Use Remote Sensing and Machine Learning to Study the Changes of Broad-Leaved Forest Biomass and Their Climate Driving Forces in Nature Reserves of Northern Subtropics
Abstract
:1. Introduction
2. Data and Methodology
2.1. Overview of the Study Area
2.2. Data
2.2.1. Sample Plot Data
2.2.2. Satellite Images
2.2.3. Meteorological Data
2.3. Remote Sensing Classification of Forest Types
2.4. Selection of Biomass Remote Sensing Estimation Factors
2.5. Identify Core Factors from Candidates
2.6. Machine Learning Algorithm
2.6.1. RF
2.6.2. SVM
2.6.3. ANN
2.7. Construction of Remote Sensing Quantitative Model of Broad-Leaved Forest Biomass and Model Accuracy Assessment
2.8. Analysis on Broad-Leaved Forest Biomass Dynamic Change Driving Forces
3. Results and Analysis
3.1. Remote Sensing Classification Results of Forest Types in Tianma National Nature Reserve
3.2. Construction of Remote Sensing Quantitative Model of Broad-Leaved Forest Biomass
3.3. Spatial Distribution of Broad-Leaved Forest Biomass in the Reserve
3.4. Analysis on Broad-Leaved Forest Biomass Dynamic Change Driving Forces in the Reserve
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Landsat Image ID | Imaging Date | Sensor Type | Code Number | Line Number | Data Level | Spatial Resolution |
---|---|---|---|---|---|---|
LT51220381998036BJC00 | 5 February 1998 | TM | 122 | 38 | L1T | 30 |
LT51220382000042BJC00 | 11 February 2000 | TM | 122 | 38 | L1T | 30 |
LT51220382001364BJC00 | 30 December 2001 | TM | 122 | 38 | L1T | 30 |
LT51220382004021BJC00 | 21 January 2004 | TM | 122 | 38 | L1T | 30 |
LT51220382006106BJC02 | 16 April 2006 | TM | 122 | 38 | L1T | 30 |
LT51220382008096BJC01 | 5 April 2008 | TM | 122 | 38 | L1T | 30 |
LT51220382010085BKT00 | 26 March 2010 | TM | 122 | 38 | L1T | 30 |
LT51220382011088BJC00 | 29 March 2011 | TM | 122 | 38 | L1T | 30 |
LC81220382014064LGN01 | 5 March 2014 | ETM+ | 122 | 38 | L1T | 15 |
LC81220382016038LGN00 | 7 February 2016 | ETM+ | 122 | 38 | L1T | 15 |
Date of Scene | Region 1 | Region 2 | Region 3 | Region 4 |
---|---|---|---|---|
5 February 1998 | 89,155 | 3076 | 7789 | 4753 |
11 February 2000 | 60,929 | 2005 | 8929 | 5487 |
30 December 2001 | 125,408 | 1388 | 4568 | 3179 |
21 January 2004 | 62,406 | 631 | 6057 | 452 |
16 April 2006 | 62,418 | 631 | 6057 | 452 |
5 April 2008 | 77,351 | 582 | 7773 | 2239 |
26 March 2010 | 82,955 | 522 | 7139 | 5484 |
29 March 2011 | 71,156 | 491 | 6582 | 5504 |
5 March 2014 | 93,162 | 545 | 7093 | 6271 |
7 February 2016 | 67,801 | 1273 | 7452 | 6632 |
References
- Mário, J.M.; Loureiro, P.; Sachsida, A. The Dynamics of Land-use in Brazilian Amazon. Ecol. Econ. 2012, 84, 23–36. [Google Scholar] [CrossRef]
- Rodríguez-Veiga, P.; Quegan, S.; Carreiras, J.; Persson, H.J.; Fransson, J.E.S.; Hoscilo, A.; Ziółkowski, D.; Stereńczak, K.; Lohberger, S.; Stängel, M. Forest Biomass Retrieval Approaches from Earth Observation in Different Biomes. Int. J. Appl. Earth Obs. 2019, 77, 53–68. [Google Scholar] [CrossRef]
- Dixon, R.K.; Solomon, A.M.; Brown, S.; Houghton, R.A.; Trexier, M.C.; Wisniewski, J. Carbon Pools and Flux of Global Forest Ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef]
