Co-Registration Methods and Error Analysis for Four Decades (1979–2018) of Glacier Elevation Changes in the Southern Patagonian Icefield
Abstract
:1. Introduction
Study Area
2. Input Data
2.1. Imagery, DEMs, and Elevation Profiles Used
2.1.1. Hexagon KH-9 Model
2.1.2. ASTER Model
2.1.3. SRTM Model
2.1.4. Landsat 7 Images
2.1.5. ICESat Profiles
2.2. Accessory Data Sources
2.2.1. Glacier Outlines
2.2.2. Ground Control Points
3. Methodology
3.1. Dataset Preparation
3.1.1. SRTM2000 Model
3.1.2. ICESat Elevation Data
ICESat Filtering
ICESat Elevations Correction
3.2. DEM Processing and Extraction
3.2.1. KH91979 Image Correction and Model Generation
3.2.2. AST2018 Model Generation
3.3. Digital Elevation Models Co-Registration
3.3.1. Method 1 Application
3.3.2. Method 2 Application
3.4. Analysis and Assessment of Co-Registration Procedures
3.4.1. Method 1 Evaluation
3.4.2. Method 2 Evaluation
3.5. Glacier Elevation Change and Geodetic Mass Balance
3.5.1. Calculation of ∆h and Use of Interpolation Methods
3.5.2. Geodetic Mass Balance
3.6. Error Estimation
3.6.1. Error in Glacier Areas
3.6.2. Error in the Mean Area
3.6.3. Error in
3.6.4. GMB Error Estimates
3.6.5. Impact of Error Component Analysis
4. Results
4.1. Co-Registration Evaluation
Glacier | Profile | Stable Terrain—MAD (m) | Ice Zone—MAD (m) | ||||
---|---|---|---|---|---|---|---|
Before | After | Before | After | ||||
Method 1 | Method 2 | Method 1 | Method 2 | ||||
Viedma | 2-2 | 42.1 | 19.1 | 15.8 | 93.6 | 66.0 | 43.4 |
3-3 | 38.0 | 14.9 | 16.6 | 92.1 | 64.4 | 40.6 | |
4-4 | 39.3 | 14.0 | 14.4 | 103.0 | 75.4 | 50.8 | |
1-1 | - | - | - | 91.8 | 64.2 | 41.2 | |
Upsala | 3-3 | 26.6 | 14.0 | 16.8 | 154.8 | 127.0 | 120.7 |
4-4 | 29.4 | 17.1 | 17.5 | 137.7 | 110.5 | 104.8 | |
5-5 | 34.4 | 15.6 | 16.9 | 103.6 | 76.0 | 64.3 | |
1-1 | - | - | - | 157.7 | 130.2 | 120.9 | |
2-2 | - | - | - | 136.0 | 108.5 | 98.8 |
4.2. GMB Error and Interpolation Methods Analysis
4.3. Glaciological Results
5. Discussion
5.1. Application of Co-Registration Methods for an Optimized GMB
5.2. Relationships with Other Glaciological Studies
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pfeffer, W.T.; Harper, J.T.; O’Neel, S. Kinematic Constraints on Glacier Contributions to 21st-Century Sea-Level Rise. Science 2008, 321, 1340–1343. [Google Scholar] [CrossRef] [PubMed]
- Zemp, M.; Huss, M.; Thibert, E.; Eckert, N.; McNabb, R.; Huber, J.; Barandun, M.; Machguth, H.; Nussbaumer, S.U.; Gärtner-Roer, I.; et al. Global Glacier Mass Changes and Their Contributions to Sea-Level Rise from 1961 to 2016. Nature 2019, 568, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Davies, B.J.; Glasser, N.F. Accelerating Shrinkage of Patagonian Glaciers from the Little Ice Age (~AD 1870) to 2011. J. Glaciol. 2012, 58, 1063–1084. [Google Scholar] [CrossRef] [Green Version]
- Braun, M.H.; Malz, P.; Sommer, C.; Farías-Barahona, D.; Sauter, T.; Casassa, G.; Soruco, A.; Skvarca, P.; Seehaus, T.C. Constraining Glacier Elevation and Mass Changes in South America. Nat. Clim. Chang. 2019, 9, 130–136. [Google Scholar] [CrossRef]
- Toth, C.; Jóźków, G. Remote Sensing Platforms and Sensors: A Survey. ISPRS J. Photogramm. Remote Sens. 2016, 115, 22–36. [Google Scholar] [CrossRef]
- Barrand, N.E.; Murray, T.; James, T.D.; Barr, S.L.; Mills, J.P. Optimizing Photogrammetric DEMs for Glacier Volume Change Assessment Using Laser-Scanning Derived Ground-Control Points. J. Glaciol. 2009, 55, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Denzinger, F.; Machguth, H.; Barandun, M.; Berthier, E.; Girod, L.; Kronenberg, M.; Usubaliev, R.; Hoelzle, M. Geodetic Mass Balance of Abramov Glacier from 1975 to 2015. J. Glaciol. 2021, 67, 331–342. [Google Scholar] [CrossRef]
- Magnússon, E.; Muñoz-Cobo Belart, J.; Pálsson, F.; Ágústsson, H.; Crochet, P. Geodetic Mass Balance Record with Rigorous Uncertainty Estimates Deduced from Aerial Photographs and Lidar Data—Case Study from Drangajökull Ice Cap, NW Iceland. Cryosphere 2016, 10, 159–177. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Bolch, T.; Briggs, K.; Kääb, A.; McMillan, M.; McNabb, R.; Nagler, T.; Nuth, C.; Rastner, P.; Strozzi, T.; et al. Error Sources and Guidelines for Quality Assessment of Glacier Area, Elevation Change, and Velocity Products Derived from Satellite Data in the Glaciers_cci Project. Remote Sens. Environ. 2017, 203, 256–275. [Google Scholar] [CrossRef] [Green Version]
- Lenzano, M.G. Assessment of Using ASTER-Derived DTM for Glaciological Applications in the Central Andes, Mt. Aconcagua, Argentina. J. Photogramm. Remote. Sens. Geoinf. Process. 2013, 2013, 197–208. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Impact of Resolution and Radar Penetration on Glacier Elevation Changes Computed from DEM Differencing. J. Glaciol. 2012, 58, 419–422. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, Y.-C.; Chan, Y.-C.; Hu, J.-C. Digital Elevation Model Differencing and Error Estimation from Multiple Sources: A Case Study from the Meiyuan Shan Landslide in Taiwan. Remote Sens. 2016, 8, 199. [Google Scholar] [CrossRef] [Green Version]
- Noh, M.; Howat, I.M. Automated Coregistration of Repeat Digital Elevation Models for Surface Elevation Change Measurement Using Geometric Constraints. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2247–2260. [Google Scholar] [CrossRef]
