Climatic, Decadal, and Interannual Variability in the Upper Layer of the Mediterranean Sea Using Remotely Sensed and In-Situ Data
Abstract
:1. Introduction
2. Materials and Methods
- The daily (1/8° Mercator projection grid) Absolute Dynamic Topography (ADT) derived from altimeter and distributed by CMEMS (product user manual CMEMS-SL-QUID_008-032-051). The ADT was obtained by the sum of the sea level anomaly and a 20-year synthetic mean estimated by Rio et al. [53] over the 1993–2012 period.
- Monthly surface salinity fields (~1 m depth) derived from the surface MEDSEA products (https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1, downloaded on 20 April 2021) distributed by CMEMS. This product is assessed using a variational data assimilation scheme for temperature and salinity’s vertical profiles; SST and satellite sea level anomaly along track data [56].
- Evaporation and precipitation data downloaded from the hourly ERA5 reanalysis, the fifth generation ECMWF reanalysis for the global climate and weather, that combine model data with observations (doi:10.24381/cds.adbb2d47; [57]). The spatial resolution is 0.25° × 0.25°.
- Salinity data derived from the Word Ocean Database (WOD; [61]) vertically averaged in the surface (0–150 m) and intermediate (200–450 m) layers.
3. Results and Discussion
3.1. First EOF Mode (EOF1)
3.2. Second EOF Mode (EOF2)
3.3. Correlation between Independent Variables
3.4. Comparison between Model and In-Situ Salinity Data in the Eastern Mediterranean
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jordà, G.; Von Schuckmann, K.; Josey, S.A.; Caniaux, G.; García-Lafuente, J.; Sammartino, S.; Özsoy, E.; Polcher, J.; Notarstefano, G.; Poulain, P.M.; et al. The Mediterranean Sea heat and mass budgets: Estimates, uncertainties and perspectives. Prog. Oceanogr. 2017, 156, 174–208. [Google Scholar] [CrossRef]
- Tsimplis, M.N.; Zervakis, V.; Josey, S.A.; Peneva, E.L.; Struglia, M.V.; Stanev, E.V.; Theocharis, A.; Lionello, P.; Malanotte-Rizzoli, P.; Artale, V.; et al. Changes in the oceanography of the Mediterranean Sea and their link to climate variability, in Mediterranean Climate Variability. In Developments in Earth & Environmental Sciences; Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 4, pp. 227–282. [Google Scholar]
- Menna, M.; Poulain, P.M. Mediterranean intermediate circulation estimated from Argo data in 2003–2010. Ocean Sci. 2010, 6, 331–343. [Google Scholar] [CrossRef] [Green Version]
- Hayes, D.; Poulain, P.M.; Testor, P.; Mortier, L.; Bosse, A.; Du Madron, X. Review of the circulation and characteristics of intermediate water masses of the Mediterranean–implications for cold-water coral habitats. Coral Reefs Mediterranean (CORM). In Coral Reefs of the World; Springer: Berlin, Germany, 2019; Volume 9, pp. 1–26. [Google Scholar] [CrossRef] [Green Version]
- Pinardi, N.; Cessi, P.; Borile, F.; Wolfe, C. The Mediterranean Sea Overturning Circulation. J. Phys. Oceanogr. 2019, 49, 1699–1721. [Google Scholar] [CrossRef]
- Bergamasco, A.; Malanotte-Rizzoli, P. The circulation of the Mediterranean Sea: A historical review of experimental investigations. Adv. Oceanogr. Limnol. 2010, 1, 11–28. [Google Scholar] [CrossRef]
- Houpert, L.; Durrieu de Madron, X.; Testor, P.; Bosse, A.; d’Ortenzio, F.; Bouin, M.N.; Dausse, D.; Le Goff, H.; Kunesch, S.; Labaste, M.; et al. Observations of open-ocean deep convection in the northwestern Mediterranean Sea: Seasonal and interannual variability of mixing and deep water masses for the 2007–2013 Period. J. Geophys. Res. Ocean. 2016, 121, 8139–8171. [Google Scholar] [CrossRef] [Green Version]