- Canadell, J.G.; Quere, C.L.; Raupach, M.R.; Field, C.B.; Buitenhuis, E.T.; Ciais, P.; Conway, T.J.; Gillett, N.P.; Houghton, R.A.; Marland, G. Contributions to Accelerating Atmospheric CO2 Growth from Economic Activity, Carbon Intensity, and Efficiency of Natural Sinks. Proc. Natl. Acad. Sci. USA 2007, 104, 18866–18870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stegen, J.C.; Swenson, N.G.; Enquist, B.J.; White, E.P.; Phillips, O.L.; Jørgensen, P.M.; Weiser, M.D.; Monteagudo, M.A.; Nez, V.P. Variation in Above-Ground Forest Biomass across Broad Climatic Gradients. Glob. Ecol. Biogeogr. 2011, 20, 744–754. [Google Scholar] [CrossRef]
- Fan, W.Y.; Li, M.Z.; Yang, J.M. Forest Biomass Estimation Models of Remote Sensing in Changbai Mountain Forests. Sci. Silva. Sin. 2011, 47, 16–20. [Google Scholar] [CrossRef]
- Liu, L.B.; Zhou, Y.C.; Cheng, A.Y.; Wang, S.J.; Ni, J. Aboveground Biomass Estimate of a Karst Forest in Central Guizhou Province, Southwestern China Based on Direct Harvest Method. Acta. Ecol. Sin. 2020, 40, 4455–4461. [Google Scholar]
- Xie, T.T.; Li, G.; Zhou, G.Y.; Wu, Z.M.; Zhao, H.B.; Qiu, Z.J.; Liang, R.Y. Aboveground Biomass of Natural Castanopsis Carlesii-Schima Superba Community in Xiaokeng of Nanling Mountains, South China. Chin. J. Appl. Ecol. 2013, 24, 2399–2407. [Google Scholar] [CrossRef]
- Li, G.; Zhou, G.Y.; Wang, X.; Wu, Z.M.; Qiu, Z.J.; Zhao, H.B.; Liang, R.Y. Aboveground Biomass of Natural Castanopsis Fissa Community at the Xiaokeng of Nanling Mountain, Southern China. Acta. Ecol. Sin. 2011, 31, 3650–3658. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, D.; Chen, B.; Gao, H.; Li, G. Clonal Growth of Hippophae rhamniodes ssp. Sinensis at the Early Stage in Response to Initial Planting Density and its Regulation Mechanism of Biomass Allocation. Sci. Silva. Sin. 2017, 53, 29–39. [Google Scholar] [CrossRef]
- Shao, M.X.; Wen, S.Z.; He, G.X.; Zhao, X.Z.; Ouyang, Q. The Biomass Structure Characteristics of P. bournei (hemsl.) Yang Plantation in Different Ages. J. Cent. South Univ. For. Tech. 2014, 34, 44–48. [Google Scholar] [CrossRef]
- Shen, J.P.; Chen, D.S.; Sun, X.M.; Zhang, S.G. Modeling a Single-Tree Biomass Equation by Seemingly Unrelated Regression and Dummy Variables with Larix kaempferi. J. Zhejiang AF Univ. 2019, 36, 877–885. [Google Scholar]
- Wei, X.M. Estimation of Forest Aboveground Biomass Based on Multi-Source Data. Geomat. Inform. Sci. Wuhan Univ. 2019, 44, 1385–1390. [Google Scholar] [CrossRef]
- Esteban, J.; Mcroberts, R.E.; Fernández-Landa, A.; Tomé, J.L.; Nsset, E. Estimating Forest Volume and Biomass and Their Changes Using Random Forests and Remotely Sensed Data. Remote Sens. 2019, 11, 1944. [Google Scholar] [CrossRef] [Green Version]
- Pham, L.; Brabyn, L. Monitoring Mangrove Biomass Change in Vietnam Using SPOT Images and an Object-based Approach Combined with Machine Learning Algorithms. ISPRS J. Photogramm. 2017, 128, 86–97. [Google Scholar] [CrossRef]