- Miller, P.; Mills, J.; Edwards, S.; Bryan, P.; Marsh, S.; Mitchell, H.; Hobbs, P. A Robust Surface Matching Technique for Coastal Geohazard Assessment and Management. ISPRS J. Photogramm. Remote Sens. 2008, 63, 529–542. [Google Scholar] [CrossRef] [Green Version]
- Li, Z. A Comparative Study of the Accuracy of Digital Terrain Models (DTMs) Based on Various Data Models. ISPRS J. Photogramm. Remote Sens. 1994, 49, 2–11. [Google Scholar] [CrossRef]
- Nuth, C.; Kääb, A. Co-Registration and Bias Corrections of Satellite Elevation Data Sets for Quantifying Glacier Thickness Change. Cryosphere 2011, 5, 271–290. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Bolch, T.; Kääb, A.; Nagler, T.; Nuth, C.; Scharrer, K.; Shepherd, A.; Strozzi, T.; Ticconi, F.; Bhambri, R.; et al. The Glaciers Climate Change Initiative: Methods for Creating Glacier Area, Elevation Change and Velocity Products. Remote Sens. Environ. 2015, 162, 408–426. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Deng, Q.; Wang, L. Automatic Co-Registration of Digital Elevation Models Based on Centroids of Subwatersheds. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6639–6650. [Google Scholar] [CrossRef]
- Niu, Y.; Zhao, C.; Zhang, J.; Wang, L.; Li, B.; Fan, L. Research on a DEM Coregistration Method Based on the SAR Imaging Geometry. In Proceedings of the ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, 7–10 May 2018; Volume XLII–3; pp. 1333–1338. [Google Scholar]
- Berthier, E.; Arnaud, Y.; Kumar, R.; Ahmad, S.; Wagnon, P.; Chevallier, P. Remote Sensing Estimates of Glacier Mass Balances in the Himachal Pradesh (Western Himalaya, India). Remote Sens. Environ. 2007, 108, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Kääb, A.; Huggel, C.; Fischer, L.; Guex, S.; Paul, F.; Roer, I.; Salzmann, N.; Schlaefli, S.; Schmutz, K.; Schneider, D.; et al. Remote Sensing of Glacier- and Permafrost-Related Hazards in High Mountains: An Overview. Nat. Hazards Earth Syst. Sci. 2005, 5, 527–554. [Google Scholar] [CrossRef]
- Ruiz, L.; Berthier, E.; Viale, M.; Pitte, P.; Masiokas, M.H. Recent Geodetic Mass Balance of Monte Tronador Glaciers, Northern Patagonian Andes. Cryosphere 2017, 11, 619–634. [Google Scholar] [CrossRef] [Green Version]
- Falaschi, D.; Bolch, T.; Rastner, P.; Lenzano, M.G.; Lenzano, L.; Lo Vecchio, A.; Moragues, S. Mass Changes of Alpine Glaciers at the Eastern Margin of the Northern and Southern Patagonian Icefields between 2000 and 2012. J. Glaciol. 2017, 63, 258–272. [Google Scholar] [CrossRef] [Green Version]
- Malz, P.; Meier, W.; Casassa, G.; Jaña, R.; Skvarca, P.; Braun, M.H. Elevation and Mass Changes of the Southern Patagonia Icefield Derived from TanDEM-X and SRTM Data. Remote Sens. 2018, 10, 188. [Google Scholar] [CrossRef] [Green Version]
- Dussaillant, I.; Berthier, E.; Brun, F. Geodetic Mass Balance of the Northern Patagonian Icefield from 2000 to 2012 Using Two Independent Methods. Front. Earth Sci. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Shean, D.E.; Alexandrov, O.; Moratto, Z.M.; Smith, B.E.; Joughin, I.R.; Porter, C.; Morin, P. An Automated, Open-Source Pipeline for Mass Production of Digital Elevation Models (DEMs) from Very-High-Resolution Commercial Stereo Satellite Imagery. ISPRS J. Photogramm. Remote Sens. 2016, 116, 101–117. [Google Scholar] [CrossRef] [Green Version]
- Belart, J.M.C.; Magnússon, E.; Berthier, E.; Pálsson, F.; Aðalgeirsdóttir, G.; Jóhannesson, T. The Geodetic Mass Balance of Eyjafjallajökull Ice Cap for 1945–2014: Processing Guidelines and Relation to Climate. J. Glaciol. 2019, 65, 395–409. [Google Scholar] [CrossRef] [Green Version]
- Gruen, A.; Akca, D. Least Squares 3D Surface and Curve Matching. ISPRS J. Photogramm. Remote Sens. 2005, 59, 151–174. [Google Scholar] [CrossRef] [Green Version]
- Lenzano, M.G.; Lenzano, L.; Liaudat, D.T.; Barón, J.; Lannutti, E. Applying GNSS and DTM Technologies to Monitor the Ice Balance of the Horcones Inferior Glacier, Aconcagua Region, Argentina. J. Indian Soc. Remote Sens. 2013, 41, 969–980. [Google Scholar] [CrossRef]
- Zemp, M.; Thibert, E.; Huss, M.; Stumm, D.; Rolstad Denby, C.; Nuth, C.; Nussbaumer, S.U.; Moholdt, G.; Mercer, A.; Mayer, C.; et al. Reanalysing Glacier Mass Balance Measurement Series. Cryosphere 2013, 7, 1227–1245. [Google Scholar] [CrossRef] [Green Version]
- Satgé, F.; Denezine, M.; Pillco, R.; Timouk, F.; Pinel, S.; Molina, J.; Garnier, J.; Seyler, F.; Bonnet, M.-P. Absolute and Relative Height-Pixel Accuracy of SRTM-GL1 over the South American Andean Plateau. ISPRS J. Photogramm. Remote Sens. 2016, 121, 157–166. [Google Scholar] [CrossRef]
- Schröder, L.; Richter, A.; Fedorov, D.V.; Eberlein, L.; Brovkov, E.V.; Popov, S.V.; Knöfel, C.; Horwath, M.; Dietrich, R.; Matveev, A.Y.; et al. Validation of Satellite Altimetry by Kinematic GNSS in Central East Antarctica. Cryosphere 2017, 11, 1111–1130. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhao, J. Evaluation of the Newly Released Worldwide AW3D30 DEM Over Typical Landforms of China Using Two Global DEMs and ICESat/GLAS Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4430–4440. [Google Scholar] [CrossRef]
- McNabb, R.; Nuth, C.; Kääb, A.; Girod, L. Sensitivity of Glacier Volume Change Estimation to DEM Void Interpolation. Cryosphere 2019, 13, 895–910. [Google Scholar] [CrossRef] [Green Version]