- Bensi, M.; Cardin, V.; Rubino, A.; Notarstefano, G.; Poulain, P.M. Effects of winter convection on the deep layer of the Southern Adriatic Sea in 2012. J. Geophys. Res. Ocean. 2013, 118. [Google Scholar] [CrossRef] [Green Version]
- Waldman, R.; Brüggemann, N.; Anthony Boss, A.; Spall, M.; Somot, S.; Florence Sevault, F. Overturning the Mediterranean Thermohaline Circulation. Geophys. Res. Lett. 2018, 45, 8407–8415. [Google Scholar] [CrossRef] [Green Version]
- Kubin, E.; Poulain, P.-M.; Mauri, E.; Menna, M.; Notarstefano, G. Levantine intermediate and Levantine deep water formation: An Argo float study from 2001 to 2017. Water 2019, 11, 1781. [Google Scholar] [CrossRef] [Green Version]
- Skliris, N.; Zika, J.D.; Herold, L.; Josey, S.A.; Marsh, R. Mediterranean sea water budget long-term trend inferred from salinity observations. Clim. Dyn. 2018, 51, 2857–2876. [Google Scholar] [CrossRef] [Green Version]
- Sampatakaki, A.; Zervakis, V.; Mamoutos, I.; Tragou, E.; Gogou, A.; Triantaphyllou, M.; Skliris, N. Investigation of the Inherent Variability of the Mediterranean Sea Under Contrasting Extreme Climatic Conditions. Front. Mar. Sci. 2021, 8, 656737. [Google Scholar] [CrossRef]
- Jordà, G.; Gomis, D. On the interpretation of the steric and mass components of sea level variability: The case of the Mediterranean basin. J. Gephys. Res. 2013, 118, 953–963. [Google Scholar] [CrossRef] [Green Version]
- Pastor, F.; Valiente, J.A.; Palau, J.L. Sea surface temperature in the Mediterranena: Trends and spatial patterns (1982–2016). Pure Appl. Geophys. 2018, 175, 4017–4029. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, B.; Abdallah, M.A.; El-Din, K.A.; Nagy, H.; Shaltout, M. Inter-Annual Variability and Trends of Sea Level and Sea Surface Temperature in the Mediterranean Sea over the Last 25 Years. Pure Appl. Geophys. 2019, 176, 3787–3810. [Google Scholar] [CrossRef]
- Pascual, A.; Marcos, M.; Gomis, D. Comparing the sea level response to pressure and wind forcing of two barotropic models: Validation with tide gauge and altimetry data. J. Geophys. Res. Ocean. 2008, 113, C07011. [Google Scholar] [CrossRef] [Green Version]
- Pisano, A.; Marullo, S.; Artale, V.; Falcini, F.; Yang, C.; Leonelli, F.E.; Santoleri, R.; Buongiorno Nardelli, B. New Evidence of Mediterranean Climate Change and Variability from Sea Surface Temperature Observations. Remote Sens. 2020, 12, 132. [Google Scholar] [CrossRef] [Green Version]
- Menna, M.; Poulain, P.-M.; Zodiatis, G.; Gertman, I. On the surface circulation of the Levantine sub-basin derived from Lagrangian drifters and satellite altimetry data. Deep-Sea Res. Part I 2012, 65, 46–58. [Google Scholar] [CrossRef]
- Menna, M.; Reyes-Suarez, N.C.; Civitarese, G.; Gačić, M.; Poulain, P.-M.; Rubino, A. Decadal variations of circulation in the Central Mediterranean and its interactions with the mesoscale gyres. Deep Sea Res. Part II Top. Stud. Oceanogr. 2019, 164, 14–24. [Google Scholar] [CrossRef]
- Menna, M.; Poulain, P.M.; Ciani, D.; Doglioli, A.; Notarstefano, G.; Gerin, R.; Rio, M.H.; Santoleri, R.; Gauci, A.; Drago, A. New insights of the Sicily Channel and Southern Tyrrhenian Sea variability. Water 2019, 11, 1355. [Google Scholar] [CrossRef] [Green Version]
