire-southern oscillation relations in the southwestern United States. Science 1990, 249, 1017–1020. [Google Scholar] [CrossRef]
- Jones, C.S.; Shriver, J.F.; O’Brien, J.J. The effects of El Niño on rainfall and fire in Florida. Florida Geogr. 1999, 30, 55–69. [Google Scholar]
- Swetnam, T.W.; Betancourt, J.L. Mesoscale disturbance and ecological response to decadal climate variability in the American Southwest. J. Clim. 1998, 11, 3128–3147. [Google Scholar] [CrossRef]
- Chen, J.; Randerson, T.; Morton, D.C. Forecasting fire season severity in South America using sea surface temperature anomalies. Science 2011, 334, 787–791. [Google Scholar] [CrossRef] [Green Version]
- Gillett, P.; Weaver, A.J.; Zwiers, F.W.; Flannigan, M.D. Detecting the effect of climate change on Canadian forest fires. Geophys. Res. Lett. 2004, 31, L18211. [Google Scholar] [CrossRef] [Green Version]
- Heyerdahl, E.K.; McKenzie, D.; Daniels, L.D.; Hessl, A.E.; Littell, J.S.; Mantua, N.J. Climate drives of regionally synchronous fires in the inland Northwest (1651–1900). Int. J. Wildland Fire 2008, 17, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Westerling, L.; Gershunov, A.; Brown, T.J.; Cayan, D.R.; Dettinger, M.D. Climate and wildfire in the western United States. Bull. Amer. Meteorol. Soc. 2003, 84, 595–604. [Google Scholar] [CrossRef] [Green Version]
- Pausas, J.G. Changes in fire and climate in the Eastern Iberian Peninsula. Clim. Chang. 2004, 63, 337–350. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE measurements of mass variability in the Earth system. Science 2004, 305, 503–505. [Google Scholar] [CrossRef] [Green Version]
- Wahr, J.; Melenaar, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res: Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Xie, J.K.; Xu, Y.P.; Wang, Y.T.; Gu, H.T.; Wang, F.M.; Pan, S.L. Influence of climatic variability and human activities on terrestrial water storage variations across the Yellow River basin in the recent decade. J. Hydr. 2019, 579, 124218. [Google Scholar] [CrossRef]
- Cui, L.L.; Zhang, C.; Luo, Z.C.; Wang, X.L.; Li, Q.; Liu, L.L. Using the local drought data and GRACE/GRACE-FO data to characterize the drought events in Mainland China from 2002 to 2020. Appl. Sci. 2021, 11, 9594. [Google Scholar] [CrossRef]
- Chen, F. The Response of Forest Fire to Climate Change and Fire Trend Prediction in Yunnan Province. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 24 June 2015. (In Chinese). [Google Scholar]
- Chen, F.; Fan, Z.F.; Niu, S.K.; Zheng, J.M. The influence of precipitation and consecutive dry days on burned areas in Yunnan province, southwestern China. Adv. Meteorol. 2014, 2014, 748923. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Velicogna, I.; Famiglietti, J.S.; Randerson, T. Satellite observation of terrestrial water storage provide early warning information about drought and fire season severity in the Amazon. J. Geophys. Res. 2013, 118, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Han, J.C.; Tangdamrongsub, N.; Hwang, C.; Abidin, H.Z. Intensified water storage loss by biomass burning in Kalimantan: Detection by GRACE. J. Geophys. Res. 2017, 112, 2409–2430. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, L.; Yao, Y.; van Dam, T.; Khan, S.A. Improving the estimate of the secular variation of Greenland ice mass in the recent decades by incorporating a stochastic process. Earth Planet Sci. Lett. 2020, 549, 116518. [Google Scholar] [CrossRef]