- Huber, J.; McNabb, R.; Zemp, M. Elevation Changes of West-Central Greenland Glaciers From 1985 to 2012 From Remote Sensing. Front. Earth Sci. 2020, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Lippl, S.; Blindow, N.; Fürst, J.J.; Marinsek, S.; Seehaus, T.C.; Braun, M.H. Uncertainty Assessment of Ice Discharge Using GPR-Derived Ice Thickness from Gourdon Glacier, Antarctic Peninsula. Geosciences 2020, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Aniya, M.; Enomoto, H.; Aoki, T.; Matsumoto, T.; Skvarca, P.; Barcaza, G.; Suzuki, R.; Sawagaki, T.; Sato, N.; Isenko, E.; et al. Glaciological and Geomorphological Studies at Glaciar Exploradores, Hielo Patagonico Norte, and Glaciar Perito Moreno, Hielo Patagonico Sur, South America, during 2003–2005 (GRPP03-05). Bull. Glaciol. Res. 2007, 24, 95–107. [Google Scholar]
- Zalazar, L.V.; Ferri Hidalgo, L.; Castro, M.A.; Gargantini, H.; Giménez, M.M.; Pitte, P.M.; Ruiz, L.E.; Villalba, R. Glaciares de Argentina: Resultados preliminares del Inventario Nacional de Glaciares. Repos. Inst. CONICET Digit. Rev. Glaciares Ecosist. Mont. 2017, 2, 13–22. [Google Scholar] [CrossRef]
- Aniya, M.; Sato, H.; Naruse, R.; Skvarca, P.; Casassa, G. The Use of Satellite and Airborne Imagery to Inventory Outlet Glaciers of the Southern Patagonia Icefield, South America. Photogramm. Eng. Remote Sens. 1996, 62, 1361–1369. [Google Scholar]
- Naruse, R.; Aniya, M. Outline of Glacier Research Project in Patagonia, 1990. Bull. Glacier Res. 1992, 10, 31–38. [Google Scholar]
- Warren, C.R.; Sugden, D.E. The Patagonian Icefields: A Glaciological Review. Arct. Alp. Res. 1993, 25, 316. [Google Scholar] [CrossRef]
- Moragues, S.N.; Lenzano, M.G.; Rivera, S.A.; Oberreuter, J.G.; Vich, A. Characterization and reconstruction of the Agassiz landslide using geospatial data. Southern Patagonia, Argentina. Andgeo 2021, 48, 557. [Google Scholar] [CrossRef]
- Center for the Study of National Reconnaissance Critical to US Security. The Gambit and Hexagon Satellite Reconnaissance Systems; Center for the Study of National Reconnaissance (CSNR): Chantilly, VA, USA, 2012. [Google Scholar]
- Fowler, M. Declassified Intelligence Satellite Photographs. In Archaeology from Historical Aerial and Satellite Archives; Springer: New York, NY, USA, 2013; pp. 47–66. ISBN 978-1-4614-4504-3. [Google Scholar]
- USGS. Declassified Satellite Imagery-1. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-declassified-data-declassified-satellite-imagery-1?qt-science_center_objects=0#qt-science_center_objects (accessed on 11 September 2019).
- USGS. Declassified Satellite Imagery-2. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-declassified-data-declassified-satellite-imagery-2?qt-science_center_objects=0#qt-science_center_objects (accessed on 11 September 2019).
- USGS. Declassified Satellite Imagery-3. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-declassified-data-declassified-satellite-imagery-3?qt-science_center_objects=0#qt-science_center_objects (accessed on 11 September 2019).
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Zwally, H.J.; Schutz, B.; Abdalati, W.; Abshire, J.; Bentley, C.; Brenner, A.; Bufton, J.; Dezio, J.; Hancock, D.; Harding, D.; et al. ICESat’s Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land. J. Geodyn. 2002, 34, 405–445. [Google Scholar] [CrossRef] [Green Version]
- Lee, J. GLAS_HDF Standard Data Product Specification. 2012. Available online: https://icesat.gsfc.nasa.gov/icesat/hdf5_products/docs/GLAS_HDF_SDP.pdf (accessed on 5 October 2019).
- NSIDC Official Website. Available online: https://nsidc.org/data/icesat/current_release_schedule.html (accessed on 12 June 2019).
- Dach, R.; Hugentobler, U.; Fridez, P.; Meindl, M. Bernese GPS Software Version 5.0 (User Manual of the Bernese GPS Software Version 5.0); AIUB—Astronomical Institute, University of Bern: Bern, Switzerland, 2007. [Google Scholar]
- USGS. USGS EROS Archive-Digital Elevation-Shuttle Radar Topography Mission (SRTM) Void Filled. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-void?qt-science_center_objects=0#qt-science_center_objects (accessed on 5 October 2019).
- NGA NGA: NGA/NASA EGM96, N=M=360 Earth Gravitational Model. Available online: http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.html (accessed on 26 November 2018).
- NGA NGA: DoD World Geodetic System. 1984. Available online: https://earth-info.nga.mil/GandG/publications/tr8350.2/tr8350_2.html (accessed on 5 October 2019).
- Zwally, H.J.; Schutz, R.; Bentley, C.; Bufton, J.; Herring, T.; Minster, J.; Spinhirne, J.; Thomas, R. GLAS/ICESat L2 Global Land Surface Altimetry Data; National Snow and Ice Data Center Distributed Active Archive Center, NASA: Boulder, CO, USA, 2014. [CrossRef]
- NSIDC. GLAS Altimetry Product Usage Guidance; National Snow and Ice Data Center Distributed Active Archive Center, NASA: Boulder, CO, USA, 2012. Available online: https://nsidc.org/sites/nsidc.org/files/files/data/glas/NSIDC_AltUserGuide_Rel33-hdf5.pdf (accessed on 10 October 2019).
- NSIDC. GLAH14 Product Data Dictionary; National Snow and Ice Data Center Distributed Active Archive Center, NASA: Boulder, CO, USA, 2014. Available online: https://nsidc.org/data/glas/data-dictionary-glah14 (accessed on 10 October 2019).
- NSIDC. Saturation Correction Guidance; National Snow and Ice Data Center Distributed Active Archive Center, NASA: Boulder, CO, USA, 2017. Available online: https://nsidc.org/icesat/saturation-correction (accessed on 10 October 2019).