- Poulain, P.M.; Centurioni, L.; Özgökmen, T.; Tarry, D.; Pascual, A.; Ruiz, S.; Mauri, E.; Menna, M.; Notarstefano, G. On the Structure and Kinematics of an Algerian Eddy in the Southwestern Mediterranean Sea. Remote Sens. 2021, 13, 3039. [Google Scholar] [CrossRef]
- Shabrang, L.; Menna, M.; Pizzi, C.; Lavigne, H.; Civitarese, G.; Gačić, M. Long-term variability of the southern Adriatic circulation in relation to North Atlantic Oscillation. Ocean. Sci. 2016, 12, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Mauri, E.; Sitz, L.; Gerin, R.; Poulain, P.-M.; Hayes, D.; Gildor, H. On the Variability of the Circulation and Water Mass Properties in the Eastern Levantine Sea between September 2016–August 2017. Water 2019, 11, 1741. [Google Scholar] [CrossRef] [Green Version]
- Menna, M.; Gerin, R.; Notarstefano, G.; Mauri, E.; Bussani, A.; Pacciaroni, M.; Poulain, P.M. On the Circulation and Thermohaline Properties of the Eastern Mediterranean Sea. Front. Mar. Sci. 2021, 8, 671469. [Google Scholar] [CrossRef]
- Tsimplis, M.N.; Baker, T.F. Sea level drop in the Mediterranean Sea: An indicator of deep water salinity and temperature changes? Geophys. Res. Lett. 2000, 27, 1731–1734. [Google Scholar] [CrossRef]
- Bonaduce, A.; Pinardi, N.; Oddo, P.; Spada, G.; Larnicol, G. Sea-level variability in the Mediterranean Sea from altimetry and tide gauges. Clym. Dyn. 2016, 47, 2851–2866. [Google Scholar] [CrossRef] [Green Version]
- Romanou, A.; Tselioudis, G.; Zerefos, C.S.; Clayson, C.-A.J.; Curry, A.; Andersson, A. Evaporation-precipitation variability over the Mediterranean and the Black Seas from satellite and reanalysis estimates. J. Clim. 2010, 23, 5268–5287. [Google Scholar] [CrossRef]
- Ozer, T.; Gertman, I.; Kress, N.; Silverman, J.; Herut, B. Interannual thermohaline (1979–2014) and nutrient (2002–2014) dynamics in the Levantine surface and intermediate water masses, SE Mediterranean Sea. Glob. Planet. Chang. 2017, 151, 60–67. [Google Scholar] [CrossRef]
- Grodsky, S.A.; Reul, N.; Bentamy, A.; Vandemark, D.; Guimbard, S. Eastern Mediterranean salinification observed in satellite salinity from SMAP mission. J. Mar. Syst. 2019, 198, 103190. [Google Scholar] [CrossRef]
- Mauri, E.; Menna, M.; Garić, R.; Batistić, M.; Libralato, S.; Notarstefano, G.; Martellucci, R.; Gerin, R.; Pirro, A.; Hure, M.; et al. Recent changes of the salinity distribution and zooplankton community in the South Adriatic Pit. Copernicus Marine Service Ocean State Report, 5. J. Oper. Oceanogr. 2021, 14 (Suppl. S1), 1–185. [Google Scholar] [CrossRef]
- Fedele, G.; Mauri, E.; Notarstefano, G.; Poulain, P.M. Characterization of the Atlantic Water and Levantine Intermediate Water in the Mediterranean Sea using Argo Float Data. Ocean Sci. 2021, 18, 129–142. [Google Scholar] [CrossRef]
- Schroeder, K.; Chiggiato, J.; Josey, S.A.; Borghini, M.; Aracri, S.; Sparnocchia, S. Rapid response to climate change in a marginal sea. Sci. Rep. 2017, 7, 4065. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Yáñez, M.; García-Martínez, M.C.; Moya, F.; Balbín, R.; López-Jurado, J.L.; Serra, M.; Zunino, P.; Pascual, J.; Salat, J. Updating temperature and salinity mean values and trends in the Western Mediterranean: The RADMED Project. Prog. Oceanogr. 2017, 157, 27–46. [Google Scholar] [CrossRef]
- Criado-Aldeanueva, F.; Soto-Navarro, J. Climatic Indices over the Mediterranean Sea: A Review. Appl. Sci. 2020, 10, 5790. [Google Scholar] [CrossRef]
