Ship Detection in SAR Images Based on Multi-Scale Feature Extraction and Adaptive Feature Fusion
Abstract
:1. Introduction
2. The Proposed Method
2.1. CSPMRes2 Module
2.2. FC-FPN Module
2.3. Architecture of MSSDNet
3. Results
3.1. Experiment Settings
3.2. Experiment Datasets
3.2.1. SSDD Dataset
3.2.2. SARShip Dataset
3.3. Experiments on SSDD
3.4. Experiments on SARShip
3.5. Ablation Experiments
3.6. Comparison of Networks Model Size
3.7. Comparison of Inference Time
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, D.; Liang, Q.; Liu, H.; Liu, Q.; Liu, H.; Liao, G. A Novel Multidimensional Domain Deep Learning Network for SAR Ship Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Wu, Z.; Hou, B.; Jiao, L. Multiscale CNN with Autoencoder Regularization Joint Contextual Attention Network for SAR Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1200–1213. [Google Scholar] [CrossRef]
- Xie, E.; Ding, J.; Wang, W.; Zhan, X.; Xu, H.; Sun, P.; Li, Z.; Luo, P. Detco: Unsupervised Contrastive Learning for Object Detection. In Proceedings of the Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Online, 11–17 October 2021; pp. 8392–8401. [Google Scholar]
- Qian, X.; Lin, S.; Cheng, G.; Yao, X.; Ren, H.; Wang, W. Object Detection in Remote Sensing Images Based on Improved Bounding Box Regression and Multi-Level Features Fusion. Remote Sens. 2020, 12, 143. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.; Zhang, R.; Jiang, Y.; Kong, T.; Xu, C.; Zhan, W.; Tomizuka, M.; Li, L.; Yuan, Z.; Wang, C. Sparse R-Cnn: End-to-End Object Detection with Learnable Proposals. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Online, 19–25 June 2021; pp. 14454–14463. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37. [Google Scholar]
- Girshick, R.B. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better faster stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.; Liao, H. YOLOv4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Cheng, G.; Si, Y.; Hong, H.; Yao, X.; Guo, L. Cross-scale feature fusion for object detection in optical remote sensing images. IEEE Geosci. Remote Sens. Lett. 2020, 18, 431–435. [Google Scholar] [CrossRef]
- Huang, Z.; Pan, Z.; Lei, B. Transfer learning with deep convolutional neural network for SAR target classification with limited labeled data. Remote Sens. 2017, 9, 907. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Zhou, G.; Zhou, S.; Qin, M. A Fast and Lightweight Detection Network for Multi-Scale SAR Ship Detection under Complex Backgrounds. Remote Sens. 2022, 14, 31. [Google Scholar] [CrossRef]
- Cheng, G.; Lang, C.; Wu, M.; Xie, X.; Yao, X.; Han, J. Feature enhancement network for object detection in optical remote sensing images. J. Remote Sens. 2021, 2021, 9805389. [Google Scholar] [CrossRef]
- Kang, M.; Leng, X.; Lin, Z.; Ji, K. A Modified Faster R-CNN Based on CFAR Algorithm for SAR Ship Detection. In Proceedings of the 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP), Shanghai, China, 18–21 May 2017. [Google Scholar]
- Li, J.; Qu, C.; Shao, J. Ship detection in SAR images based on an improved faster R-CNN. In Proceedings of the SAR in Big Data Era (BIGSARDATA), Beijing, China, 13–14 November 2017. [Google Scholar]
- Jiao, J.; Zhang, Y.; Sun, H.; Yang, X.; Gao, X.; Hong, W.; Fu, K.; Sun, X. A Densely Connected End-to-End Neural Network for Multiscale and Multiscene SAR Ship Detection. IEEE Access 2018, 6, 20881–20892. [Google Scholar] [CrossRef]