- Yang, M. General situation of forest resources distribution in Yunnan province. Yunnan For. Investig. Plan. Des. 1995, 4, 12–14. (In Chinese) [Google Scholar]
- Cheng, M.; Tapley, B.D. Variations in the Earth’s oblateness during the past 28 years. J. Geophys. Res. 2004, 109, B09402. [Google Scholar] [CrossRef]
- Swenson, S.; Chambers, D.; Whar, J. Estimating geocenter variations form a combination of GRACE and ocean model output. J. Geophys. Res. Solid Earth. 2008, 113, 194–205. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.L.; Zhang, C.; Yao, C.L.; Luo, Z.C.; Wang, X.L.; Li, Q. Analysis of the influencing factors of drought events based on GRACE data under different climatic conditions: A case study in Mainland China. Water 2021, 13, 2575. [Google Scholar] [CrossRef]
- Cui, L.L.; Song, Z.; Luo, Z.C.; Zhong, B.; Wang, X.L.; Zou, Z.B. Comparison of terrestrial water storage changes derived from GRACE/GRACE-FO and Swarm: A case study in the Amazon River Basin. Water 2020, 12, 3128. [Google Scholar] [CrossRef]
- Wiese, D.N.; Yuan, D.N.; Boening, C.; Landerer, E.W.; Watkins, M.M. JPL Grace Mascon Ocean, Ice and Hydrology Equivalent Water Height Release 06 Coastal Resolution Improvement (CRI) Filter Version 1.0; DAAC: Pasadena, CA, USA, 2018. [Google Scholar]
- Save, H.; Bettadpur, S.; Tapley, B.D. High resolution CSR GRACE RL05 Mascons. J. Geophys. Res. Solid Earth 2016, 121, 7547–7569. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, B.; Yao, Y.B.; Yang, Y.J.; Li, J.Y.; Ran, Q.S. GRACE and land surface models reveal severe drought in eastern China in 2019. J. Hydr. 2021, 601, 126640. [Google Scholar] [CrossRef]
- Sun, Y.; Riva, R.; Ditmar, P. Optimzing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models. J. Geophys. Res. Solid Earth 2016, 121, 8352–8370. [Google Scholar] [CrossRef] [Green Version]
- Richard, P.W.; Argus, D.F. Drummond, R. comment on “an assessment of the ICE-6G-_C (VM5a) glacial isostatic adjustment model” by Purcell et al. J. Geophys. Res. Solid Earth 2018, 123, 2019–2028. [Google Scholar] [CrossRef]
- Giglio, L.; Randerson, J.T.; van der Werf, G.R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emission database (GFED4). J. Geophys. Res. Biogeosci. 2013, 118, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; Defries, R.S.; Jin, Y.; van Leeuwen, T.T. Global fire emission and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Randerson, J.T.; Van der Werf, G.R.; Kasibhatla, P.S.; Collatz, G.J.; Morton, D.C.; DeFries, R.S. Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeoences 2010, 7, 1171–1186. [Google Scholar] [CrossRef] [Green Version]
- Miralles, D.G.; Holmes, T.R.H.; de Jeu, R.A.M.; Gash, H.; Meesters, A.G.C.A.; Dolman, A.J. Global land surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef] [Green Version]
- Martens, B.D.G.; Miralles, H.; Lievens, H.; van der Schalie, R.; de Jeu, R.A.M.; Férnandez-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef] [Green Version]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef]
- Chahine, M.T.; Pagano, T.S.; Aumann, H.H.; Atlas, R.; Barnet, C.; Blaisdell, J.; Chen, L.; Divakarla, M.; Fetzer, E.J.; Goldberg, M.; et al. AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Biol. Sci. 2006, 87, 911–926. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.Y.; Huang, F.; Pu, G.M. The interannual and decadal variability of precipitation for Yunnan province in rainy season and its relationship with tropical upper layer heat content. J. Trop. Meteorol. 2003, 19, 299–307. (In Chinese) [Google Scholar]