- Mariotti, A.; Dell’Aquila, A. Decadal climate variability in the Mediterranean region: Roles of large-scale forcings and regional processes. Clim. Dyn. 2011, 38, 1129–1145. [Google Scholar] [CrossRef]
- Iona, A.; Theodorou, A.; Sofianos, S.; Watelet, S.; Troupin, C.; Beckers, J.M. Mediterranean sea climatic indices: Monitoring long-term variability and climate changes. Earth Syst. Sci. Data 2018, 10, 1829–1842. [Google Scholar] [CrossRef] [Green Version]
- Roether, W.; Manca, B.B.; Klein, B.; Bregant, D.; Georgopoulos, D.; Beitzel, V.; Kovačević, V.; Luchetta, A. Recent changes in Eastern Mediterranean deep waters. Science 1996, 271, 333–335. [Google Scholar] [CrossRef]
- Schroeder, K.; Josey, S.A.; Herrmann, M.; Grignon, L.; Gasparini, G.P.; Bryden, H.L. Abrupt warming and salting of the WEastern Mediterranean Deep Water after 2005: Atmospheric forcings and lateral advection. J. Geophys. Res. 2010, 115, C08029. [Google Scholar] [CrossRef]
- Gačić, M.; Borzelli, G.E.; Civitarese, G.; Cardin, V.; Yari, S. Can internal processes sustain reversals of the ocean upper circulation? The Ionian Sea example. Geophys. Res. Lett. 2010, 37, L09608. [Google Scholar] [CrossRef]
- Rubino, A.; Gačić, M.; Bensi, M.; Kovačević, V.; Malačič, V.; Menna, M.; Negretti, M.E.; Sommeria, J.; Zanchettin, D.; Barreto, R.V.; et al. Experimental evidence of long-term oceanic circulation reversals without wind influence in the North Ionian Sea. Sci. Rep. 2020, 10, 1905. [Google Scholar] [CrossRef]
- Gačić, M.; Ursella, L.; Kovačević, V.; Menna, M.; Malačič, V.; Bensi, M.; Negretti, M.E.; Cardin, V.; Orlić, M.; Sommeria, J.; et al. Impact of dense-water flow over a sloping bottom on open-sea circulation: Laboratory experiments and an Ionian Sea (Mediterranean) example. Ocean Sci. 2021, 17, 975–996. [Google Scholar] [CrossRef]
- Schroeder, K.; Chiggiato, J.; Bryden, H.L.; Borghini, M.; Ismail, S.B. Abrupt Climate Shift in the Western Mediterranean Sea. Sci. Rep. 2016, 6, 23009. [Google Scholar] [CrossRef] [Green Version]
- Roether, W.; Klein, B.; Manca, B.B.; Theocharis, A.; Kioroglou, S. Transient Eastern Mediterranean deep waters in response to themassive dense-water output of the Aegean Sea in the 1990s. Prog. Oceanogr. 2007, 74, 540–571. [Google Scholar] [CrossRef]
- Civitarese, G.; Gačić, M.; Lipizer, M.; Eusebi Borzelli, G.L. On the impact of the Bimodal Oscillating System (BiOS) on the biogeochemistry and biology of the Adriatic and Ionian Seas (Eastern Mediterranean). Biogeosciences 2010, 7, 3987–3997. [Google Scholar] [CrossRef] [Green Version]
- Gačić, M.; Civitarese, G.; Eusebi Borzelli, G.L.; Kovačević, V.; Poulain, P.M.; Theocharis, A.; Menna, M.; Catucci, A.; Zarokanellos, N. On the relationship between the decadal oscillations of the northern Ionian Sea and the salinity distributions in the eastern Mediterranean. J. Geophys. Res. Oceans 2011, 116, C12. [Google Scholar] [CrossRef]
- Gačić, M.; Civitarese, G.; Kovacevic, V.; Ursella, L.; Bensi, M.; Menna, M.; Cardin, V.; Poulain, P.-M.; Cosoli, S.; Notarstefano, G.; et al. Extreme winter 2012 in the Adriatic: An example of climatic effect on the BiOS rhythm. Ocean Sci. 2014, 10, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Korres, G.; Pinardi, N.; Lascaratos, A. The ocean response to low frequency inter-annual atmospheric variability in the Mediterranean Sea. Part, I. Sensitivity experiments and energy analysis. J. Clim. 2000, 13, 705–731. [Google Scholar] [CrossRef]