- Kang, M.; Ji, K.; Leng, X.; Lin, Z. Contextual Region-Based Convolutional Neural Network with Multilayer Fusion for SAR Ship Detection. Remote Sens. 2017, 9, 860. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Cao, Z.; Cui, Z.; Pi, Y.; Dang, S. Multi-Scale Proposal Generation for Ship Detection in SAR Images. Remote Sens. 2019, 11, 526. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Sun, X.; Wang, Z.; Fu, K. An Anchor-Free Method Based on Feature Balancing and Refinement Network for Multiscale Ship Detection in SAR Images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1331–1344. [Google Scholar] [CrossRef]
- Cui, Z.; Li, Q.; Cao, Z.; Liu, N. Dense Attention Pyramid Networks for Multi-Scale Ship Detection in SAR Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8983–8997. [Google Scholar] [CrossRef]
- Gao, F.; He, Y.; Wang, J.; Hussain, A.; Zhou, H. Anchor-free Convolutional Network with Dense Attention Feature Aggregation for Ship Detection in SAR Images. Remote Sens. 2020, 12, 2619. [Google Scholar] [CrossRef]
- Guo, H.; Yang, X.; Wang, N.; Gao, X. A CenterNet++ model for ship detection in SAR images. Pattern Recognit. 2021, 112, 107787. [Google Scholar] [CrossRef]
- Wu, Z.; Hou, B.; Ren, B.; Ren, Z.; Wang, S.; Jiao, L. A Deep Detection Network Based on Interaction of Instance Segmentation and Object Detection for SAR Images. Remote Sens. 2021, 13, 2582. [Google Scholar] [CrossRef]
- Yu, L.; Wu, H.; Zhong, Z.; Zheng, L.; Deng, Q.; Hu, H. TWC-Net: A SAR Ship Detection Using Two-Way Convolution and Multiscale Feature Mapping. Remote Sens. 2021, 13, 2558. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Ke, X. Quad-FPN: A Novel Quad Feature Pyramid Network for SAR Ship Detection. Remote Sens. 2021, 13, 2771. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Zhang, H.; Dong, Y.; Wei, S. A SAR Dataset of Ship Detection for Deep Learning under Complex Backgrounds. Remote Sens. 2019, 11, 765. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-Y.; Liao, H.-Y.M.; Wu, Y.-H.; Chen, P.-Y.; Hsieh, J.-W.; Yeh, I.-H. CSPNet: A New Backbone That Can Enhance Learning Capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) workshops, Online, 14–19 June 2020; pp. 390–391. [Google Scholar]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate Attention for Efficient Mobile Network Design. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Online, 19–25 June 2021; pp. 13713–13722. [Google Scholar]
- Gao, S.; Cheng, M.-M.; Zhao, K.; Zhang, X.-Y.; Yang, M.-H.; Torr, P.H. Res2net: A New Multi-Scale Backbone Architecture. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 652–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, H.; Ma, Y.; Li, Z.; Liu, S.; Sun, J. Borderdet: Border Feature for Dense Object Detection. In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020; pp. 549–564. [Google Scholar]
- Wang, J.; Song, L.; Li, Z.; Sun, H.; Sun, J.; Zheng, N. End-to-End Object Detection with Fully Convolutional Network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Online, 19–25 June 2021; pp. 15849–15858. [Google Scholar]
- Li, X.; Wang, W.; Hu, X.; Li, J.; Tang, J.; Yang, J. Generalized Focal Loss v2: Learning Reliable Localization Quality Estimation for Dense Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Online, 19–25 June 2021; pp. 11632–11641. [Google Scholar]
- Ge, Z.; Liu, S.; Li, Z.; Yoshie, O.; Sun, J. OTA: Optimal Transport Assignment for Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Online, 19–25 June 2021; pp. 303–312. [Google Scholar]
- Chen, Q.; Wang, Y.; Yang, T.; Zhang, X.; Cheng, J.; Sun, J. You Only Look One-Level Feature. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Online, 19–25 June 2021; pp. 13039–13048. [Google Scholar]
- Kim, K.; Lee, H.S. Probabilistic Anchor Assignment with Iou Prediction for Object Detection. In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020; pp. 355–371. [Google Scholar]