- Huber, M.; Wessel, B.; Kosmann, D.; Felbier, A.; Schwieger, V.; Habermeyer, M.; Wendleder, A.; Roth, A. Ensuring Globally the TanDEM-X Height Accuracy: Analysis of the Reference Data Sets ICESat, SRTM and KGPS-Tracks. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, 12–17 July 2009; Volume 2, pp. II-769–II-772. [Google Scholar]
- Carabajal, C.C.; Harding, D.J.; Suchdeo, V.P. Icesat Lidar and Global Digital Elevation Models: Applications to Desdyni. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, 25–30 July 2010; pp. 1907–1910. [Google Scholar]
- Sun, X.; Abshire, J.B.; Borsa, A.A.; Fricker, H.A.; Yi, D.; DiMarzio, J.P.; Paolo, F.S.; Brunt, K.M.; Harding, D.J.; Neumann, G.A. ICESAT/GLAS Altimetry Measurements: Received Signal Dynamic Range and Saturation Correction. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5440–5454. [Google Scholar] [CrossRef]
- GSAS v6.0 Release Notes. NASA. 2011. Available online: https://nsidc.org/sites/nsidc.org/files/technical-references/gsas_v6_0_release.pdf (accessed on 10 October 2019).
- HDF-EOS NASA Comprehensive Examples. Available online: http://hdfeos.org/zoo/NSIDC/GLAH13_633_2103_001_1317_0_01_0001.m (accessed on 8 October 2019).
- Holzer, N.; Vijay, S.; Yao, T.; Xu, B.; Buchroithner, M.; Bolch, T. Four Decades of Glacier Variations at Muztagh Ata (Eastern Pamir): A Multi-Sensor Study Including Hexagon KH-9 and Pléiades Data. Cryosphere 2015, 9, 2071–2088. [Google Scholar] [CrossRef] [Green Version]
- Surazakov, A.; Aizen, V. Positional Accuracy Evaluation of Declassified Hexagon KH-9 Mapping Camera Imagery. Photogramm. Eng. Remote Sens. 2010, 76, 603–608. [Google Scholar] [CrossRef] [Green Version]
- Galiatsatos, N. An Evaluation of the Stereoscopic Capabilities of CORONA Declassified Spy Satellite Image Data. In Proceedings of the 25th EARSeL Symposium, Workshop on 3D Remote Sensing, Porto, Portugal, 6–11 June 2005. [Google Scholar]
- Harrington, J.A. Surface Deformation Associated With a Historical Diking Event in Afar from Correlation of Space and Air-Borne Optical Images; University of California: Los Angeles, CA, USA, 2012. [Google Scholar]
- Maurer, J.; Rupper, S. Tapping into the Hexagon Spy Imagery Database: A New Automated Pipeline for Geomorphic Change Detection. ISPRS J. Photogramm. Remote Sens. 2015, 108, 113–127. [Google Scholar] [CrossRef]
- National Photographic Interpretation Center. The KH-9 Mapping Camera System Manual; Camera Manual, Approved for Release: 201/0414 C05100684; NRO National Reconnaissance Office: Chantilly, VA, USA, 1973. [Google Scholar]
- Burnett, M.G. Hexagon (KH-9)—Mapping Camera Program and Evolution, National Reconnaissance Office (NRO); Center for the Study of National Reconnaissance (CSNR): Chantilly, VA, USA, 2012. [Google Scholar]
- Felicísimo, A.M. Parametric Statistical Method for Error Detection in Digital Elevation Models. ISPRS J. Photogramm. Remote Sens. 1994, 49, 29–33. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E.; Eddins, S.L. Digital Image Processing Using MATLAB®; Gatesmark Publishing: Knoxville, TN, USA, 2009; ISBN 0-9820854-0-0. [Google Scholar]
- Falaschi, D.; Lenzano, M.G.; Villalba, R.; Bolch, T.; Rivera, A.; Lo Vecchio, A. Six Decades (1958–2018) of Geodetic Glacier Mass Balance in Monte San Lorenzo, Patagonian Andes. Front. Earth Sci. 2019, 7, 326. [Google Scholar] [CrossRef]
- Pieczonka, T.; Bolch, T.; Junfeng, W.; Shiyin, L. Heterogeneous Mass Loss of Glaciers in the Aksu-Tarim Catchment (Central Tien Shan) Revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 Stereo Imagery. Remote Sens. Environ. 2013, 130, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Maune, D.F. Digital Elevation Model Technologies and Applications: The DEM Users Manual, 2nd ed.; American Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 2007; ISBN 978-1-57083-082-2. [Google Scholar]
- Shi, W.; Wang, B.; Tian, Y. Accuracy Analysis of Digital Elevation Model Relating to Spatial Resolution and Terrain Slope by Bilinear Interpolation. Math Geosci. 2014, 46, 445–481. [Google Scholar] [CrossRef]
- RACURS. PHOTOMOD Montage Desktop; Section 5.1.2; RACURS: Moscou, Russia, 2005; p. 16. [Google Scholar]
- Wang, D.; Kääb, A. Modeling Glacier Elevation Change from DEM Time Series. Remote Sens. 2015, 7, 10117–10142. [Google Scholar] [CrossRef] [Green Version]
- Berthier, E.; Cabot, V.; Vincent, C.; Six, D. Decadal Region-Wide and Glacier-Wide Mass Balances Derived from Multi-Temporal ASTER Satellite Digital Elevation Models. Validation over the Mont-Blanc Area. Front. Earth Sci. 2016, 4, 63. [Google Scholar] [CrossRef]
- Gaddam, V.K.; Kulkarni, A.V.; Gupta, A.K. Assessment of the Baspa Basin Glaciers Mass Budget Using Different Remote Sensing Methods and Modeling Techniques. Geocarto Int. 2020, 35, 296–316. [Google Scholar] [CrossRef]
- Arefi, H.; Reinartz, P. Elimination of the Outliers from Aster GDEM Data. In Proceedings of the Canadian Geomatics Conference 2010, Calgary, AB, Canada, 14 June 2010; pp. 1–5. [Google Scholar]
