Monitoring Marine Aquaculture and Implications for Marine Spatial Planning—An Example from Shandong Province, China
Abstract
:1. Introduction
2. Study Area and Data
3. Study Routes and Methods
3.1. Dynamic Monitoring of Marine Aquaculture Area
3.2. Overlay Analysis of Aquaculture and MFZ
4. Result
4.1. Changes in the Area and Spatial Distribution of Marine Aquaculture
4.1.1. Results of Evaluating Extraction Accuracy in Marine Aquaculture Area
4.1.2. Marine Aquaculture Area Changes, 1990–2018
4.1.3. Process of Variation in Marine Aquaculture Areas with Different Patch Grades
4.2. Superimposed Analysis Results of Marine Aquaculture and MFZ
4.3. Superimposed Results of Marine Aquaculture and MFZ Analysis in Typical Regions
4.3.1. Superposition Analysis of Agricultural Fishery Area and Marine Aquaculture Area
4.3.2. Superposition Analysis of Waterway Planning Area and Marine Aquaculture Area
4.3.3. Co-Development of Recreational Areas and Aquaculture
5. Discussion
5.1. Feasibility of Dynamically Monitoring the Volatility of Fisheries Expansion by Remote Sensing
5.2. Importance of the Role of MFZ in Marine Aquaculture
5.3. The Exploration of Marine Land Spatial Planning from the Perspective of Land and Sea Coordination
5.4. Application of Spatial Information Technology in Marine Spatial Planning
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Smith, M.D.; Roheim, C.A.; Crowder, L.B.; Halpern, B.S.; Turnipseed, M.; Anderson, J.L.; Asche, F.; Bourillon, L.; Guttormsen, A.G.; Khan, A.; et al. Sustainability and global seafood. Science 2010, 327, 784–786. [Google Scholar] [CrossRef]
- Jay, S. Built at sea: Marine management and the construction of marine spatial planning. Town Plan. Rev. 2010, 81, 173–192. [Google Scholar] [CrossRef]
- Kidd, S.; Shaw, D. Reconceptualising territoriality and spatial planning: Insights from the sea. Plan. Theory Pract. 2013, 14, 180–197. [Google Scholar] [CrossRef]
- Lawrence, D.; Vandecar, K.L. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Chang. 2015, 5, 27–36. [Google Scholar] [CrossRef]
- Foley, J.A.; Defries, R.S.; Asner, G.P.; Barford, C.C.; Bonan, G.B.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Riitters, K.H.; Wickham, J.D.; Oneill, R.V.; Jones, K.B.; Smith, E.R. Global-scale patterns of forest fragmentation. Conserv. Ecol. 2000, 4, 3. [Google Scholar] [CrossRef]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef]
- Turner, B.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [Green Version]
- Quere, C.L.; Andrew, R.M.; Canadell, J.G.; Sitch, S.; Korsbakken, J.I.; Peters, G.P.; Manning, A.C.; Boden, T.A.; Tans, P.P.; Houghton, R.A. Global carbon budget 2016. Earth Syst. Sci. Data 2016, 8, 605–649. [Google Scholar] [CrossRef] [Green Version]
- Alkama, R.; Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 2016, 351, 600–604. [Google Scholar] [CrossRef] [Green Version]
- Gentry, R.R.; Froehlich, H.E.; Grimm, D.; Kareiva, P.; Parke, M.; Rust, M.; Gaines, S.D.; Halpern, B.S. Mapping the global potential for marine aquaculture. Nat. Ecol. Evol. 2017, 1, 1317–1324. [Google Scholar] [CrossRef]
- Duarte, C.M.; Marbá, N.; Holmer, M. Rapid domestication of marine species. Science 2007, 316, 382–383. [Google Scholar] [CrossRef] [PubMed]
- Naylor, R.L.; Goldburg, R.J.; Primavera, J.H.; Kautsky, N.; Beveridge, M.C.M.; Clay, J.; Folke, C.; Lubchenco, J.; Mooney, H.; Troell, M. Effect of aquaculture on world fish supplies. Nature 2000, 405, 1017–1024. [Google Scholar] [CrossRef] [Green Version]
- FAO. The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2016. [Google Scholar]
- Department, F.F. The state of world fisheries and aquaculture 2018. State World Fish. Aquac. 2018, 4, 40–41. [Google Scholar]
