A New Spatial Filtering Algorithm for Noisy and Missing GNSS Position Time Series Using Weighted Expectation Maximization Principal Component Analysis: A Case Study for Regional GNSS Network in Xinjiang Province
Abstract
:1. Introduction
2. Data and Methodology
2.1. GNSS Position Time Series
2.2. The Proposed Weighted Expectation Maximization PCA Algorithm
- (Initialization): set columns of to random orthogonal vectors.
- (Repeat): for t = 1,2, …, convergence:
- E-step:
- M-step:
- (Until): stop
- (Output):
2.3. Weight Determination for WEMPCA
2.4. Handling Missing Data
3. Results
3.1. Simulation Experiments and Analysis
3.2. WEMPCA Filtering of Real GNSS Position Time Series
3.3. Analysis of CME Time Series
3.4. CME Impact on the GNSS Position Time Series
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geng, J.; Pan, Y.; Li, X.; Guo, J.; Liu, J.; Chen, X.; Zhang, Y. Noise Characteristics of High-Rate Multi-GNSS for Subdaily Crustal Deformation Monitoring. J. Geophys. Res. Solid Earth 2018, 123, 1987–2002. [Google Scholar] [CrossRef]
- Zheng, K.; Zhang, X.; Li, X.; Li, P.; Chang, X.; Sang, J.; Ge, M.; Schuh, H. Mitigation of Unmodeled Error to Improve the Accuracy of Multi-GNSS PPP for Crustal Deformation Monitoring. Remote Sens. 2019, 11, 2232. [Google Scholar] [CrossRef] [Green Version]
- Geng, T.; Xie, X.; Fang, R.; Su, X.; Zhao, Q.; Liu, G.; Li, H.; Shi, C.; Liu, J. Real-time capture of seismic waves using high-rate multi-GNSS observations: Application to the 2015 Mw 7.8 Nepal earthquake. Geophys. Res. Lett. 2016, 43, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Caporali, A.; Floris, M.; Chen, X.; Nurce, B.; Bertocco, M.; Zurutuza, J. The November 2019 Seismic Sequence in Albania: Geodetic Constraints and Fault Interaction. Remote Sens. 2020, 12, 846. [Google Scholar] [CrossRef] [Green Version]
- Guns, K.A.; Pollitz, F.F.; Lay, T.; Yue, H. Exploring GPS Observations of Postseismic Deformation Following the 2012 MW7.8 Haida Gwaii and 2013 MW7.5 Craig, Alaska Earthquakes: Implications for Viscoelastic Earth Structure. J. Geophys. Res. Solid Earth 2021, 126, e2021JB021891. [Google Scholar] [CrossRef]
- Kang, Z.; Tapley, B.; Chen, J.; Ries, J.; Bettadpur, S. Geocenter motion time series derived from GRACE GPS and LAGEOS observations. J. Geod. 2019, 93, 1931–1942. [Google Scholar] [CrossRef]
- Meindl, M.; Beutler, G.; Thaller, D.; Dach, R.; Jäggi, A. Geocenter coordinates estimated from GNSS data as viewed by perturbation theory. Adv. Space Res. 2013, 51, 1047–1064. [Google Scholar] [CrossRef]
- Lavallée, D.A.; van Dam, T.; Blewitt, G.; Clarke, P.J. Geocenter motions from GPS: A unified observation model. J. Geophys. Res. Solid Earth 2006, 111, B05405. [Google Scholar] [CrossRef] [Green Version]
- Thomas, I.D.; King, M.A.; Bentley, M.J.; Whitehouse, P.L.; Penna, N.T.; Williams, S.D.P.; Riva, R.E.M.; Lavallee, D.A.; Clarke, P.J.; King, E.C.; et al. Widespread low rates of Antarctic glacial isostatic adjustment revealed by GPS observations. Geophys. Res. Lett. 2011, 38, L22302. [Google Scholar] [CrossRef] [Green Version]