- Lovell, A.M.; Carr, J.R.; Stokes, C.R. Spatially Variable Glacier Changes in the Annapurna Conservation Area, Nepal, 2000 to 2016. Remote Sens. 2019, 11, 1452. [Google Scholar] [CrossRef] [Green Version]
- Höhle, J.; Höhle, M. Accuracy Assessment of Digital Elevation Models by Means of Robust Statistical Methods. ISPRS J. Photogramm. Remote Sens. 2009, 64, 398–406. [Google Scholar] [CrossRef] [Green Version]
- Chai, T.; Draxler, R.R. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments against Avoiding RMSE in the Literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef] [Green Version]
- Huber, P.J.; Ronchetti, E. Robust Statistics, 2nd ed.; Wiley series in probability and statistics; Wiley: Hoboken, NJ, USA, 2009; ISBN 978-0-470-12990-6. [Google Scholar]
- Davies, L.; Gather, U. The Identification of Multiple Outliers. J. Am. Stat. Assoc. 1993, 88, 782–792. [Google Scholar] [CrossRef]
- Hampel, F.R. The Breakdown Points of the Mean Combined with Some Rejection Rules. Technometrics 1985, 27, 95–107. [Google Scholar] [CrossRef]
- Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting Outliers: Do Not Use Standard Deviation around the Mean, Use Absolute Deviation around the Median. J. Exp. Soc. Psychol. 2013, 49, 764–766. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-C. Improved Moment Invariants for Shape Discrimination. Pattern Recognit. 1993, 26, 683–686. [Google Scholar] [CrossRef]
- Carabajal, C.C.; Harding, D.J. SRTM C-Band and ICESat Laser Altimetry Elevation Comparisons as a Function of Tree Cover and Relief. Photogramm. Eng. Remote Sens. 2006, 72, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Bhang, K.J.; Schwartz, F.W.; Braun, A. Verification of the Vertical Error in C-Band SRTM DEM Using ICESat and Landsat-7, Otter Tail County, MN. IEEE Trans. Geosci. Remote Sens. 2007, 45, 36–44. [Google Scholar] [CrossRef]
- Berthier, E.; Schiefer, E.; Clarke, G.K.C.; Menounos, B.; Rémy, F. Contribution of Alaskan Glaciers to Sea-Level Rise Derived from Satellite Imagery. Nat. Geosci. 2010, 3, 92–95. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Kim, Y.; Bang, H. A New Measurement Model of Interferometric Radar Altimeter for Terrain Referenced Navigation Using Particle Filter. In Proceedings of the 2017 European Navigation Conference (ENC), Lausanne, Switzerland, 9–12 May 2017; pp. 57–64. [Google Scholar]
- Zheng, W.; Pritchard, M.E.; Willis, M.J.; Tepes, P.; Gourmelen, N.; Benham, T.J.; Dowdeswell, J.A. Accelerating Glacier Mass Loss on Franz Josef Land, Russian Arctic. Remote Sens. Environ. 2018, 211, 357–375. [Google Scholar] [CrossRef] [Green Version]
- Brun, F.; Wagnon, P.; Berthier, E.; Shea, J.M.; Immerzeel, W.W.; Kraaijenbrink, P.D.A.; Vincent, C.; Reverchon, C.; Shrestha, D.; Arnaud, Y. Ice Cliff Contribution to the Tongue-Wide Ablation of Changri Nup Glacier, Nepal, Central Himalaya. Cryosphere 2018, 12, 3439–3457. [Google Scholar] [CrossRef] [Green Version]
- Podgórski, J.; Kinnard, C.; Pętlicki, M.; Urrutia, R. Performance Assessment of TanDEM-X DEM for Mountain Glacier Elevation Change Detection. Remote Sens. 2019, 11, 187. [Google Scholar] [CrossRef] [Green Version]
- Farías-Barahona, D.; Ayala, Á.; Bravo, C.; Vivero, S.; Seehaus, T.; Vijay, S.; Schaefer, M.; Buglio, F.; Casassa, G.; Braun, M.H. 60 Years of Glacier Elevation and Mass Changes in the Maipo River Basin, Central Andes of Chile. Remote Sens. 2020, 12, 1658. [Google Scholar] [CrossRef]
- Nilsson, J.; Sandberg Sørensen, L.; Barletta, V.R.; Forsberg, R. Mass Changes in Arctic Ice Caps and Glaciers: Implications of Regionalizing Elevation Changes. Cryosphere 2015, 9, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Papasodoro, C.; Berthier, E.; Royer, A.; Zdanowicz, C.; Langlois, A. Area, Elevation and Mass Changes of the Two Southernmost Ice Caps of the Canadian Arctic Archipelago between 1952 and 2014. Cryosphere 2015, 9, 1535–1550. [Google Scholar] [CrossRef] [Green Version]
- Dussaillant, I.; Berthier, E.; Brun, F.; Masiokas, M.; Hugonnet, R.; Favier, V.; Rabatel, A.; Pitte, P.; Ruiz, L. Two Decades of Glacier Mass Loss along the Andes. Nat. Geosci. 2019, 12, 802–808. [Google Scholar] [CrossRef]
- Johnson, A.J.; Larsen, C.F.; Murphy, N.; Arendt, A.A.; Zirnheld, S.L. Mass Balance in the Glacier Bay Area of Alaska, USA, and British Columbia, Canada, 1995–2011, Using Airborne Laser Altimetry. J. Glaciol. 2013, 59, 632–648. [Google Scholar] [CrossRef]
- Kronenberg, M.; Barandun, M.; Hoelzle, M.; Huss, M.; Farinotti, D.; Azisov, E.; Usubaliev, R.; Gafurov, A.; Petrakov, D.; Kääb, A. Mass-Balance Reconstruction for Glacier No. 354, Tien Shan, from 2003 to 2014. Ann. Glaciol. 2016, 57, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Seehaus, T.; Morgenshtern, V.I.; Hübner, F.; Bänsch, E.; Braun, M.H. Novel Techniques for Void Filling in Glacier Elevation Change Data Sets. Remote Sens. 2020, 12, 3917. [Google Scholar] [CrossRef]