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; Dagrosa, C.; Bruno, J.F.; Casey, K.S.; Ebert, C.; Fox, H.E. A global map of human impact on marine ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauly, D.; Zeller, D. Comments on FAOs state of world fisheries and aquaculture (SOFIA 2016). Mar. Pol. 2017, 77, 176–181. [Google Scholar] [CrossRef]
- Gilliland, P.M.; Laffoley, D. Key elements and steps in the process of developing ecosystem-based marine spatial planning. Mar. Pol. 2008, 32, 787–796. [Google Scholar] [CrossRef]
- Ottinger, M.; Clauss, K.; Kuenzer, C. Opportunities and challenges for the estimation of aquaculture production based on Earth observation data. Remote Sens. 2018, 10, 1076. [Google Scholar] [CrossRef] [Green Version]
- Mialhe, F.; Gunnell, Y.; Mering, C.; Gaillard, J.C.; Coloma, J.G.; Dabbadie, L. The development of aquaculture on the northern coast of Manila Bay (Philippines): An analysis of long-term land-use changes and their causes. J. Land Use Sci. 2016, 11, 236–256. [Google Scholar] [CrossRef]
- Ottinger, M.; Clauss, K.; Kuenzer, C. Large-scale assessment of coastal aquaculture ponds with sentinel-1 time series data. Remote Sens. 2017, 9, 440. [Google Scholar] [CrossRef] [Green Version]
- Ren, C.Y.; Wang, Z.M.; Zhang, Y.Z.; Zhang, B.; Chen, L.; Xi, Y.B.; Xiao, X.M.; Doughty, R.B.; Liu, M.Y.; Jia, M.M.; et al. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984–2016. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 12. [Google Scholar] [CrossRef]
- Pattanaik, C.; Prasad, S.N. Assessment of aquaculture impact on mangroves of Mahanadi delta (Orissa), East coast of India using remote sensing and GIS. Ocean Coast. Manag. 2011, 54, 789–795. [Google Scholar] [CrossRef]
- Ottinger, M.; Clauss, K.; Kuenzer, C. Aquaculture: Relevance, distribution, impacts and spatial assessments—A review. Ocean Coast. Manag. 2016, 119, 244–266. [Google Scholar] [CrossRef]
- Gao, L.; Li, Y.; Zhong, S.; Luo, D. Remote sensing detected mariculture changes in Dongshan Bay. J. Mar. Sci. 2014, 32, 35–42. [Google Scholar]
- Xing, Q.; Tosi, L.; Braga, F.; Gao, X.; Gao, M. Interpreting the progressive eutrophication behind the world’s largest macroalgal blooms with water quality and ocean color data. Nat. Hazards 2015, 78, 7–21. [Google Scholar] [CrossRef] [Green Version]
- Prasad, K.A.; Ottinger, M.; Wei, C.; Leinenkugel, P. Assessment of coastal aquaculture for India from sentinel-1 SAR time series. Remote Sens. 2019, 11, 357. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Cui, Q.; Wang, J.; Ming, D.; Lv, G. Raft cultivation area extraction from high resolution remote sensing imagery by fusing multi-scale region-line primitive association features. ISPRS J. Photogramm. Remote Sens. 2017, 123, 104–113. [Google Scholar] [CrossRef]
- Fu, Y.; Deng, J.; Ye, Z.; Gan, M.; Wang, K.; Wu, J.; Yang, W.; Xiao, G. Coastal aquaculture mapping from very high spatial resolution imagery by combining object-based neighbor features. Sustainability 2019, 11, 637. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.H.; Yang, X.M.; Liu, Y.M.; Lu, C. Extraction of coastal raft cultivation area with heterogeneous water background by thresholding object-based visually salient NDVI from high spatial resolution imagery. Remote Sens. Lett. 2018, 9, 839–846. [Google Scholar] [CrossRef]
- Wang, J.; Sui, L.C.; Yang, X.M.; Wang, Z.H.; Liu, Y.M.; Kang, J.M.; Lu, C.; Yang, F.S.; Liu, B. Extracting coastal raft aquaculture data from landsat 8 OLI imagery. Sensors 2019, 19, 1221. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, Z.; Yang, X.; Zhang, Y.; Yang, F.; Liu, B.; Cai, P. Satellite-based monitoring and statistics for raft and cage aquaculture in China’s offshore waters. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102118. [Google Scholar] [CrossRef]