- Demirov, E.; Pinardi, N. Simulation of the Mediterranean circulation from 1979 to 1993 model simulations: Part II. Energetics of Variability. J. Mar. Syst. 2002, 33, 23–50. [Google Scholar] [CrossRef]
- Mihanović, H.; Vilibić, I.; Dunić, N.; Šepić, J. Mapping of decadal middle Adriatic oceanographic variability and its relation to the BiOS regime. Geophys. Res. Ocean. 2015, 120, 5615–5630. [Google Scholar] [CrossRef]
- Pinardi, N.; Zavatarelli, M.; Adani, M.; Coppini, G.; Fratianni, C.; Oddo, P.; Simoncelli, S.; Tonani, M.; Lyubartsev, V.; Dobricic, S.; et al. Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis. Prog. Oceanogr. 2015, 132, 318–332. [Google Scholar] [CrossRef]
- Nagy, H.; Di-Lorenzo, E.; El-Gindy, A. The Impact of Climate Change on Circulation Patterns in the Eastern Mediterranean Sea Upper Layer Using Med-ROMS Model. Prog. Oceanogr. 2019, 175, 226–244. [Google Scholar] [CrossRef]
- Gačić, M.; Schroeder, K.; Civitarese, G.; Cosoli, S.; Vetrano, A.; Eusebi Borzelli, G.L. Salinity in the Sicily Channel corroborates the role of the Adriatic–Ionian Bimodal Oscillating System (BiOS) in shaping the decadal variability of the Mediterranean overturning circulation. Ocean Sci. 2013, 9, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Rio, M.H.; Pascual, A.; Poulain, P.M.; Menna, M.; Barceló, B.; Tintoré, J. Computation of a new mean dynamic topography for the Mediterranean Sea from model outputs, altimeter measurements and oceanographic in situ data. Ocean Sci. 2014, 10, 731–744. [Google Scholar] [CrossRef] [Green Version]
- Pisano, A.; Buongiorno Nardelli, B.; Tronconi, C.; Santoleri, R. The new Mediterranean optimally interpolated pathfinder AVHRR SST Dataset (1982–2012). Remote Sens. Environ. 2016, 176, 107–116. [Google Scholar] [CrossRef]
- Buongiorno Nardelli, B.; Tronconi, C.; Pisano, A.; Santoleri, R. High and Ultra-High resolution processing of satellite Sea Surface Temperature data over Southern European Seas in the framework of MyOcean project. Remote Sens. Environ. 2013, 129, 1–16. [Google Scholar] [CrossRef]
- Escudier, R.; Clementi, E.; Omar, M.; Cipollone, A.; Pistoia, J.; Aydogdu, A.; Drudi, M.; Grandi, A.; Lyubartsev, V.; Lecci, R.; et al. Mediterranean Sea Physical Reanalysis (CMEMS MED-Currents), Version 1; Data Set; Copernicus Monitoring Environment Marine Service (CMEMS): Ramonville-Saint-Agne, France, 2020. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Wong, A.P.S.; Wijffels, S.E.; Riser, S.C.; Pouliquen, S.; Hosoda, S.; Roemmich, D.; Gilson, J.; Johnson, G.C.; Martini, K.; Murphy, D.J.; et al. Argo data 1999–2019: Two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats. Front. Mar. Sci. 2020, 7, 700. [Google Scholar] [CrossRef]
- Argo Float Data and Metadata from Global Data Assembly Centre (Argo GDAC); SEANOE: Paris, France, 2020. [CrossRef]
- Wong, A.P.S.; Johnson, G.C.; Owens, W.B. Delayed-mode calibration of autonomous CTD profiling float salinity data by theta-S climatology. J. Atmos. Ocean. Technol. 2003, 20, 308–318. [Google Scholar] [CrossRef] [Green Version]
- Boyer, T.P.; Antonov, J.I.; Baranova, O.K.; Garcia, H.E.; Johnson, D.R.; Mishonov, A.V.; O’Brien, T.D.; Seidov, D.; Smolyar, I.; Zweng, M.M.; et al. World Ocean Database 2013; NOAA Printing Office: Silver Spring, MD, USA, 2013; p. 208. [Google Scholar] [CrossRef]