- De Angelis, H. Hypsometry and Sensitivity of the Mass Balance to Changes in Equilibrium-Line Altitude: The Case of the Southern Patagonia Icefield. J. Glaciol. 2014, 60, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Thibert, E.; Blanc, R.; Vincent, C.; Eckert, N. Glaciological and Volumetric Mass-Balance Measurements: Error Analysis over 51 Years for Glacier de Sarennes, French Alps. J. Glaciol. 2008, 54, 522–532. [Google Scholar] [CrossRef] [Green Version]
- Huss, M. Density Assumptions for Converting Geodetic Glacier Volume Change to Mass Change. Cryosphere 2013, 7, 877–887. [Google Scholar] [CrossRef] [Green Version]
- Jaber, W.A.; Rott, H.; Floricioiu, D.; Wuite, J.; Miranda, N. Heterogeneous Spatial and Temporal Pattern of Surface Elevation Change and Mass Balance of the Patagonian Ice Fields between 2000 and 2016. Cryosphere 2019, 13, 2511–2535. [Google Scholar] [CrossRef] [Green Version]
- Richter, A.; Groh, A.; Horwath, M.; Ivins, E.; Marderwald, E.; Hormaechea, J.L.; Perdomo, R.; Dietrich, R. The Rapid and Steady Mass Loss of the Patagonian Icefields throughout the GRACE Era: 2002–2017. Remote Sens. 2019, 11, 909. [Google Scholar] [CrossRef] [Green Version]
- Cogley, J.G. Geodetic and Direct Mass-Balance Measurements: Comparison and Joint Analysis. Ann. Glaciol. 2009, 50, 96–100. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Barrand, N.E.; Baumann, S.; Berthier, E.; Bolch, T.; Casey, K.; Frey, H.; Joshi, S.P.; Konovalov, V.; Bris, R.L.; et al. On the Accuracy of Glacier Outlines Derived from Remote-Sensing Data. Ann. Glaciol. 2013, 54, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A Spatially Resolved Estimate of High Mountain Asia Glacier Mass Balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, W.T.; Arendt, A.A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.-O.; Hock, R.; Kaser, G.; Kienholz, C.; et al. The Randolph Glacier Inventory: A Globally Complete Inventory of Glaciers. J. Glaciol. 2014, 60, 537–552. [Google Scholar] [CrossRef] [Green Version]
- Rolstad, C.; Haug, T.; Denby, B. Spatially Integrated Geodetic Glacier Mass Balance and Its Uncertainty Based on Geostatistical Analysis: Application to the Western Svartisen Ice Cap, Norway. J. Glaciol. 2009, 55, 666–680. [Google Scholar] [CrossRef] [Green Version]
- Minowa, M.; Schaefer, M.; Sugiyama, S.; Sakakibara, D.; Skvarca, P. Frontal Ablation and Mass Loss of the Patagonian Icefields. Earth Planet. Sci. Lett. 2021, 561, 116811. [Google Scholar] [CrossRef]
- Maurer, J.M.; Rupper, S.B.; Schaefer, J.M. Quantifying Ice Loss in the Eastern Himalayas since 1974 Using Declassified Spy Satellite Imagery. Cryosphere 2016, 10, 2203–2215. [Google Scholar] [CrossRef] [Green Version]
- Basantes-Serrano, R.; Rabatel, A.; Vincent, C.; Sirguey, P. An Optimized Method to Calculate the Geodetic Mass Balance of Mountain Glaciers. J. Glaciol. 2018, 64, 917–931. [Google Scholar] [CrossRef] [Green Version]
- Keutterling, A.; Thomas, A. Monitoring Glacier Elevation and Volume Changes with Digital Photogrammetry and GIS at Gepatschferner Glacier, Austria. Int. J. Remote Sens. 2006, 27, 4371–4380. [Google Scholar] [CrossRef]
- Pellikka, P.; Rees, W.G. (Eds.) Remote Sensing of Glaciers: Techniques for Topographic, Spatial and Thematic Mapping of Glaciers; CRC Press: Boca Raton, FL, USA, 2010; ISBN 978-0-429-20642-9. [Google Scholar]
- Liu, Z.; Zhu, J.; Fu, H.; Zhou, C.; Zuo, T. Evaluation of the Vertical Accuracy of Open Global DEMs over Steep Terrain Regions Using ICESat Data: A Case Study over Hunan Province, China. Sensors 2020, 20, 4865. [Google Scholar] [CrossRef]
- Nie, S.; Wang, C.; Dong, P.; Li, G.; Xi, X.; Wang, P.; Yang, X. A Novel Model for Terrain Slope Estimation Using ICESat/GLAS Waveform Data. IEEE Trans. Geosci. Remote Sens. 2017, 56, 217–227. [Google Scholar] [CrossRef]
- IPCC Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; in press.
- White, A.; Copland, L. Decadal-Scale Variations in Glacier Area Changes Across the Southern Patagonian Icefield Since the 1970s. Arct. Antarct. Alp. Res. 2015, 47, 147–167. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Rivera, A.; Casassa, G. Contribution of the Patagonia Icefields of South America to Sea Level Rise. Science 2003, 302, 434–437. [Google Scholar] [CrossRef] [Green Version]
- Aniya, M.; Sato, H.; Naruse, R.; Skvarca, P.; Casassa, G. Recent Glacier Variations in the Southern Patagonia Icefield, South America. Arct. Alp. Res. 1997, 29, 1–12. [Google Scholar] [CrossRef]
- Aniya, M.; Sato, H. Morphology of Ameghino Glacier and Landforms of Ameghino Valley, Southern Patagonia. Bull. Glacier Res. 1995, 13, 69–82. [Google Scholar]
- Minowa, M.; Sugiyama, S.; Sakakibara, D.; Sawagaki, T. Contrasting Glacier Variations of Glaciar Perito Moreno and Glaciar Ameghino, Southern Patagonia Icefield. Ann. Glaciol. 2015, 56, 26–32. [Google Scholar] [CrossRef] [Green Version]