- Douvere, F. The importance of marine spatial planning in advancing ecosystem-based sea use management. Mar. Pol. 2008, 32, 762–771. [Google Scholar] [CrossRef]
- Johnson, A.E.; Mcclintock, W.; Burton, O.; Burton, W.; Estep, A.J.; Mengerink, K.; Porter, R.; Tate, S. Marine spatial planning in Barbuda: A social, ecological, geographic, and legal case study. Mar. Pol. 2020, 113, 103793. [Google Scholar] [CrossRef]
- Day, J.C. Zoning—Lessons from the Great Barrier Reef marine park. Ocean Coast. Manag. 2002, 45, 139–156. [Google Scholar] [CrossRef] [Green Version]
- Douvere, F.; Maes, F.; Vanhulle, A.; Schrijvers, J. The role of marine spatial planning in sea use management: The Belgian case. Mar. Pol. 2007, 31, 182–191. [Google Scholar] [CrossRef]
- Olsen, S.; Mccann, J.; Fugate, G. The state of Rhode Island’s pioneering marine spatial plan. Mar. Pol. 2014, 45, 26–38. [Google Scholar] [CrossRef]
- Vince, J. Oceans governance and marine spatial planning in Australia. Aust. J. Marit. Ocean Aff. 2014, 6, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Douvere, F.; Ehler, C.N. New perspectives on sea use management: Initial findings from European experience with marine spatial planning. J. Environ. Manag. 2009, 90, 77–88. [Google Scholar] [CrossRef]
- Hu, W.; Liu, J.; Ma, Z.; Wang, Y.; Zhang, D.; Yu, W.; Chen, B. China’s marine protected area system: Evolution, challenges, and new prospects. Mar. Pol. 2020, 115, 103780. [Google Scholar] [CrossRef]
- Halpern, B.S.; McLeod, K.L.; Rosenberg, A.A.; Crowder, L.B. Managing for cumulative impacts in ecosystem-based management through ocean zoning. Ocean Coast. Manag. 2008, 51, 203–211. [Google Scholar] [CrossRef]
- Wu, R. The environmental impact of marine fish culture: Towards a sustainable future. Mar. Pollut. Bull. 1995, 31, 159–166. [Google Scholar] [CrossRef]
- Liu, L.; Ge, M.; Zheng, X.; Tao, Z.; Zhou, S.; Wang, G. Investigation of Vibrio alginolyticus, V. harveyi, and V. parahaemolyticus in large yellow croaker, Pseudosciaena crocea (Richardson) reared in Xiangshan Bay, China. Aquacult. Rep. 2016, 3, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Keesing, J.K.; Dong, Z.; Zhen, Y.; Di, B.; Shi, Y.; Fearns, P.; Shi, P. Recurrence of the world’s largest green-tide in 2009 in Yellow Sea, China: Porphyra yezoensis aquaculture rafts confirmed as nursery for macroalgal blooms. Mar. Pollut. Bull. 2010, 60, 1423–1432. [Google Scholar] [CrossRef]
- China Fisheries Yearbook; Government, C.F.S: Beijing, China, 2019.
- Hu, C.M. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Alexandridis, T.K.; Topaloglou, C.A.; Lazaridou, E.; Zalidis, G.C. The performance of satellite images in mapping aquacultures. Ocean Coast. Manag. 2008, 51, 638–644. [Google Scholar] [CrossRef]
- Kang, J.M.; Sui, L.C.; Yang, X.M.; Liu, Y.M.; Wang, Z.H.; Wang, J.; Yang, F.S.; Liu, B.; Ma, Y.Z. Sea surface-visible aquaculture spatial-temporal distribution remote sensing: A case study in Liaoning province, China from 2000 to 2018. Sustainability 2019, 11, 7186. [Google Scholar] [CrossRef] [Green Version]
- Xue, M.; Chen, Y.; Tian, X.; Yan, M.; Zhang, Z. Detection the expansion of marine aquaculture in Sansha Bay by remote sensing. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 7866–7869. [Google Scholar]
- Soille, P. Morphological image analysis: Principles and applications. Springer. Sens. Rev. 1999, 28, 800–801. [Google Scholar]
- Division of Marine Functions in Shandong Province; Government, S.P.P.s: Shandong, China, 2004.