- Emery, W.J.; Thomson, R.E. Data Analysis Methods in Physical Oceanography; Elsevier Science: Amsterdam, The Netherlands, 2001; pp. 371–567. [Google Scholar] [CrossRef]
- Hannachi, A.; Jolliffe, I.; Stephenson, D. Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol. 2007, 27, 1119–1152. [Google Scholar] [CrossRef]
- Gupta, N.; Bhaskaran, P.K.; Dash, M.K. Dipole behavior in maximum significant wave height over the Southern Indian Ocean. Int. J. Climatol. 2017, 37, 4925–4937. [Google Scholar] [CrossRef]
- Björnsson, H.; Venegas, S.A. Manual for EOF and SVD Analyses of Climate Data; Techical. Report No. 97–1; McGill University: Montréal, QC, Canada, 1997; p. 52. [Google Scholar]
- Pastor, F.; Valiente, J.A.; Khodayar, S. A Warming Mediterranean: 38 Years of Increasing Sea Surface Temperature. Remote Sens. 2020, 12, 2687. [Google Scholar] [CrossRef]
- Verri, G.; Pinardi, N.; Oddo, P.; Ciliberti, S.A.; Coppini, G. River runoff influences on the Central Mediterranean overturning circulation. Clim. Dyn. 2018, 50, 1675–1703. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Oxford University Press: New York, NY, USA, 1975. [Google Scholar]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; John Wiley & Sons: Hoboken, NJ, USA, 1997. [Google Scholar]
- Cabanes, C.; Angel-Benavides, I.; Buck, J.; Coatanoan, C.; Dobler, D.; Herbert, G.; Klein, B.; Maze, G.; Notarstefano, G.; Owens, B. DMQC Cookbook for Core Argo Parameters; Ifremer: Plouzané, France, 2021. [Google Scholar] [CrossRef]
- Boehme, L.; Send, U. Objective analyses of hydrographic data for referencing profiling float salinities in highly variable environments. Deep Sea Res. Part II 2005, 52, 651–664. [Google Scholar] [CrossRef]
- Owens, W.B.; Wong, A.P.S. An improved calibration method for the drift of the conductivity sensor on autonomous CTD profiling floats by θ–S climatology. Deep Sea Res. I Oceanogr. Res. Pap. 2009, 56, 450–457. [Google Scholar] [CrossRef]
- Notarstefano, G.; Poulain, P.-M. Delayed Mode Quality Control of Argo Salinity Data in the Mediterranean Sea: A Regional Approach; Technical Report 2013/103 Sez. OCE 40 MAOS; OGS: Sgonico, Italy, 2013; p. 19. [Google Scholar]
- Cabanes, C.; Thierry, V. Lagadec, C. Improvement of bias detection in Argo float conductivity sensors and its application in the North Atlantic. Deep Sea Res. Part I Oceanogr. Res. Pap. 2016, 114, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Von Schuckmann, K.; Traon, P.-Y.L.; Smith, N.; Pascual, A.; Djavidnia, S.; Gattuso, J.-P.; Grégoire, M.; Nolan, G.; Aaboe, S.; Fanjul, E.Á.; et al. Copernicus Marine Service Ocean State Report, Issue 4. J. Oper. Oceanogr. 2020, 13, S1–S172. [Google Scholar] [CrossRef]
- Von Schuckmann, K.; Le Traon, P.Y.; Smith, N.; Pascual, A.; Djavidnia, S.; Gattuso, J.P.; Grégoire, M.; Aaboe, S.; Alari, V.; Alexander, B.E.; et al. Copernicus Marine Service Ocean State Report, Issue 5. J. Oper. Oceanogr. 2021, 14, 1–185. [Google Scholar] [CrossRef]
- Mohamed, B.; Skliris, N. Steric and atmospheric contributions to interannual sea level variability in the eastern Mediterranean Sea over 1993–2019. Oceanologia 2021, 64, 50–62. [Google Scholar] [CrossRef]
- Hobday, A.J.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.J.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Feng, M.; et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Hobday, A.J.; Oliver, E.C.J.; Gupta, A.S.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Holbrook, N.J.; Moore, P.J.; Thomsen, M.S.; Wernberg, T.; et al. Categorizing and naming marine heatwaves. Oceanography 2018, 31, 162–173. [Google Scholar] [CrossRef] [Green Version]