- Simon, K.M.; Riva, R.E.M.; Vermeersen, L.L.A. Constraint of glacial isostatic adjustment in the North Sea with geological relative sea level and GNSS vertical land motion data. Geophys. J. Int. 2021, 227, 1168–1180. [Google Scholar] [CrossRef]
- Yuan, P.; Jiang, W.; Wang, K.; Sneeuw, N. Effects of Spatiotemporal Filtering on the Periodic Signals and Noise in the GPS Position Time Series of the Crustal Movement Observation Network of China. Remote Sens. 2018, 10, 1472. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Montillet, J.-P.; Fernandes, R.; Bos, M.; Yu, K.; Hua, X.; Jiang, W. Review of current GPS methodologies for producing accurate time series and their error sources. J. Geodyn. 2017, 106, 12–29. [Google Scholar] [CrossRef]
- Kreemer, C.; Blewitt, G. Robust estimation of spatially varying common-mode components in GPS time-series. J. Geod. 2021, 95, 13. [Google Scholar] [CrossRef]
- Wdowinski, S.; Bock, Y.; Zhang, J.; Fang, P.; Genrich, J. Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. J. Geophys. Res. Solid Earth 1997, 102, 18057–18070. [Google Scholar] [CrossRef]
- Gruszczynski, M.; Klos, A.; Bogusz, J. A Filtering of Incomplete GNSS Position Time Series with Probabilistic Principal Component Analysis. Pure Appl. Geophys. 2018, 175, 1841–1867. [Google Scholar] [CrossRef]
- He, X.; Bos, M.S.; Montillet, J.P.; Fernandes, R.M.S. Investigation of the noise properties at low frequencies in long GNSS time series. J. Geod. 2019, 93, 1271–1282. [Google Scholar] [CrossRef]
- He, X.; Bos, M.S.; Montillet, J.-P.; Fernandes, R.; Melbourne, T.; Jiang, W.; Li, W. Spatial Variations of Stochastic Noise Properties in GPS Time Series. Remote Sens. 2021, 13, 4534. [Google Scholar] [CrossRef]
- Nikolaidis, R. Observation of Geodetic and Seismic Deformation with the Global Positioning System; University of California: San Diego, CA, USA, 2002. [Google Scholar]
- Tian, Y.; Shen, Z. Correlation weighted stacking filtering of common-mode component in GPS observation network. Acta Seismol. Sin 2011, 33, 198–208. [Google Scholar]
- Márquez-Azúa, B.; DeMets, C. Crustal velocity field of Mexico from continuous GPS measurements, 1993 to June 2001: Implications for the neotectonics of Mexico. J. Geophys. Res. Solid Earth 2003, 108, 2450. [Google Scholar] [CrossRef]
- Tian, Y.; Shen, Z.-K. Extracting the regional common-mode component of GPS station position time series from dense continuous network. J. Geophys. Res. Solid Earth 2016, 121, 1080–1096. [Google Scholar] [CrossRef]
- Forootan, E. Statistical Signal Decomposition Techniques for Analyzing Time-Variable Satellite Gravimetry Data. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2014. [Google Scholar]
- Cheng, P.; Cheng, Y.; Wang, X.; Wu, S.; Xu, Y. Realization of an Optimal Dynamic Geodetic Reference Frame in China: Methodology and Applications. Engineering 2020, 6, 879–897. [Google Scholar] [CrossRef]
- Dong, D.; Fang, P.; Bock, Y.; Webb, F.; Prawirodirdjo, L.; Kedar, S.; Jamason, P. Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis. J. Geophys. Res. Solid Earth 2006, 111, B03405. [Google Scholar] [CrossRef] [Green Version]