- Naik, P.; Dalponte, M.; Bruzzone, L. Prediction of Forest Aboveground Biomass Using Multitemporal Multispectral Remote Sensing Data. Remote Sens. 2021, 13, 1282. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Jones, S.; Soto-Berelov, M.; Haywood, A.; Hislop, S. Landsat Time-Series for Estimating Forest Aboveground Biomass and Its Dynamics across Space and Time: A Review. Remote Sens. 2019, 12, 98. [Google Scholar] [CrossRef] [Green Version]
- Lakyda, P.; Shvidenko, A.; Bilous, A.; Myroniuk, V.; Matsala, M.; Zibtsev, S.; Schepaschenko, D.; Holiaka, D.; Vasylyshyn, R.; Lakyda, I.; et al. Impact of Disturbances on the Carbon Cycle of Forest Ecosystems in Ukrainian Polissya. Forests 2019, 10, 337. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.X.; Feng, Q.S.; Liang, T.G.; Liu, B.K.; Zhang, W.J.; Xie, H.J. Modeling Grassland Above-Ground Biomass Based on Artificial Neural Network and Remote Sensing in the Three-River Headwaters Region. Remote Sens. Environ. 2018, 204, 448–455. [Google Scholar] [CrossRef]
- Alimjan, G.; Sun, T.L.; Jumahun, H.; Guan, Y.; Zhou, W.T.; Sun, H.G. A Hybrid Classification Approach Based on Support Vector Machine and K-Nearest Neighbor for Remote Sensing Data. Int. J. Pattern. Recogn. 2017, 31, 1750034.1–1750034.22. [Google Scholar] [CrossRef]
- Liang, S.; Cheng, J.; Jia, K.; Jiang, B.; Liu, Q.; Liu, S.H.; Xiao, Z.Q.; Xie, X.; Yao, Y.; Yuan, W.; et al. Recent Progress in Land Surface Quantitative Remote Sensing. J. Remote Sens. 2016, 20, 875–898. [Google Scholar] [CrossRef]
- Santi, E.; Chiesi, M.; Fontanelli, G.; Lapini, A.; Paloscia, S.; Pettinato, S.; Ramat, G.; Santurri, L. Mapping Woody Volume of Mediterranean Forests by Using SAR and Machine Learning: A Case Study in Central Italy. Remote Sens. 2021, 13, 809. [Google Scholar] [CrossRef]
- Nandy, S.; Singh, R.; Ghosh, S.; Watham, T.; Kushwaha, S.P.S.; Kumar, A.S.; Dadhwal, V.K. Neural Network-Based Modelling for Forest Biomass Assessment. Carbon Manag. 2017, 8, 305–317. [Google Scholar] [CrossRef]
- Yang, J.M.; Fan, W.Y.; Li, M.Z.; Tian, L.J.; Mao, X.G.; Yu, Y. Quantitative Driving Analysis of Forest Biomass Changes in Changbai Mountain Forest Region. Chin. J. Appl. Ecol. 2011, 22, 47–52. [Google Scholar] [CrossRef]
- Powell, S.L.; Cohen, W.B.; Healey, S.P.; Kennedy, R.E.; Moisen, G.G.; Pierce, K.B. Quantification of Live Aboveground Forest Biomass Dynamics with Landsat Time-Series and Field Inventory Data: A Comparison of Empirical Modeling Approaches. Remote Sens. Environ. 2010, 114, 1053–1068. [Google Scholar] [CrossRef]
- Ghosh, S.M.; Behera, M.D. Aboveground Biomass Estimation Using Multi-Sensor Data Synergy and Machine Learning Algorithms in a Dense Tropical Forest. Appl. Geophys. 2018, 96, 29–40. [Google Scholar] [CrossRef]
- Raha, D.; Dar, J.A.; Pandey, P.K.; Lone, P.A.; Verma, S.; Khare, P.K.; Khan, M.L. Carbon Management Variation in Tree Biomass and Carbon Stocks in Three Tropical Dry Deciduous Forest Types of Madhya Pradesh, India. Carbon Manag. 2020, 11, 109–120. [Google Scholar] [CrossRef]
- Venter, M.; Dwyer, J.; Dieleman, W.; Ramachandra, A.; Gillieson, D.; Laurance, S.; Cernusak, L.; Beehler, B.; Jensen, R.; Bird, M. Optimal Climate for Large Trees at High Elevations Drives Patterns of Biomass in Remote Forests of Papua New Guinea. Glob. Change Biol. 2017, 23, 4873–4883. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.G.; Suarez, J.C.; Garcia, M.; Hu, T.X.; Wang, C.; Londo, A. Utility of Multitemporal Lidar for Forest and Carbon Monitoring: Tree Growth, Biomass Dynamics, And Carbon Flux. Remote Sens. Environ. 2018, 204, 883–897. [Google Scholar] [CrossRef]