- Liancheng, Z.; Jun, C.; Baojun, W.; Xiaojun, G. 1:250000 base map compilation for sea function division of Shandong province using remote sensing and gis technology as a tool. Mar. Geol. 2011, 27, 42–47. [Google Scholar]
- Lu, W.; Liu, J.; Xiang, X.; Song, W.; Mcilgorm, A. A comparison of marine spatial planning approaches in China: Marine functional zoning and the marine ecological red line. Mar. Pol. 2015, 62, 94–101. [Google Scholar] [CrossRef]
- Watson, R.; Nowara, G.B.; Hartmann, K.; Green, B.S.; Tracey, S.; Carter, C.G. Marine foods sourced from farther as their use of global ocean primary production increases. Nat. Commun. 2015, 6, 7365. [Google Scholar] [CrossRef]
- Hooper, T.; Austen, M. The co-location of offshore windfarms and decapod fisheries in the UK: Constraints and opportunities. Mar. Pol. 2014, 43, 295–300. [Google Scholar] [CrossRef]
- Kapetsky, J.M.; Aguilar-Manjarrez, J.; Jenness, J. A global assessment of offshore mariculture potential from a spatial perspective. FAO Fish. Aquac. Tech. Pap. 2013, I, 549. [Google Scholar]
- Teng, X.; Zhao, Q.; Zhang, P.; Liu, L.; Dong, Y.; Hu, H.; Yue, Q.; Ou, L.; Xu, W. Implementing marine functional zoning in China. Mar. Pol. 2021, 132, 103484. [Google Scholar] [CrossRef]
- Tallis, H.; Ferdana, Z.; Gray, E. Linking terrestrial and marine conservation planning and threats analysis. Conserv. Biol. 2008, 22, 120–130. [Google Scholar] [CrossRef]
- Stoms, D.M.; Davis, F.W.; Andelman, S.J.; Carr, M.H.; Gaines, S.D.; Halpern, B.S.; Hoenicke, R.; Leibowitz, S.G.; Leydecker, A.; Madin, E.M. Integrated coastal reserve planning: Making the land-sea connection. Front. Ecol. Environ. 2005, 3, 429–436. [Google Scholar]
- Jorge, G.; Pressey, R.L.; Ban, N.C.; Vanceborland, K.; Willer, C.; Klein, C.J.; Gaines, S.D. Integrated land-sea conservation planning: The missing links. Annu. Rev. Ecol. Evol. Syst. 2011, 42, 381–409. [Google Scholar]
- Kidd, S.; Ellis, G. From the land to sea and back again? Using terrestrial planning to understand the process of marine spatial planning. J. Environ. Policy Plan. 2012, 14, 49–66. [Google Scholar] [CrossRef]
- Rees, S.E.; Rodwell, L.D.; Attrill, M.J.; Austen, M.C.; Mangi, S.C. The value of marine biodiversity to the leisure and recreation industry and its application to marine spatial planning. Mar. Pol. 2010, 34, 868–875. [Google Scholar] [CrossRef]
- Van Riper, C.J.; Kyle, G.T.; Sherrouse, B.C.; Bagstad, K.J.; Sutton, S.G. Toward an integrated understanding of perceived biodiversity values and environmental conditions in a national park. Ecol. Indic. 2017, 72, 278–287. [Google Scholar] [CrossRef]
- Mulik, S.N. An introduction to geographical information systems. Iete Tech. Rev. 1999, 16, 419–424. [Google Scholar] [CrossRef]