- Ji, K.H.; Herring, T.A. Transient signal detection using GPS measurements: Transient inflation at Akutan volcano, Alaska, during early 2008. Geophys. Res. Lett. 2011, 38, L06307. [Google Scholar] [CrossRef]
- He, X.; Hua, X.; Yu, K.; Xuan, W.; Lu, T.; Zhang, W.; Chen, X. Accuracy enhancement of GPS time series using principal component analysis and block spatial filtering. Adv. Space Res. 2015, 55, 1316–1327. [Google Scholar] [CrossRef]
- Ma, X.; Liu, B.; Dai, W.; Kuang, C.; Xing, X. Potential Contributors to Common Mode Error in Array GPS Displacement Fields in Taiwan Island. Remote Sens. 2021, 13, 4221. [Google Scholar] [CrossRef]
- Zhou, M.; Guo, J.; Shen, Y.; Kong, Q.; YUAN, J. Extraction of common mode errors of GNSS coordinate time series based on multi-channel singular spectrum analysis. Chin. J. Geophys. 2018, 61, 4383–4395. [Google Scholar] [CrossRef]
- Ming, F.; Yang, Y.; Zeng, A.; Zhao, B. Spatiotemporal filtering for regional GPS network in China using independent component analysis. J. Geod. 2017, 91, 419–440. [Google Scholar] [CrossRef]
- Li, W.; Li, F.; Zhang, S.; Lei, J.; Zhang, Q.; Yuan, L. Spatiotemporal Filtering and Noise Analysis for Regional GNSS Network in Antarctica Using Independent Component Analysis. Remote Sens. 2019, 11, 386. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Li, W.; Xu, G.; Li, B. Spatiotemporal filtering of regional GNSS network’s position time series with missing data using principle component analysis. J. Geod. 2014, 88, 1–12. [Google Scholar] [CrossRef]
- Li, W.; Jiang, W.; Li, Z.; Chen, H.; Chen, Q.; Wang, J.; Zhu, G. Extracting Common Mode Errors of Regional GNSS Position Time Series in the Presence of Missing Data by Variational Bayesian Principal Component Analysis. Sensors 2020, 20, 2298. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Shen, Y. The Consideration of Formal Errors in Spatiotemporal Filtering Using Principal Component Analysis for Regional GNSS Position Time Series. Remote Sens. 2018, 10, 534. [Google Scholar] [CrossRef] [Green Version]
- Bailey, S. Principal component analysis with noisy and/or missing data. Publ. Astron. Soc. Pac. 2012, 124, 1015. [Google Scholar] [CrossRef] [Green Version]
- Bevis, M.; Brown, A. Trajectory models and reference frames for crustal motion geodesy. J. Geod. 2014, 88, 283–311. [Google Scholar] [CrossRef] [Green Version]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Golub, G.H.; Van Loan, C.F.; Press, J.H.U.; Van Loan, P.C.F. Matrix Computations; Johns Hopkins University Press: Baltimore, MD, USA, 1989. [Google Scholar]
- Roweis, S. EM algorithms for PCA and SPCA. Adv. Neural Inf. Processing Syst. 1998, 626–632. [Google Scholar]
- Owari, T.; Kasahara, H.; Oikawa, N.; Fukuoka, S. Seasonal variation of global positioning system (GPS) accuracy within the Tokyo University Forest in Hokkaido. Bull. Tokyo Univ. 2009, 120, 19–28. [Google Scholar]