- Everingham, M.; Eslami, S.A.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes Challenge: A Retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft Coco: Common Objects in Context. In Proceedings of the European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014; pp. 740–755. [Google Scholar]
Metric | Meaning |
---|---|
AP | IoU = 0.50:0.05:0.95 |
AP50 | IoU = 0.50 |
AP75 | IoU = 0.75 |
APS | area < 322 |
APM | 322 < area < 962 |
APL | area > 962 |
Methods | AP (%) | AP50 (%) | AP75 (%) | APS (%) | APM (%) | APL (%) |
---|---|---|---|---|---|---|
YOLOv5s | 60.2 | 95.4 | 69.3 | 54.1 | 69.0 | 69.0 |
MSSDNet | 61.1 | 95.6 | 70.9 | 55.4 | 70.0 | 70.4 |
Methods | AP (%) | AP50 (%) | AP75 (%) | APS (%) | APM (%) | APL (%) |
---|---|---|---|---|---|---|
BorderDet | 57.5 | 93.2 | 65.3 | 51.6 | 66.2 | 64.8 |
DeFCN | 55.5 | 91.9 | 62.2 | 50.7 | 66.1 | 50.4 |
GFocalV2 | 56.2 | 92.1 | 64.1 | 51.5 | 65.9 | 61.1 |
OTA | 59.1 | 93.3 | 69.0 | 52.5 | 70.1 | 63.4 |
YOLOF | 59.2 | 94.5 | 65.8 | 53.0 | 68.8 | 72.7 |
PAA | 56.0 | 91.6 | 64.0 | 51.1 | 65.7 | 53.1 |
YOLOv5s | 60.2 | 95.4 | 69.3 | 54.1 | 69.0 | 69.0 |
MSSDNet | 61.1 | 95.6 | 70.9 | 55.4 | 70.0 | 70.4 |
Methods | AP (%) | AP50 (%) | AP75 (%) | APS (%) | APM (%) | APL (%) |
---|---|---|---|---|---|---|
YOLOv5s | 58.6 | 94.6 | 65.4 | 52.8 | 65.6 | 59.4 |
MSSDNet | 60.1 | 95.1 | 68.2 | 54.6 | 66.6 | 62.2 |
Methods | AP (%) | AP50 (%) | AP75 (%) | APS (%) | APM (%) | APL (%) |
---|---|---|---|---|---|---|
BorderDet | 56.7 | 93.8 | 62.3 | 49.6 | 65.3 | 57.3 |
DeFCN | 54.5 | 93.5 | 58.1 | 49.8 | 61.0 | 47.8 |
GFocalV2 | 59.3 | 94.7 | 67.0 | 52.3 | 67.8 | 57.0 |
OTA | 59.3 | 94.7 | 65.7 | 51.5 | 68.4 | 73.9 |
YOLOF | 53.3 | 93.9 | 55.0 | 46.3 | 62.0 | 73.1 |
PAA | 44.4 | 88.3 | 38.6 | 38.9 | 51.1 | 30.6 |
YOLOv5s | 58.6 | 94.6 | 65.4 | 52.8 | 65.6 | 59.4 |
MSSDNet | 60.1 | 95.1 | 68.2 | 54.6 | 66.6 | 62.2 |
Methods | CSPMRes2 | FC-FPN | AP (%) | AP50 (%) | AP75 (%) | APS (%) | APM (%) | APL (%) |
---|---|---|---|---|---|---|---|---|
YOLOv5s | 60.2 | 95.4 | 69.3 | 54.1 | 69.0 | 69.0 | ||
MSSDNet | √ | 60.2 | 95.5 | 68.1 | 54.5 | 68.6 | 70.6 | |
√ | 60.7 | 96.8 | 68.0 | 54.1 | 70.5 | 70.0 | ||
√ | √ | 61.1 | 95.6 | 70.9 | 55.4 | 70.0 | 70.4 |
Methods | AP (%) | Inference Time (Milliseconds/Image) | Model Size (MB) | ||
---|---|---|---|---|---|
SARShip | SSDD | SARShip | SSDD | ||
BorderDet | 56.7 | 57.5 | 43.1 | 38.7 | 264.1 |
DeFCN | 54.5 | 55.5 | 31.9 | 29.7 | 260.9 |
GFocalV2 | 59.3 | 56.2 | 61.0 | 62.9 | 427.3 |
OTA | 59.3 | 59.1 | 32.8 | 29.0 | 256.2 |
YOLOF | 53.3 | 59.2 | 43.5 | 76.4 | 368.5 |
PAA | 44.4 | 56.0 | 46.0 | 87.9 | 1063.2 |
YOLOv5s | 58.6 | 60.2 | 1.6 | 22.3 | 14.4 |
MSSDNet | 60.1 | 61.1 | 3.1 | 24.2 | 25.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, K.; Zhang, M.; Wang, H.; Tan, J. Ship Detection in SAR Images Based on Multi-Scale Feature Extraction and Adaptive Feature Fusion. Remote Sens. 2022, 14, 755. https://doi.org/10.3390/rs14030755
Zhou K, Zhang M, Wang H, Tan J. Ship Detection in SAR Images Based on Multi-Scale Feature Extraction and Adaptive Feature Fusion. Remote Sensing. 2022; 14(3):755. https://doi.org/10.3390/rs14030755
Chicago/Turabian StyleZhou, Kexue, Min Zhang, Hai Wang, and Jinlin Tan. 2022. "Ship Detection in SAR Images Based on Multi-Scale Feature Extraction and Adaptive Feature Fusion" Remote Sensing 14, no. 3: 755. https://doi.org/10.3390/rs14030755
APA StyleZhou, K., Zhang, M., Wang, H., & Tan, J. (2022). Ship Detection in SAR Images Based on Multi-Scale Feature Extraction and Adaptive Feature Fusion. Remote Sensing, 14(3), 755. https://doi.org/10.3390/rs14030755