- Anzidei, M.; Scicchitano, G.; Scardino, G.; Bignami, C.; Tolomei, C.; Vecchio, A.; Serpelloni, E.; De Santis, V.; Monaco, C.; Milella, M. Relative sea-level rise scenario for 2100 along the coast of South Eastern Sicily (Italy) by InSAR data, satellite images and high-resolution topography. Remote Sens. 2021, 13, 1108. [Google Scholar] [CrossRef]
- Reese, H.; Nyström, M.; Nordkvist, K.; Olsson, H. Combining airborne laser scanning data and optical satellite data for classification of alpine vegetation. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 81–90. [Google Scholar] [CrossRef]
- Ørka, H.O.; Wulder, M.A.; Gobakken, T.; Næsset, E. Subalpine zone delineation using LiDAR and Landsat imagery. Remote Sens. Environ. 2012, 119, 11–20. [Google Scholar] [CrossRef]
- Antonioli, F.; De Falco, G.; Lo Presti, V.; Moretti, L.; Scardino, G.; Anzidei, M.; Bonaldo, D.; Carniel, S.; Leoni, G.; Furlani, S. Relative sea-level rise and potential submersion risk for 2100 on 16 coastal plains of the Mediterranean sea. Water 2020, 12, 2173. [Google Scholar] [CrossRef]
Sensor | Acquisition Time | Image Path/Row | Sensor | Acquisition Time | Image Path/Row | Sensor | Acquisition Time | Acquisition Time |
---|---|---|---|---|---|---|---|---|
OLI-TIRS | 2018/4/28 | 11,934 | TM | 2010/4/13 | 12,036 | ETM+ | 2000/3/8 | 12,033 |
OLI-TIRS | 2018/4/28 | 11,935 | TM | 2010/4/13 | 12,034 | TM | 1995/5/15 | 11,934 |
OLI-TIRS | 2018/4/19 | 12,034 | TM | 2010/2/1 | 11,935 | TM | 1995/3/19 | 12,035 |
OLI-TIRS | 2018/4/19 | 12,035 | TM | 2010/4/29 | 12,033 | TM | 1995/3/26 | 12,134 |
OLI-TIRS | 2018/4/19 | 12,036 | TM | 2005/3/23 | 11,934 | TM | 1995/3/19 | 12,036 |
OLI-TIRS | 2018/3/25 | 12,134 | TM | 2005/2/26 | 12,035 | TM | 1995/3/19 | 12,034 |
OLI-TIRS | 2018/5/1 | 12,033 | TM | 2005/4/22 | 12,134 | TM | 1995/5/15 | 11,935 |
OLI-TIRS | 2015/3/19 | 11,934 | TM | 2005/2/26 | 12,036 | TM | 1995/4/20 | 12,033 |
OLI-TIRS | 2015/3/10 | 12,035 | TM | 2005/4/15 | 12,034 | TM | 1990/2/26 | 11,934 |
OLI-TIRS | 2015/3/1 | 12,134 | TM | 2005/3/23 | 11,935 | TM | 1990/3/5 | 12,035 |
OLI-TIRS | 2015/3/10 | 12,036 | TM | 2005/4/15 | 12,033 | TM | 1990/3/12 | 12,134 |
OLI-TIRS | 2015/3/26 | 12,034 | ETM+ | 2000/2/14 | 11,934 | TM | 1990/3/5 | 12,036 |
OLI-TIRS | 2015/4/20 | 11,935 | ETM+ | 2000/3/8 | 12,035 | TM | 1990/3/5 | 12,034 |
OLI-TIRS | 2015/3/26 | 12,033 | ETM+ | 2000/2/28 | 12,134 | TM | 1990/4/15 | 11,935 |
TM | 2010/2/1 | 11,934 | ETM+ | 2000/3/8 | 12,036 | TM | 1990/5/24 | 12,033 |
TM | 2010/4/13 | 12,035 | ETM+ | 2000/3/8 | 12,034 | |||
TM | 2010/5/6 | 12,134 | ETM+ | 2000/3/1 | 11,935 |
Grade | Small | Middle | Large | Super-Large |
---|---|---|---|---|
Area, S/km2 | S < 0.1 | 0.1 ≤ S < 1 | 1 ≤ S < 10 | S ≥ 10 |
Year | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2018 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y | NY | Y | NY | Y | NY | Y | NY | Y | NY | Y | NY | Y | NY | |
Y | 65 | 10 | 72 | 9 | 114 | 7 | 108 | 20 | 113 | 27 | 153 | 14 | 160 | 21 |
NY | 12 | 213 | 17 | 211 | 32 | 147 | 19 | 153 | 9 | 151 | 17 | 116 | 11 | 108 |