- Bogusz, J.; Gruszczynski, M.; Figurski, M.; Klos, A. Spatio-temporal filtering for determination ofcommon mode error in regional GNSS networks. Open Geosci. 2015, 7, 140–148. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Dai, W.; Santerre, R.; Kuang, C. A MATLAB-based Kriged Kalman Filter software for interpolating missing data in GNSS coordinate time series. GPS Solut. 2017, 22, 25. [Google Scholar] [CrossRef]
- Bos, M.; Fernandes, R.; Williams, S.; Bastos, L. Fast error analysis of continuous GNSS observations with missing data. J. Geod. 2013, 87, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Amiri-Simkooei, A. On the nature of GPS draconitic year periodic pattern in multivariate position time series. J. Geophys. Res. Solid Earth 2013, 118, 2500–2511. [Google Scholar] [CrossRef] [Green Version]
- Hardoon, D.R.; Szedmak, S.; Shawe-Taylor, J. Canonical correlation analysis: An overview with application to learning methods. Neural Comput. 2004, 16, 2639–2664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Guo, J.; Chang, X.; Zhu, G.; Kong, Q. Terrestrial Water Storage Changes in the Tianshan Mountains of Xinjiang Measured by GRACE During 2003~2013. Geomat. Inf. Sci. Wuhan Univ. 2017, 42, 1021–1026. [Google Scholar] [CrossRef]
Scaled | WEMPCA | EMPCA | PCA | Improvement (WEMPC Relative to PCA) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | ||
0.2 | 0.19 | 0.18 | 0.18 | 0.20 | 0.19 | 0.19 | 0.20 | 0.19 | 0.19 | |
0.4 | 0.38 | 0.35 | 0.36 | 0.41 | 0.38 | 0.39 | 0.41 | 0.38 | 0.39 | |
0.6 | 0.56 | 0.53 | 0.55 | 0.61 | 0.57 | 0.59 | 0.61 | 0.57 | 0.59 | |
0.8 | 0.75 | 0.71 | 0.73 | 0.85 | 0.76 | 0.81 | 0.85 | 0.76 | 0.81 | |
1.0 | 0.93 | 0.88 | 0.91 | 1.09 | 1.00 | 1.05 | 1.09 | 1.00 | 1.05 |
No. | Station | N | E | U | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unfiltered | Filtered | Unfiltered | Filtered | Unfiltered | Filtered | ||||||||
PLN | WN | PLN | WN | PLN | WN | PLN | WN | PLN | WN | PLN | WN | ||
1 | XJAL | 6.25 | 0.65 | 4.60 | 0.53 | 4.53 | 0.68 | 3.05 | 0.50 | 20.80 | 0.12 | 17.03 | 1.57 |
2 | XJBC | 5.17 | 0.66 | 2.29 | 0.58 | 4.84 | 0.95 | 2.46 | 0.78 | 14.39 | 2.14 | 7.69 | 2.10 |
3 | XJBE | 5.30 | 0.76 | 2.79 | 0.63 | 4.32 | 0.65 | 2.34 | 0.57 | 15.89 | 0.07 | 8.01 | 1.50 |
4 | XJBL | 6.47 | 0.68 | 3.22 | 0.66 | 6.18 | 1.15 | 4.06 | 0.92 | 16.25 | 2.27 | 9.33 | 1.89 |
5 | XJBY | 4.69 | 0.63 | 2.22 | 0.57 | 4.04 | 0.74 | 2.07 | 0.62 | 12.72 | 2.03 | 5.32 | 1.94 |
6 | XJDS | 5.09 | 0.63 | 2.00 | 0.59 | 3.91 | 0.74 | 1.53 | 0.59 | 12.89 | 0.02 | 5.47 | 1.78 |
7 | XJFY | 4.33 | 0.64 | 2.54 | 0.59 | 3.63 | 0.57 | 2.22 | 0.56 | 13.07 | 0.01 | 7.35 | 1.78 |
8 | XJHT | 5.07 | 0.61 | 3.01 | 0.59 | 4.58 | 0.86 | 2.86 | 0.69 | 12.43 | 2.04 | 8.08 | 1.82 |
9 | XJJJ | 2.88 | 0.48 | 2.84 | 0.42 | 2.42 | 0.55 | 2.39 | 0.55 | 9.17 | 1.33 | 6.65 | 1.97 |
10 | XJKC | 4.51 | 0.54 | 1.60 | 0.49 | 3.82 | 0.70 | 1.44 | 0.58 | 12.96 | 1.65 | 5.96 | 1.97 |
11 | XJKE | 4.44 | 0.64 | 2.70 | 0.63 | 3.90 | 0.80 | 2.53 | 0.66 | 12.81 | 2.05 | 6.52 | 2.43 |
12 | XJKL | 6.71 | 0.89 | 4.68 | 0.80 | 5.58 | 0.87 | 4.15 | 0.67 | 18.41 | 2.79 | 13.95 | 3.08 |