- Wu, Z.; Dai, E.F.; Ge, Q.S.; Xi, W.M.; Wang, X.F. Modelling the Integrated Effects of Land Aboveground Biomass, Use and Climate Change Scenarios on Forest a Case Study in Taihe County of China Ecosystem. J. Geogr. Sci. 2017, 27, 205–222. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.Z.; Ling, Q.P.; Pei, H.Q.; Song, Y.N.; Qiu, Z.X.; Wang, C.; Liu, T.D.; Gong, W.F. Remote Sensing of Tropical Rainforest Biomass Changes in Hainan Island, China from 2003 to 2018. Remote Sens. 2021, 13, 1696. [Google Scholar] [CrossRef]
- García-Aldés, R.; Estrada, A.; Early, R.; Lehsten, V.; Morin, X.; Dornelas, M. Climate Change Impacts on Long-Term Forest Productivity Might be Driven by Species Turnover Rather Than by Changes in Tree Growth. Glob. Ecol. Biogeogr. 2020, 29, 1360–1372. [Google Scholar] [CrossRef]
- Souza, A.F.; Longhi, S.J. Disturbance History Mediates Climate Change Effects on Subtropical Forest Biomass and Dynamics. Ecol. Evol. 2019, 9, 7184–7199. [Google Scholar] [CrossRef] [Green Version]
- Lie, G.W.; Xue, L. Biomass Allocation Patterns in Forests Growing Different Climatic Zones of China. Trees 2016, 30, 639–646. [Google Scholar] [CrossRef]
- Becknell, J.M.; Kissing Kucek, L.; Powers, J.S. Aboveground Biomass in Mature and Secondary Seasonally Dry Tropical Forests: A Literature Review and Global Synthesis. For. Ecol. Manag. 2020, 276, 88–95. [Google Scholar] [CrossRef]
- Bennett, A.C.; Penman, T.D.; Arndt, S.K.; Roxburgh, S.H.; Bennett, L.T. Climate More Important Than Soils for Predicting Forest Biomass at the Continental Scale. Ecography 2020, 43, 1692–1705. [Google Scholar] [CrossRef]
- Ma, W.H.; Liu, Z.L.; Wang, Z.H.; Wang, W.; Liang, C.Z.; Tang, Y.H.; He, J.S.; Fang, J.Y. Climate Change Alters Interannual Variation of Grassland Aboveground Productivity: Evidence from a 22-Year Measurement Series in the Inner Mongolian Grassland. J. Plant Res. 2010, 123, 509–517. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, Y.H.; Wang, M.J.; Jiang, W.G.; Hou, P.; Li, Y. Change of Vegetation Net Primary Productivity in Yellow River Watersheds From 2001 to 2010 and its Climatic Driving Factors Analysis. Chin. J. Appl. 2014, 25, 2811–2818. [Google Scholar] [CrossRef]
- Ewe, S.; Gaiser, E.E.; Childers, D.L.; Iwaniec, D.; Rivera-Monroy, V.H.; Twilley, R.R. Spatial and Temporal Patterns of Aboveground Net Primary Productivity (anpp) along Two Freshwater-Estuarine Transects in the Florida Coastal Everglades. Hydrobiologia 2006, 569, 459–474. [Google Scholar] [CrossRef]
- Ortiz-Reyes, A.D.; Valdez-Lazalde, J.R.; Ángeles-Pérez, G.; De los Santos-Posadas, H.M.; Schneider, L.; Aguirre-Salado, C.A.; Peduzzi, A. Synergy of Landsat, Climate and LiDAR Data for Aboveground Biomass Mapping in Medium-Stature Tropical Forests of the Yucatan Peninsula, Mexico. Rev. Chapingo Ser. Cienc. For. Am. 2021, 27, 383–400. [Google Scholar] [CrossRef]