- Saji, N.; Goswami, B.N.; Vinayachandran, P.; Yamagata, T. A dipole model in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Long, D.; Pan, Y.; Zhou, J.; Chen, Y.; Hou, X.; Hong, Y.; Scanlon, B.R.; Longuevergne, L. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sens. Environ. 2017, 192, 198–216. [Google Scholar] [CrossRef]
- Yao, C.L.; Li, Q.; Luo, Z.C.; Wang, C.R.; Zhang, R.; Zhou, B.Y. Uncertainties in GRACE-derived terrestrial water storage changes over mainland China based on a generalized three cornered hat method. Chines J. Geophys. 2019, 62, 883–897. (In Chinese) [Google Scholar]
- Tavella, P.; Premoli, A. Estimating the instabilities of N clock by measuring differences of their readings. Metrologia 1994, 30, 479–486. [Google Scholar] [CrossRef]
- Koot, L.; de Viron, O.; Dehant, V. Atmospheric angular momentum time-series: Characterization of their internal noise and creation of a combined series. J. Geod. 2006, 79, 663–674. [Google Scholar] [CrossRef]
- Galindo, F.J.; Palacio, J. Post-processing ROA data clocks for optimal stability in the ensemble timescale. Metrologia 2003, 40, S236–S244. [Google Scholar] [CrossRef]
- Galindo, F.J.; Palacio, J. Estimating the instabilities of N correlated clocks. In Proceedings of the 31st Annual Precise Time and -Time Interval (PTTI) Meeting, Real Instituto y Observatorio de la Armada, Dana Point, CA, USA, 7–9 December 1999; pp. 285–296. [Google Scholar]
- Premoli, A.; Tavella, P. A revisited three-cornered hat method for estimating frequency standard instability. IEEE Trans. Instrum. Meas. 1993, 42, 7–13. [Google Scholar] [CrossRef]
- Xu, Y.F.; Lin, Z.H.; Wu, C.L. Spatiotemporal variation of the burned area and its relationship with climatic factors in Central Kazakhtan. Remote Sens. 2021, 13, 313. [Google Scholar] [CrossRef]
- Zhang, Z.; Chao, B.; Chen, J.L.; Wilson, C. Terrestrial water storage anomalies of Yangtze River basin droughts observed by GRACE and Connections with ENSO. Glob. Planet Chang. 2015, 126, 35–45. [Google Scholar] [CrossRef]
- Zou, Z.B.; Zhang, C.; Cui, L.L.; Zhong, B.; Gao, S. The long-term change of terrestrial water storage in mainland China detected by gravity satellite in the past 16 years. Sic. Technol. Eng. 2021, 21, 1701–1706. (In Chinese) [Google Scholar]
- Guo, L. Study on Forest Fire Suppression Methods of Alpine Forests in Yunnan Province. Master’s Thesis, Chinese Academy of Forestry, Beijing, China, 20 June 2015. (In Chinese). [Google Scholar]
- Li, M.H. Design of fireproof belt in Yunnan forest nature center. For. Fire Prev. 2002, 1, 28–30. (In Chinese) [Google Scholar]
- Huang, T.C.; Hua, W. Relationship between the South Indian Ocean Dipole and the September precipitation in Southwest China. Plateau Mt. Meteorol. Res. 2020, 40, 41–47. (In Chinese) [Google Scholar]
- Liu, Y.Q.; Ding, Y.H. Influence of ENSO events on weather and climate of China. J. Appl. Meteorol. Sci. 1992, 3, 473–481. [Google Scholar]
- Shi, Y. Climate Change Characteristics and Main Causes of Precipitation in Yunnan. Master’s Thesis, Yunnan University, Kunming, China, 11 June 2018. (In Chinese). [Google Scholar]