Sensor | Product ID | Acquisition Date mm/dd/yyyy | Bands | Uses | |
---|---|---|---|---|---|
Hexagon KH-9 | DZB1215- | 500030L001001 | 03/20/1979 | Pan | Photogrammetric DEM |
500030L002001 | |||||
ASTER | AST_L1A_ | 00310222018143801_20200309150631_11245 | VNIR_3N VNIR_3B | Photogrammetric DEM | |
00310222018143810_20200309150551_7618 | 10/22/2018 | ||||
00310222018143819_20200309150530_3445 | |||||
AST14DMO_ | 00310222018143801_20200308212920_11514 | V3N V3B | Glacier outlines | ||
00310222018143810_20200308212930_11579 | 10/22/2018 | ||||
00310222018143819_20200308212940_11770 | |||||
Landsat 7 * | LE07_L1TP_ | 231094_20000113_20170215_01_T1 | 01/13/2000 | B1 B2 B3 | Viedma glacier and its southern limits |
231095_20000113_20170215_01_T1 | 01/13/2000 | ||||
231094_20000402_20170212_01_T1 | 04/02/2000 | Viedma glacier, Upsala glacier, and its Eastern tributaries | |||
231095_20000402_20170212_01_T1 | 04/02/2000 | Upsala Eastern limits | |||
231094_19991126_20170216_01_T1 | 11/26/1999 | ||||
231095_19991126_20170216_01_T1 | 11/26/1999 | Upsala Western limits, glaciers at the Western zone of Upsala glacier | |||
231095_20010320_20170206_01_T1 | 03/20/2001 | Plateau zone between Upsala and Perito Moreno glaciers, glaciers at the western zone of Upsala and Perito Moreno | |||
SRTM2000 (Global Version 3 1 arc-sec) | s50 | _w073_1arc_v3 | 02/11/2000 | C-band | SRTM2000 co-registration to KH91979 for error assessment, contour map digitalization for void filling |
_w074_1arc_v3 | |||||
s51 | _w073_1arc_v3 | ||||
_w074_1arc_v3 |
Mission Parameters | Value |
---|---|
Mission number | 1215-5 |
Orbit (km) | 177.0 × 256.0 |
Film (In) | 9 × 18 |
Camera resolution (ft) | 30–35 |
Scanning resolution | 14 µm |
Film type Focal length Lens type | SO-315 |
304.8 mm | |
f/6 Biogon |
File Name | Acquisition Date | Laser Campaign | Footprint Size | |
---|---|---|---|---|
Major Axis Mean ± St. Dev. | Eccentricity Mean ± St. Dev. | |||
GLAH14_634_2107_002_0043_0_01_0001 | 2004-February-25 | L2B | 89.52 ± 4.93 | 0.822 ± 0.045 |
2107_003_0043_0_01_0001 | 2004-May-26 | L2C | 88.37 ± 19.12 | 0.892 ± 0.044 |
2109_002_0043_0_01_0001 | 2004-October-12 | L3A | 55.79 ± 0.43 | 0.567 ± 0.043 |
2111_002_0043_0_01_0001 | 2005-February-27 | L3B | 79.53 ± 11.55 | 0.753 ± 0.051 |
2111_003_0043_0_01_0001 | 2005-May-29 | L3C | 55.41 ± 1.84 | 0.633 ± 0.034 |
2113_002_0043_0_01_0001 | 2005-October-30 | L3D | 52.04 ± 1.06 | 0.523 ± 0.010 |
2115_002_0043_0_01_0001 | 2006-March-02 | L3E | 52.31 ± 1.60 | 0.483 ± 0.040 |
2115_003_0043_0_01_0001 | 2006-June-01 | L3F | 51.20 ± 1.63 | 0.480 ± 0.023 |
2117_002_0043_0_01_0001 | 2006-November-02 | L3G | 53.41 ± 1.51 | 0.510 ± 0.037 |
2119_002_0043_0_01_0001 | 2007-March-20 | L3H | 55.61 ± 0.48 | 0.521 ± 0.019 |
2121_002_0043_0_01_0001 | 2007-October-11 | L3I | 57.28 ± 0.57 | 0.590 ± 0.013 |
2123_002_0043_0_01_0001 | 2008-February-25 | L3J | 58.66 ± 1.52 | 0.575 ± 0.036 |
2125_002_0043_0_01_0001 | 2008-October-12 | L3K | 51.99 ± 1.12 | 0.611 ± 0.036 |
2129_002_0043_0_01_0001 | 2009-March-17 | L2E | NA | NA |
2131_002_0043_0_01_0001 | 2009-October-09 | L2F | NA | NA |
Methods | Data | |||||
---|---|---|---|---|---|---|
KH91979 | SRTM2000 | AST2018 | ICESat | |||
Co-registration | M1 | x | x | x | x | |
M2 | x | x | ||||
Error assessment | M1 | Triangulation sum | x | x | x | x |
GMB co-registration error | x | x | x | |||
M2 | Cross evaluation with M1 | x | x |
Co-Registration Role | Vector | ||
---|---|---|---|
Slave | Master | ||
SRTM2000 | KH91979 | SK | |
AST2018 | KH91979 | AK | |
KH91979 | ICESat | KI | |
SRTM2000 | ICESat | SI | |
AST2018 | ICESat | AI | |
AST2018 | SRTM2000 | AS |
Triangulation | Error Vector Equation | ||||
---|---|---|---|---|---|
AST2018–SRTM2000–ICESat | −14.0 | −3.8 | −3.1 | 14.8 | |
SRTM2000–KH91979–ICESat | 22.1 | 7.4 | 4.4 | 23.7 | |
AST2018–KH91979–ICESat | 5.6 | 0.2 | 1.7 | 5.9 * | |
AST2018–SRTM2000–KH91979 | 2.5 | 3.4 | −0.4 | 4.2 |
ID | G1 | G2 | L1 | L2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 100.0 | 5.1 | 9.8 | 85.1 | 4.8 | 9.3 | 85.9 |
2 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 99.9 | 12.8 | 3.9 | 83.3 | 12.1 | 3.7 | 84.2 |
3 | 0.1 | 0.1 | 99.8 | 0.1 | 0.1 | 99.8 | 0.5 | 0.7 | 98.8 | 0.7 | 0.9 | 98.5 |
4 | 0.6 | 0.2 | 99.1 | 0.9 | 0.3 | 98.8 | 6.1 | 2.3 | 91.5 | 5.7 | 2.2 | 92.1 |
5 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 100.0 | 0.1 | 0.0 | 99.9 | 0.1 | 0.0 | 99.9 |
6 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 100.0 | 12.5 | 4.8 | 82.7 | 12.5 | 4.8 | 82.7 |
7 | 0.0 | 0.0 | 100.0 | 0.1 | 0.0 | 99.9 | 7.4 | 1.9 | 90.7 | 8.1 | 2.1 | 89.8 |
8 | 0.1 | 0.0 | 99.9 | 0.1 | 0.0 | 99.9 | 14.3 | 6.3 | 79.4 | 14.3 | 6.3 | 79.3 |
9 | 5.3 | 1.8 | 92.9 | 1.3 | 0.4 | 98.3 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 100.0 |
10 | 0.1 | 0.0 | 99.9 | 0.1 | 0.0 | 99.9 | 10.5 | 3.6 | 85.9 | 10.5 | 3.6 | 85.9 |