- Shen, W.J.; Li, M.S.; Huang, C.Q.; Wei, A.S. Quantifying Live Aboveground Biomass and Forest Disturbance of Mountainous Natural and Plantation Forests in Northern Guangdong, China, Based on Multi-Temporal Landsat, PALSAR and Field Plot Data. Remote Sens. 2016, 8, 595. [Google Scholar] [CrossRef] [Green Version]
- Pirasteh, S.; Zenner, E.K.; Mafi-Gholami, D.; Jaafari, A.; Kamari, A.N.; Liu, G.; Zhu, Q.; Li, J. Modeling Mangrove Responses to Multi-Decadal Climate Change and Anthropogenic Impacts Using a Long-Term Time Series of Satellite Imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102390. [Google Scholar] [CrossRef]
- Zeng, W.; Chen, X.; Yang, X. Developing National and Regional Individual Tree Biomass Models and Analyzing Impact of Climatic Factors on Biomass Estimation for Poplar Plantations in China. Trees 2020, 35, 93–102. [Google Scholar] [CrossRef]
- Foster, J.R.; Finley, A.O.; D’Amato, A.W.; Bradford, J.B.; Banerjee, S. Predicting Tree Biomass Growth in the Temperate–Boreal Ecotone: Is Tree Size, Age, Competition, or Climate Response Most Important? Glob. Change Biol. 2016, 22, 2138–2151. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lei, Y. Estimation and Evaluation of Forest Biomass Carbon Storage in China; China Forestry: Beijing, China, 2010; ISBN 978-7-5038-5809-3. [Google Scholar]
- Pham, T.D.; Yokoya, N.; Bui, D.T.; Yoshino, K.; Friess, D.A. Remote Sensing Approaches for Monitoring Mangrove Species, Structure, and Biomass: Opportunities and Challenges. Remote Sens. 2019, 11, 230. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Shen, Y.; Zhang, J. A Nonlinear Correlation Measure for Multivariable Data Set. Physica D 2005, 200, 287–295. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Sheykhmousa, M.; Mahdianpari, M. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Júnior, I.D.S.T.; Torres, C.; Leite, H.G.; Castro, N.L.M.D.; Farias, A.A. Machine Learning: Modeling Increment in Diameter of Individual Trees on Atlantic Forest Fragments. Ecol. Indic. 2020, 117, 106685. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013; ISBN 978-146-14-6848-6. [Google Scholar]
- Alimjan, G.; Sun, T.; Liang, Y.; Jumahun, H.; Guan, Y. A New Technique for Remote Sensing Image Classification Based on Combinatorial Algorithm of SVM and KNN. Int. J. Pattern. Recogn. 2018, 32, 1859012.1–1859012.23. [Google Scholar] [CrossRef]
- An, T.; Nandy, S.; Srinet, R.; Luong, N.V.; Kumar, A.S. Forest Aboveground Biomass Estimation Using Machine Learning Regression Algorithm in Yok Don National Park, Vietnam. Ecol. Inform. 2018, 50, 24–32. [Google Scholar] [CrossRef]
- Dong, L.; Du, H.; Han, N.; Li, X.; He, S. Application of Convolutional Neural Network on Lei Bamboo Above-ground-biomass (AGB) Estimation Using Worldview-2. Remote Sens. 2020, 12, 958. [Google Scholar] [CrossRef] [Green Version]
- Mao, H.; Meng, J.; Ji, F.; Zhang, Q.; Fang, H. Comparison of Machine Learning Regression Algorithms for Cotton Leaf Area Index Retrieval Using Sentinel-2 Spectral Bands. Appl. Sci. 2019, 9, 1459. [Google Scholar] [CrossRef] [Green Version]
- Gyamfi-Ampadu, E.; Gebreslasie, M. Two Decades Progress on the Application of Remote Sensing for Monitoring Tropical and Sub-Tropical Natural Forests: A Review. Forests 2021, 12, 739. [Google Scholar] [CrossRef]