13 | XJML | 4.17 | 0.54 | 2.35 | 0.47 | 3.13 | 0.56 | 2.03 | 0.39 | 11.64 | 0.26 | 5.48 | 1.45 |
14 | XJQH | 4.26 | 0.65 | 2.70 | 0.58 | 3.58 | 0.33 | 2.15 | 0.16 | 13.07 | 0.02 | 6.38 | 1.32 |
15 | XJQM | 3.72 | 0.45 | 2.68 | 0.43 | 3.35 | 0.63 | 2.16 | 0.43 | 11.37 | 1.44 | 7.93 | 1.49 |
16 | XJRQ | 3.32 | 0.43 | 2.36 | 0.39 | 2.71 | 0.55 | 1.83 | 0.41 | 10.01 | 0.66 | 6.33 | 0.58 |
17 | XJSH | 4.92 | 0.63 | 2.32 | 0.53 | 3.71 | 0.69 | 1.37 | 0.48 | 13.46 | 1.28 | 5.63 | 1.93 |
18 | XJSS | 3.51 | 0.45 | 2.36 | 0.47 | 2.61 | 0.55 | 1.91 | 0.48 | 10.60 | 0.01 | 6.05 | 1.68 |
19 | XJTC | 5.49 | 0.75 | 2.27 | 0.67 | 4.95 | 0.99 | 2.48 | 0.91 | 15.65 | 1.70 | 8.48 | 2.16 |
20 | XJTZ | 4.14 | 0.54 | 2.35 | 0.47 | 3.67 | 0.73 | 1.92 | 0.57 | 11.63 | 1.67 | 7.11 | 1.53 |
21 | XJWL | 4.58 | 0.55 | 1.95 | 0.54 | 3.30 | 0.69 | 1.46 | 0.51 | 11.97 | 1.16 | 5.35 | 1.73 |
22 | XJWQ | 6.21 | 0.87 | 2.42 | 0.77 | 4.99 | 0.89 | 2.26 | 0.66 | 16.78 | 1.64 | 7.70 | 2.30 |
23 | XJWU | 6.68 | 0.88 | 3.21 | 0.75 | 6.92 | 1.21 | 4.66 | 0.97 | 19.18 | 2.96 | 12.19 | 2.67 |
24 | XJXY | 5.11 | 0.63 | 1.78 | 0.66 | 3.98 | 0.69 | 1.67 | 0.56 | 14.97 | 1.87 | 7.77 | 2.09 |
25 | XJYC | 5.56 | 0.63 | 2.84 | 0.56 | 5.69 | 0.96 | 3.31 | 0.71 | 17.53 | 2.56 | 10.99 | 2.25 |
26 | XJYN | 6.95 | 0.74 | 4.60 | 0.78 | 6.30 | 1.04 | 4.47 | 0.86 | 24.46 | 3.45 | 17.09 | 3.50 |
27 | XJYT | 4.53 | 0.54 | 2.55 | 0.34 | 4.28 | 0.78 | 2.42 | 0.48 | 13.59 | 1.68 | 8.94 | 1.34 |
28 | XJZS | 5.40 | 0.61 | 1.80 | 0.60 | 4.45 | 0.81 | 1.85 | 0.63 | 13.80 | 1.48 | 5.97 | 1.97 |
Mean | 4.98 | 0.63 | 2.68 | 0.57 | 4.26 | 0.76 | 2.47 | 0.60 | 14.34 | 1.44 | 8.24 | 1.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Li, Z.; Jiang, W.; Chen, Q.; Zhu, G.; Wang, J. A New Spatial Filtering Algorithm for Noisy and Missing GNSS Position Time Series Using Weighted Expectation Maximization Principal Component Analysis: A Case Study for Regional GNSS Network in Xinjiang Province. Remote Sens. 2022, 14, 1295. https://doi.org/10.3390/rs14051295
Li W, Li Z, Jiang W, Chen Q, Zhu G, Wang J. A New Spatial Filtering Algorithm for Noisy and Missing GNSS Position Time Series Using Weighted Expectation Maximization Principal Component Analysis: A Case Study for Regional GNSS Network in Xinjiang Province. Remote Sensing. 2022; 14(5):1295. https://doi.org/10.3390/rs14051295
Chicago/Turabian StyleLi, Wudong, Zhao Li, Weiping Jiang, Qusen Chen, Guangbin Zhu, and Jian Wang. 2022. "A New Spatial Filtering Algorithm for Noisy and Missing GNSS Position Time Series Using Weighted Expectation Maximization Principal Component Analysis: A Case Study for Regional GNSS Network in Xinjiang Province" Remote Sensing 14, no. 5: 1295. https://doi.org/10.3390/rs14051295
APA StyleLi, W., Li, Z., Jiang, W., Chen, Q., Zhu, G., & Wang, J. (2022). A New Spatial Filtering Algorithm for Noisy and Missing GNSS Position Time Series Using Weighted Expectation Maximization Principal Component Analysis: A Case Study for Regional GNSS Network in Xinjiang Province. Remote Sensing, 14(5), 1295. https://doi.org/10.3390/rs14051295