11 | 0.3 | 0.1 | 99.6 | 0.6 | 0.3 | 99.2 | 10.3 | 5.0 | 84.6 | 10.5 | 5.1 | 84.5 |
12 | 1.3 | 0.3 | 98.4 | 1.3 | 0.3 | 98.4 | 1.2 | 0.2 | 98.6 | 1.0 | 0.2 | 98.7 |
13 | 3.6 | 0.7 | 95.7 | 2.0 | 0.4 | 97.6 | 1.5 | 0.3 | 98.3 | 1.5 | 0.3 | 98.3 |
14 | 0.1 | 0.0 | 99.8 | 0.1 | 0.0 | 99.8 | 1.9 | 0.5 | 97.5 | 1.9 | 0.5 | 97.5 |
15 | 7.5 | 1.9 | 90.6 | 3.3 | 0.8 | 95.9 | 2.8 | 0.7 | 96.5 | 2.8 | 0.7 | 96.5 |
16 | 19.2 | 3.1 | 77.7 | 16.7 | 2.7 | 80.6 | 15.3 | 2.5 | 82.3 | 15.0 | 2.4 | 82.6 |
17 | 0.2 | 0.0 | 99.8 | 0.2 | 0.0 | 99.8 | 0.2 | 0.0 | 99.8 | 0.1 | 0.0 | 99.9 |
18 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 100.0 | 9.5 | 0.7 | 89.9 | 9.5 | 0.7 | 89.9 |
19 | 11.0 | 0.8 | 88.2 | 11.0 | 0.8 | 88.2 | 10.3 | 0.8 | 88.9 | 12.1 | 0.9 | 87.0 |
20 | 4.3 | 0.3 | 95.4 | 0.0 | 0.0 | 100.0 | 1.2 | 0.1 | 98.7 | 1.0 | 0.1 | 98.9 |
21 | 28.0 | 1.5 | 70.5 | 20.0 | 1.0 | 79.0 | 38.9 | 2.0 | 59.1 | 39.1 | 2.0 | 58.8 |
22 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 100.0 | 0.1 | 0.0 | 99.9 | 0.1 | 0.0 | 99.9 |
23 | 68.5 | 5.4 | 26.1 | 68.0 | 5.3 | 26.6 | 67.3 | 5.3 | 27.4 | 64.6 | 5.1 | 30.3 |
24 | 3.2 | 0.1 | 96.7 | 0.3 | 0.0 | 99.7 | 8.2 | 0.2 | 91.6 | 5.6 | 0.2 | 94.3 |
25 | 13.0 | 1.0 | 86.0 | 5.0 | 0.4 | 94.6 | 2.3 | 0.2 | 97.5 | 3.0 | 0.2 | 96.8 |
26 | 0.2 | 0.0 | 99.8 | 0.0 | 0.0 | 100.0 | 2.6 | 0.1 | 97.3 | 2.6 | 0.1 | 97.3 |
27 | 47.0 | 0.3 | 52.7 | 45.0 | 0.3 | 54.7 | 51.6 | 0.3 | 48.1 | 51.6 | 0.3 | 48.1 |
28 | 33.6 | 0.3 | 66.1 | 33.6 | 0.3 | 66.1 | 66.3 | 0.6 | 33.1 | 66.3 | 0.6 | 33.1 |
ID (Current Study) | RGIId (RGI6.0) | glac_name (GLIMS) | Area 1979 (km2) | Area 2018 (km2) | GMB850 (m w. e. a−1) | GMB900 (m w. e. a−1) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
28 | 17.00172; 17.00395; 17.01268 | Upsala | 933.14 | ± | 7.68 | 808.68 | ± | 8.88 | −85.46 | ± | 4.26 | −2.16 | ± | 0.11 | −2.07 | ± | 0.18 | −2.19 | ± | 0.18 |
27 | 17.05076 | Viedma * | 484.65 | ± | 3.08 | 443.02 | ± | 3.98 | −62.84 | ± | 4.29 | −1.59 | ± | 0.11 | −1.50 | ± | 0.15 | −1.59 | ± | 0.15 |
26 | 17.04928 | Spegazzini | 119.42 | ± | 2.14 | 116.64 | ± | 2.84 | −10.21 | ± | 4.43 | −0.26 | ± | 0.11 | −0.29 | ± | 0.13 | −0.31 | ± | 0.14 |
25 | 17.04939; 17.04935 | Bolados & Onelli | 82.92 | ± | 1.88 | 68.90 | ± | 2.24 | −11.20 | ± | 4.51 | −0.28 | ± | 0.11 | −0.81 | ± | 0.33 | −0.86 | ± | 0.35 |
24 | 17.04903 | SPI-121 | 69.56 | ± | 1.04 | 66.08 | ± | 1.19 | −15.74 | ± | 4.56 | −0.40 | ± | 0.12 | −0.41 | ± | 0.13 | −0.43 | ± | 0.13 |
23 | 17.04902 | Ameghino | 67.22 | ± | 1.57 | 56.87 | ± | 1.89 | −94.62 | ± | 4.57 | −2.39 | ± | 0.12 | −2.31 | ± | 0.22 | −2.45 | ± | 0.23 |
22 | 17.04951; | Agassiz | 53.42 | ± | 1.19 | 51.24 | ± | 1.32 | −2.27 | ± | 4.65 | −0.06 | ± | 0.12 | −0.13 | ± | 0.26 | −0.13 | ± | 0.28 |
21 | 17.04908 | Mayo | 44.69 | ± | 0.95 | 41.42 | ± | 1.02 | −54.65 | ± | 4.73 | −1.38 | ± | 0.12 | −1.14 | ± | 0.14 | −1.21 | ± | 0.14 |
20 | 17.04915 | SPI-44 | 41.02 | ± | 0.98 | 38.42 | ± | 1.17 | −6.77 | ± | 4.77 | −0.17 | ± | 0.12 | −0.06 | ± | 0.04 | −0.06 | ± | 0.04 |
19 | 17.00368 | Cerro de Mayo Norte | 26.62 | ± | 0.60 | 25.15 | ± | 0.80 | −26.61 | ± | 5.04 | −0.67 | ± | 0.13 | −0.64 | ± | 0.14 | −0.67 | ± | 0.15 |
18 | 17.04916 | Aguilera | 24.57 | ± | 0.59 | 23.81 | ± | 0.70 | −23.43 | ± | 5.10 | −0.59 | ± | 0.13 | −0.40 | ± | 0.10 | −0.42 | ± | 0.10 |
17 | 17.04959 | Ante-cumbre Bertrand Sur | 13.15 | ± | 0.46 | 11.70 | ± | 0.47 | −2.60 | ± | 5.74 | −0.07 | ± | 0.15 | 0.07 | ± | 0.17 | 0.07 | ± | 0.18 |
16 | 17.04906 | - | 11.05 | ± | 0.43 | 10.23 | ± | 0.43 | −36.07 | ± | 5.99 | −0.91 | ± | 0.15 | −0.64 | ± | 0.13 | −0.68 | ± | 0.14 |
15 | 17.04932 | Heim | 9.90 | ± | 0.42 | 8.59 | ± | 0.50 | −14.94 | ± | 6.16 | −0.38 | ± | 0.16 | −0.34 | ± | 0.16 | −0.36 | ± | 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vacaflor, P.; Lenzano, M.G.; Vich, A.; Lenzano, L. Co-Registration Methods and Error Analysis for Four Decades (1979–2018) of Glacier Elevation Changes in the Southern Patagonian Icefield. Remote Sens. 2022, 14, 820. https://doi.org/10.3390/rs14040820
Vacaflor P, Lenzano MG, Vich A, Lenzano L. Co-Registration Methods and Error Analysis for Four Decades (1979–2018) of Glacier Elevation Changes in the Southern Patagonian Icefield. Remote Sensing. 2022; 14(4):820. https://doi.org/10.3390/rs14040820
Chicago/Turabian StyleVacaflor, Paulina, Maria Gabriela Lenzano, Alberto Vich, and Luis Lenzano. 2022. "Co-Registration Methods and Error Analysis for Four Decades (1979–2018) of Glacier Elevation Changes in the Southern Patagonian Icefield" Remote Sensing 14, no. 4: 820. https://doi.org/10.3390/rs14040820
APA StyleVacaflor, P., Lenzano, M. G., Vich, A., & Lenzano, L. (2022). Co-Registration Methods and Error Analysis for Four Decades (1979–2018) of Glacier Elevation Changes in the Southern Patagonian Icefield. Remote Sensing, 14(4), 820. https://doi.org/10.3390/rs14040820