- Dong, S.K.; Sha, W.; Su, X.K.; Zhang, Y.; Li, S.; Gao, X.X.; Liu, S.L.; Shi, J.B.; Liu, Q.R.; Hao, Y. The Impacts of Geographic, Soil and Climatic Factors on Plant Diversity, Biomass and Their Relationships of the Alpine Dry Ecosystems: Cases from the Aerjin Mountain Nature Reserve, China. Ecol. Eng. 2019, 127, 170–177. [Google Scholar] [CrossRef]
- De Avila, A.L.; van der Sande, M.T.; Dormann, C.F.; Pea-Claros, M.; Poorter, L.; Mazzei, L.; Ruschel, A.R.; Silva, J.M.; de Carvalho, J.O.P.; Bauhus, J. Disturbance Intensity is a Stronger Driver of Biomass Recovery than Remaining Tree-Community Attributes in a Managed Amazonian Forest. J. Appl. Ecol. 2018, 55, 1647–1657. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Luo, Y.; Reich, P.B.; Searle, E.B.; Biswas, S.R.; Enquist, B. Climate Change-Associated Trends in Net Biomass Change are Age Dependent in Western Boreal Forests of Canada. Ecol. Lett. 2016, 19, 1150–1158. [Google Scholar] [CrossRef] [PubMed]
- Requena Suarez, D.; Rozendaal, D.M.A.; De Sy, V.; Gibbs, D.A.; Harris, N.L.; Sexton, J.O.; Feng, M.; Channan, S.; Zahabu, E.; Silayo, D.S.; et al. Variation in Aboveground Biomass in Forests and Woodlands in Tanzania along Gradients in Environmental Conditions and Human Use. Environ. Res. Lett. 2021, 16, 044014. [Google Scholar] [CrossRef]
- Zhao, K.; Popescu, S.; Meng, X.; Yong, P.; Ag Ca, M. Characterizing Forest Canopy Structure with Lidar Composite Metrics and Machine Learning. Remote Sens. Environ. 2011, 115, 1978–1996. [Google Scholar] [CrossRef]
- Wu, C.; Shen, H.; Wang, K.; Shen, A.; Deng, J.; Gan, M. Landsat Imagery-Based Above Ground Biomass Estimation and Change Investigation Related to Human Activities. Sustainability 2016, 8, 159. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, C.; Li, M.; Liu, Z. Influence of Variable Selection and Forest Type on Forest Aboveground Biomass Estimation Using Machine Learning Algorithms. Forests 2019, 10, 1073. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Wang, Y.; Xie, Y.; Zhou, L.; Qiao, J.; Qiu, S.; Sun, Y. Combination of Feature Selection and CatBoost for Prediction: The First Application to the Estimation of Aboveground Biomass. Forests 2021, 12, 216. [Google Scholar] [CrossRef]
- Opelele, O.M.; Yu, Y.; Fan, W.; Chen, C.; Kachaka, S.K. Biomass Estimation Based on Multilinear Regression and Machine Learning Algorithms in the Mayombe Tropical Forest, in the Democratic Republic of Congo. Appl. Ecol. Environ. Res. 2021, 19, 359–377. [Google Scholar] [CrossRef]
- López-Serrano, P.M.; Domínguez, J.L.C.; Corral-Rivas, J.J.; Jiménez, E.; López-Sánchez, C.A.; Vega-Nieva, D.J. Modeling of Aboveground Biomass with Landsat 8 OLI and Machine Learning in Temperate Forests. Forests 2020, 11, 11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Liang, Y.; He, H.; Huang, C.; Liu, B.; Jiang, S. Changes in Species-Level Biomass and Its Relationship with Climate and Forest Disturbances in the Great Xing’an Mountains. Acta Ecol. Sin. 2019, 39, 4442–4454. [Google Scholar] [CrossRef]