- Darmaraki, S.; Somot, S.; Sevault, F.; Nabat, P.; Cabos Narvaez, W.D.; Cavicchia, L.; Djurdjevic, V.; Li, L.; Sannino, G.; Sein, D.V. Future evolution of Marine Heatwaves in the Mediterranean Sea. Clim. Dyn. 2019, 53, 1371–1392. [Google Scholar] [CrossRef] [Green Version]
- Von Schuckmann, K.; Le Traon, P.Y.; Smith, N.; Pascual, A.; Djavidnia, S.; Gattuso, J.P.; Grégoire, M.; Nolan, G.; Aaboe, S.; Aguiar, E.; et al. Copernicus Marine Service Ocean State Report, Issue 3. J. Oper. Oceanogr. 2019, 12, S1–S123. [Google Scholar] [CrossRef]
- Androulidakis, Y.S.; Krestenitis, Y.N. Surface Temperature Variability and Marine Heat Waves over the Aegean, Ionian, and Cretan Seas from 2008–2021. J. Mar. Sci. Eng. 2022, 10, 42. [Google Scholar] [CrossRef]
- Darmaraki, S.; Somot, S.; Waldman, R.; Sevault, F.; Nabat, P.; Oliver, E. Mediterranean Marine heatwaves: On the comparison of the physical drivers behind the 2003 and 2015 events. In Proceedings of the 22nd EGU General Assembly, Online, 4–8 May 2020; p. 12104. [Google Scholar]
- Ibrahim, O.; Mohamed, B.; Nagy, H. Spatial Variability and Trends of Marine Heat Waves in the Eastern Mediterranean Sea over 39 Years. J. Mar. Sci. Eng. 2021, 9, 643. [Google Scholar] [CrossRef]
- Dommengent, D.; Latif, M. A cautionary note on the interpretation of EOFs. J. Clim. 2002, 15, 216–225. [Google Scholar] [CrossRef] [Green Version]
- Behera, S.K.; Rao, S.A.; Saji, H.N.; Yamagata, T. Comments on “A cautionary note on the interpretation of EOFs”. J. Clim. 2003, 16, 1087–1093. [Google Scholar] [CrossRef] [Green Version]
- Adloff, F.; Somot, S.; Sevault, F.; Jordà, G.; Aznar, R.; Déqué, M.; Herrmann, M.; Marcos, M.; Dubois, C.; Pandoro, E.; et al. Mediterranean Sea response to climate change in an ensamble of twenty first century scenarios. Clim. Dyn. 2015, 45, 2775–2802. [Google Scholar] [CrossRef]
- Aral, M.M.; Guan, J. Global Sea Surface Temperature and Sea Level Rise estimation with optimal historical time lag data. Water 2016, 8, 519. [Google Scholar] [CrossRef] [Green Version]
- Criado-Aldanueva, F.; Soto-Navarro, F.J.; Garcia-Lafuente, J. Seasonal and interannual variability of surface heat and freshwater fluxes in the Mediterranean Sea: Budgets and exchange through the Strait of Gibraltar. Int. J. Climatol. 2012, 32, 286–302. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Shi, J. Relationship between sea surface salinity and ocean circulation and climate change. Sci. China 2019, 61, 771–782. [Google Scholar] [CrossRef]
- Malanotte-Rizzoli, P.; Robinson, A. Ocean Processes in Climate Dynamics: Global and Mediterranean Examples; Springer Science & Business Media: Berlin, Germany, 2012; p. 419. [Google Scholar]
- Techtmann, S.M.; Fortney, J.L.; Ayers, K.A.; Joyner, D.C.; Linley, T.D.; Pfiffner, S.M.; Hazen, T.C. The Unique chemistry of Eastern Mediterranean water masses selects for distinct microbial communities by depth. PLoS ONE 2015, 10, e0120605. [Google Scholar] [CrossRef]
- Tsimplis, M.N.; Josey, S.A. Forcing of the Mediterranean Sea by atmospheric oscillations over the North Atlantic. Geophys. Res. Lett. 2001, 28, 803–806. [Google Scholar] [CrossRef] [Green Version]