- Asner, G.P.; Alencar, A. Drought impact on the Amazon forest: The remote sensing perspective. New Phytol. 2010, 187, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Tosca, M.G.; Randerson, J.T.; Zender, C.S.; Flanner, M.G.; Rasch, P.J. Do biomass burning aerosols intensify drought in equatorial Asia during El Niño? Atmos. Chem. Phys. 2010, 10, 3515–3528. [Google Scholar] [CrossRef] [Green Version]
- Jipp, P.H.; Nepstad, D.C.; Cassel, D.K.; de Carvallo, C.R. Deep soil moisture storage and transpiration in forest and pastures of seasonally-dry Amazonia. Clim. Chang. 1998, 39, 395–412. [Google Scholar] [CrossRef]
- Chen, F.; Niu, S.K.; Tong, X.J.; Zhao, J.L.; Sun, Y.; He, T.F. The impact of precipitation regimes on forest fires in Yunnan Province, Southwest China. Sci. World J. 2014, 2014, 326782. [Google Scholar] [CrossRef] [Green Version]
GRACE Solution | CSR-SH | GFZ-SH | JPL-SH | ITSG-SH | CSR-M | JPL-M | Fusion Result |
---|---|---|---|---|---|---|---|
Median(cm) | 2.66 | 2.63 | 3.40 | 3.02 | 5.11 | 4.62 | 0.85 |
GRACE Solution | CSR-SH | GFZ-SH | JPL-SH | ITSG-SH | CSR-M | JPL-M |
---|---|---|---|---|---|---|
Correlation coefficient for fusion results | 0.9968 | 0.9949 | 0.9943 | 0.9889 | 0.9754 | 0.9741 |
Correlation Coefficient | BA | TWSC | PPT | ET | RH |
---|---|---|---|---|---|
BA | 1 | −0.57 | 0.83 | −0.90 | −0.79 |
TWSC | −0.57 | 1 | 0.67 | 0.36 | 0.89 |
PPT | −0.83 | 0.67 | 1 | 0.89 | 0.81 |
ET | −0.90 | 0.36 | 0.88 | 1 | 0.62 |
RH | −0.79 | 0.89 | 0.81 | 0.62 | 1 |
Correlation Coefficient | BA | TWSC | PPT | ET | RH |
---|---|---|---|---|---|
BA | 1 | −0.73 | −0.51 | 0.35 | −0.92 |
TWSC | −0.73 | 1 | 0.37 | 0.24 | 0.82 |
PPT | −0.51 | 0.37 | 1 | 0.96 | 0.67 |
ET | −0.35 | 0.24 | 0.96 | 1 | 0.52 |
RH | −0.92 | 0.82 | 0.67 | 0.52 | 1 |
Correlation Coefficient | Region | TWSC | PPT | ET | RH |
---|---|---|---|---|---|
BA | NW | −0.15 | −0.08 | −0.27 | −0.64 |
S | −0.44 | 0.03 | 0.02 | −0.11 |
Variables | Correlation Coefficients | Lag Months | ||
---|---|---|---|---|
NW | S | NW | S | |
DMI vs. PPT | 0.65 | 0.65 | 0 | 1 |
ENSO vs. PPT | 0.84 | 0.49 | 4 | 1 |
PPT vs. TWSC | 0.63 | 0.50 | 0 | 1 |
ET vs. TWSC | −0.30 | −0.56 | 0 | 0 |
TWSC vs. Burned area | −0.70 | −0.87 | 5 | 6 |
TWSC vs. RH | 0.49 | 0.45 | 4 | 5 |
TWSC vs. Vcol | −0.61 | −0.57 | 2 | 5 |
RH vs. Burned area | −0.73 | −0.42 | 4 | 2 |
Vcol vs. Burned area | −0.61 | −0.38 | 3 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, L.; Luo, C.; Yao, C.; Zou, Z.; Wu, G.; Li, Q.; Wang, X. The Influence of Climate Change on Forest Fires in Yunnan Province, Southwest China Detected by GRACE Satellites. Remote Sens. 2022, 14, 712. https://doi.org/10.3390/rs14030712
Cui L, Luo C, Yao C, Zou Z, Wu G, Li Q, Wang X. The Influence of Climate Change on Forest Fires in Yunnan Province, Southwest China Detected by GRACE Satellites. Remote Sensing. 2022; 14(3):712. https://doi.org/10.3390/rs14030712
Chicago/Turabian StyleCui, Lilu, Chuanjiang Luo, Chaolong Yao, Zhengbo Zou, Guiju Wu, Qiong Li, and Xiaolong Wang. 2022. "The Influence of Climate Change on Forest Fires in Yunnan Province, Southwest China Detected by GRACE Satellites" Remote Sensing 14, no. 3: 712. https://doi.org/10.3390/rs14030712
APA StyleCui, L., Luo, C., Yao, C., Zou, Z., Wu, G., Li, Q., & Wang, X. (2022). The Influence of Climate Change on Forest Fires in Yunnan Province, Southwest China Detected by GRACE Satellites. Remote Sensing, 14(3), 712. https://doi.org/10.3390/rs14030712