- Hisano, M.; Chen, H. Spatial Variation in Climate Modifies Effects of Functional Diversity on Biomass Dynamics in Natural Forests Across Canada. Glob. Ecol. Biogeogr. 2020, 29, 682–695. [Google Scholar] [CrossRef]
- Fritts, H.C.; Dean, J.S. Dendrochrological Modeling Of of the Effects of Climate Change on Tree-Ring Width Chronologies form the Chaco Canyon Area, Southwestern United States. Tree-Ring Bull. 1992, 52, 31–58. [Google Scholar]
- Wimmer, R.; Grabner, M. A Comparison of Tree-Ring Features in Picea Abies as Correlated with Climate. IAWA J. 2000, 21, 403–416. [Google Scholar] [CrossRef]
- Buechling, A.; Martin, P.H.; Canham, C.D. Climate and Competition Effects on Tree Growth in Rocky Mountain Forests. J. Ecol. 2017, 105, 1636–1647. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Lu, D.; Li, G.; Wang, G.; Chen, Q.; Liu, L.; Li, D. Comparative Analysis of Modeling Algorithms for Forest Aboveground Biomass Estimation in a Subtropical Region. Remote Sens. 2018, 10, 627. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Coops, N.C.; Innes, J.; Dai, J.; She, G. Mapping Above- and Below-Ground Biomass Components in Subtropical Forests Using Small-Footprint LiDAR. Forests 2014, 5, 1356–1373. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Li, M.; Iizuka, K.; Liu, J.; Chen, K.; Li, Y. Effects of Forest Canopy Structure on Forest Aboveground Biomass Estimation Using Landsat Imagery. IEEE Access 2021, 9, 5285–5295. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Liu, Z.; Li, C. Combining Kriging Interpolation to Improve the Accuracy of Forest Aboveground Biomass Estimation Using Remote Sensing Data. IEEE Access 2020, 8, 128124–128139. [Google Scholar] [CrossRef]
Number | Meteorological Factor | Number | Meteorological Factor | Number | Meteorological Factor |
---|---|---|---|---|---|
1 | Total mean surface temperature (°C) | 16 | Min precipitation (mm) | 31 | Max sunshine hours (h) |
2 | Average mean surface temperature (°C) | 17 | Total mean temperatures (°C) | 32 | Min sunshine hours (h) |
3 | Max mean surface temperature (°C) | 18 | Average mean temperatures (°C) | 33 | Total mean relative humidity (%) |
4 | Min mean surface temperature (°C) | 19 | Max mean temperatures (°C) | 34 | Average mean relative humidity (%) |
5 | Total daily maximum surface temperature (°C) | 20 | Min mean temperatures (°C) | 35 | Max mean relative humidity (%) |
6 | Average daily maximum surface temperature (°C) | 21 | Total daily maximum temperature (°C) | 36 | Min mean relative humidity (%) |
7 | Max daily maximum surface temperature (°C) | 22 | Average daily maximum temperature (°C) | 37 | Total minimum relative humidity (%) |
8 | Min daily maximum surface temperature (°C) | 23 | Max daily maximum temperature (°C) | 38 | Average minimum relative humidity (%) |
9 | Total daily minimum surface temperature (°C) | 24 | Min daily maximum temperature (°C) | 39 | Max minimum relative humidity (%) |
10 | Average daily minimum surface temperature (°C) | 25 | Total daily minimum temperature (°C) | 40 | Min minimum relative humidity (%) |
11 | Max daily minimum surface temperature (°C) | 26 | Average daily minimum temperature (°C) | 41 | Total evaporation (mm) |
12 | Min daily minimum surface temperature (°C) | 27 | Max daily minimum temperature (°C) | 42 | Average evaporation (mm) |