F-measure (%) | 85.53 | 84.71 | 85.39 | 84.70 | 86.26 | 90.79 | 90.91 |
Grade | Small | Middle | Large | Super-Large | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Area/km2 | S < 0.1 | 0.1 ≤ S < 1 | 1 ≤ S < 10 | S ≥ 10 | ||||||||
Year | NB | AR | PT | NB | AR | PE | NB | AR | PT | NB | AR | PT |
1990 | 49 | 0.87 | 0.65 | 21 | 7.40 | 5.57 | 8 | 22.93 | 17.25 | 4 | 101.75 | 76.53 |
1995 | 93 | 1.41 | 0.60 | 29 | 9.82 | 4.17 | 12 | 54.17 | 23.00 | 4 | 170.14 | 72.23 |
2000 | 64 | 1.70 | 0.54 | 24 | 8.49 | 2.70 | 10 | 32.21 | 10.25 | 6 | 271.97 | 86.51 |
2005 | 43 | 0.53 | 0.14 | 20 | 6.98 | 1.84 | 13 | 37.62 | 9.91 | 8 | 334.46 | 88.11 |
2010 | 52 | 1.07 | 0.31 | 21 | 7.60 | 2.18 | 6 | 25.69 | 7.37 | 7 | 314.09 | 90.14 |
2015 | 62 | 1.52 | 0.31 | 45 | 15.82 | 3.21 | 15 | 35.24 | 7.15 | 11 | 440.61 | 89.34 |
2018 | 86 | 1.10 | 0.22 | 45 | 17.55 | 3.59 | 15 | 61.71 | 12.62 | 8 | 408.78 | 83.57 |
Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AR | PT | AR | PT | AR | PT | AR | PT | AR | PT | AR | PT | AR | PT | AR | PT | |
1990 | 83.72 | 62.98 | 32.73 | 24.62 | 0.85 | 0.64 | 0 | 0 | 0.68 | 0.51 | 14.82 | 11.15 | 0 | 0 | 0.13 | 0.10 |
1995 | 165.00 | 70.05 | 35.14 | 14.92 | 6.93 | 2.94 | 0 | 0 | 2.57 | 1.09 | 24.89 | 10.57 | 0 | 0 | 1.00 | 0.42 |
2000 | 200.99 | 63.93 | 59.99 | 19.08 | 8.82 | 2.81 | 0 | 0 | 3.03 | 0.96 | 36.29 | 11.54 | 0 | 0 | 5.26 | 1.67 |
2005 | 238.58 | 62.85 | 80.48 | 21.20 | 15.27 | 4.02 | 0 | 0 | 2.98 | 0.79 | 33.72 | 8.88 | 0 | 0 | 8.56 | 2.26 |
2010 | 228.33 | 65.53 | 61.69 | 17.70 | 8.95 | 2.57 | 0 | 0 | 2.02 | 0.58 | 40.61 | 11.65 | 0 | 0 | 6.85 | 1.97 |
2015 | 336.37 | 68.21 | 89.11 | 18.07 | 5.69 | 1.15 | 0 | 0 | 8.36 | 1.70 | 50.38 | 10.22 | 0 | 0 | 3.25 | 0.66 |
2018 | 344.76 | 70.48 | 69.41 | 14.19 | 6.31 | 1.29 | 0 | 0 | 7.75 | 1.58 | 52.13 | 10.66 | 4.95 | 1.01 | 3.83 | 0.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Yang, X.; Wang, Z.; Ge, D.; Kang, J. Monitoring Marine Aquaculture and Implications for Marine Spatial Planning—An Example from Shandong Province, China. Remote Sens. 2022, 14, 732. https://doi.org/10.3390/rs14030732
Wang J, Yang X, Wang Z, Ge D, Kang J. Monitoring Marine Aquaculture and Implications for Marine Spatial Planning—An Example from Shandong Province, China. Remote Sensing. 2022; 14(3):732. https://doi.org/10.3390/rs14030732
Chicago/Turabian StyleWang, Jun, Xiaomei Yang, Zhihua Wang, Dazhuan Ge, and Junmei Kang. 2022. "Monitoring Marine Aquaculture and Implications for Marine Spatial Planning—An Example from Shandong Province, China" Remote Sensing 14, no. 3: 732. https://doi.org/10.3390/rs14030732
APA StyleWang, J., Yang, X., Wang, Z., Ge, D., & Kang, J. (2022). Monitoring Marine Aquaculture and Implications for Marine Spatial Planning—An Example from Shandong Province, China. Remote Sensing, 14(3), 732. https://doi.org/10.3390/rs14030732