- Macias, D.; Stips, A.; Garcia-Gorriz, E.; Dosio, A. Hydrological and biogeochemical response of the Mediterranean Sea to freshwater flow changes for the end of the 21st century. PLoS ONE 2018, 13, e0192174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
EOF1 | MED | WMED | CMED | EMED | |
---|---|---|---|---|---|
ADT | Exp. Var | 63.1% | 66.4% | 56.7% | 72.5% |
Time scale | Int/Clim | Int/Clim | Int/Clim | Int/Clim | |
Corr. vs. PC1 MED | 0.94 | 0.98 | 0.97 | ||
Trend (cm·year−1) | 0.33 | 0.31 | 0.30 | 0.37 | |
SST | Exp. Var | 68.5% | 81% | 78.4% | 86.7% |
Time scale | Int/Clim | Int/Clim | Int/Clim | Int/Clim | |
Corr. vs. PC1 MED | 0.85 | 0.97 | 0.91 | ||
Trend (°C·year−1) | 0.04 | 0.04 | 0.04 | 0.04 | |
SSS | Exp. Var | 28.3% | 44.1% | 41.2% | 66.3% |
Time scale | Int/Clim | Int/Clim | Dec (NIG) | Dec (NIG) | |
Corr. vs. PC1 MED | 0.87 | 0.60 | 0.53 | ||
Trend (year−1) | 0.010 | 0.011 | 0.013 | 0.009 | |
E-P | Exp. Var | 48.9 | 72.8 | 56.3 | 69.9 |
Time scale | Int/Clim | Int/Clim | Int/Clim | Int/Clim | |
Corr. vs. PC1 MED | 0.90 | 0.94 | 0.56 | ||
Trend (m·year−1) | 0.010 | 0.013 | 0.012 | 0.006 | |
EOF2 | MED | WMED | CMED | EMED | |
ADT | Exp. Var | 9.4 | 7.6 | 20.8 | 7.8 |
Time scale | Dec (NIG) | Dec (local) | Dec (NIG) | Dec (local) | |
Corr. vs. PC2 MED | 0.2 | 0.94 | 0.3 | ||
SST | Exp. Var | 12.9 | 6.5 | 6.6 | 2.8 |
Time scale | Dec (dipolar) | Dec (dipolar) | Dec (NIG, dipolar) | Dec (NIG, dipolar) | |
Corr. vs. PC2 MED | 0.17 | 0.61 | 0.20 | ||
SSS | Exp. Var | 22.2 | 16.7 | 23.4 | 17.1 |
Time scale | Dec (NIG) | Dec (dipolar) | Int (dipolar) | Int (dipolar) | |
Corr. vs. PC2 MED | −0.40 | 0.60 | 0.57 | ||
E-P | Exp. Var | 22 | 7.9 | 17.4 | 13.8 |
Time scale | Dec (dipolar) | Dec | Dec | Dec | |
Corr. vs. PC2 MED | 0.10 | 0.84 | 0.39 |
PC1 | MED | WMED | CMED | EMED |
---|---|---|---|---|
ADT/SST | 0.83 | 0.75 | 0.73 | 0.82 |
ADT/E-P | 0.62 | 0.59 | 0.50 | 0.32 |
SST/E-P | 0.53 | 0.40 | 0.40 | 0.25 |
SSS/E-P | 0.54 | 0.51 | 0.50 | 0.22 |
PC2 | MED | WMED | CMED | EMED |
ADT/SST | 0.29 | 0.16 | 0.60 | 0.12 |
ADT/E-P | 0.35 | −0.36 | 0.27 | 0.62 |
SST/E-P | −0.11 | −0.13 | −0.03 | −0.25 |
SSS/E-P | 0.50 | 0.40 | 0.14 | 0.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menna, M.; Gačić, M.; Martellucci, R.; Notarstefano, G.; Fedele, G.; Mauri, E.; Gerin, R.; Poulain, P.-M. Climatic, Decadal, and Interannual Variability in the Upper Layer of the Mediterranean Sea Using Remotely Sensed and In-Situ Data. Remote Sens. 2022, 14, 1322. https://doi.org/10.3390/rs14061322
Menna M, Gačić M, Martellucci R, Notarstefano G, Fedele G, Mauri E, Gerin R, Poulain P-M. Climatic, Decadal, and Interannual Variability in the Upper Layer of the Mediterranean Sea Using Remotely Sensed and In-Situ Data. Remote Sensing. 2022; 14(6):1322. https://doi.org/10.3390/rs14061322
Chicago/Turabian StyleMenna, Milena, Miroslav Gačić, Riccardo Martellucci, Giulio Notarstefano, Giusy Fedele, Elena Mauri, Riccardo Gerin, and Pierre-Marie Poulain. 2022. "Climatic, Decadal, and Interannual Variability in the Upper Layer of the Mediterranean Sea Using Remotely Sensed and In-Situ Data" Remote Sensing 14, no. 6: 1322. https://doi.org/10.3390/rs14061322
APA StyleMenna, M., Gačić, M., Martellucci, R., Notarstefano, G., Fedele, G., Mauri, E., Gerin, R., & Poulain, P. -M. (2022). Climatic, Decadal, and Interannual Variability in the Upper Layer of the Mediterranean Sea Using Remotely Sensed and In-Situ Data. Remote Sensing, 14(6), 1322. https://doi.org/10.3390/rs14061322