13 | Total precipitation (mm) | 28 | Min daily minimum temperature (°C) | 43 | Average evaporation (mm) |
14 | Average precipitation (mm) | 29 | Total sunshine hours (h) | 44 | Min evaporation (mm) |
15 | Max precipitation (mm) | 30 | Average sunshine hours (h) |
Type | Factor | Description |
---|---|---|
Spectral indices | NDVI | |
RVI | NIR1/Red | |
EVI | ) | |
DVI | ||
SAVI | ||
MSAVI | ||
Textural Parameters | Entropy | |
Secondary Moment | ||
Dissimilarity | ||
Mean | ||
Homogeneity | ||
Correlation | ||
Contrast | ||
Variance | ||
Textural Parameters | Slope | Slope (◦) |
Serial Number | Factor | Serial Number | Factor | Serial Number | Factor | Serial Number | Factor |
---|---|---|---|---|---|---|---|
1 | B532_contrast | 6 | B532_variance | 11 | B4_dissimilarity | 16 | RVI |
2 | B532_mean | 7 | B3_variance | 12 | Slope | 17 | B532_homogeneity |
3 | B3_secondary moment | 8 | B5_contrast | 13 | B532_entropy | 18 | B3_mean |
4 | B4_variance | 9 | B532_dissimilarity | 14 | B3_entropy | 19 | B4_mean |
5 | B532_correlation | 10 | B3_contrast | 15 | B4_entropy |
R2 | RMSE | |||||||
---|---|---|---|---|---|---|---|---|
Training | Testing | Validation | All | Training | Testing | Validation | All | |
RF | 0.6334 | 0.6798 | 0.0728 | 0.6602 | 0.2779 | 0.2202 | 0.3981 | 0.2441 |
SVM | 0.8620 | 0.4705 | 0.9638 | 0.8151 | 0.1714 | 0.1643 | 0.3207 | 0.1988 |
ANN | 0.8917 | 0.8726 | 0.9304 | 0.8742 | 0.1625 | 0.1210 | 0.1319 | 0.1531 |
Significant Factor | CC | p Value |
---|---|---|
Total daily maximum surface temperature (°C) | 0.7169 | 0.0298 |
Average daily maximum surface temperature (°C) | 0.7206 | 0.0285 |
Max precipitation (mm) | −0.7027 | 0.0348 |
Max mean temperature (°C) | 0.6869 | 0.0410 |
The mean biomass of the previous time (Mg ha−1) | −0.7118 | 0.0315 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Qian, W.; Huang, Q.; Lv, H.; Yu, D.; Ou, Q.; Lu, H.; Tang, X. Use Remote Sensing and Machine Learning to Study the Changes of Broad-Leaved Forest Biomass and Their Climate Driving Forces in Nature Reserves of Northern Subtropics. Remote Sens. 2022, 14, 1066. https://doi.org/10.3390/rs14051066
Sun Z, Qian W, Huang Q, Lv H, Yu D, Ou Q, Lu H, Tang X. Use Remote Sensing and Machine Learning to Study the Changes of Broad-Leaved Forest Biomass and Their Climate Driving Forces in Nature Reserves of Northern Subtropics. Remote Sensing. 2022; 14(5):1066. https://doi.org/10.3390/rs14051066
Chicago/Turabian StyleSun, Zhibin, Wenqi Qian, Qingfeng Huang, Haiyan Lv, Dagui Yu, Qiangxin Ou, Haomiao Lu, and Xuehai Tang. 2022. "Use Remote Sensing and Machine Learning to Study the Changes of Broad-Leaved Forest Biomass and Their Climate Driving Forces in Nature Reserves of Northern Subtropics" Remote Sensing 14, no. 5: 1066. https://doi.org/10.3390/rs14051066
APA StyleSun, Z., Qian, W., Huang, Q., Lv, H., Yu, D., Ou, Q., Lu, H., & Tang, X. (2022). Use Remote Sensing and Machine Learning to Study the Changes of Broad-Leaved Forest Biomass and Their Climate Driving Forces in Nature Reserves of Northern Subtropics. Remote Sensing, 14(5), 1066. https://doi.org/10.3390/rs14051066