The Influence of Burn Severity on Post-Fire Spectral Recovery of Three Fires in the Southern Rocky Mountains
Abstract
:1. Introduction
1.1. Wildfires and Climate Change
1.2. Remote Sensing, Burn Severity, and Post-Fire Regeneration
1.3. Remote Sensing to Quantify Forest Resilience
2. Materials and Methods
2.1. Study Area
2.2. Data Analysis
2.2.1. Landsat Data Pre-Processing and Segmentation
2.2.2. Phase 1: Monitoring Forest Resilience
2.2.3. Phase 2: Climate Influence on Resilience
2.2.4. Phase 3: Influence of the Topography, Burn Severity, Fire Regimes, and Geological Data on Resilience
3. Results
3.1. Assessing Forest Resilience
3.2. Climate Influence on the %NBR Recovery
3.3. RF Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Higuera, P.E.; Shuman, B.N.; Wolf, K.D. Rocky Mountain subalpine forests now burning more than any time in recent millennia. Proc. Natl. Acad. Sci. USA 2021, 118, e2103135118. [Google Scholar] [CrossRef] [PubMed]
- Guz, J.; Kulakowski, D. Forests in the Anthropocene. Ann. Am. Assoc. Geogr. 2020, 111, 869–879. [Google Scholar] [CrossRef]
- Calder, W.J.; Shuman, B. Extensive wildfires, climate change, and an abrupt state change in subalpine ribbon forests, Colorado. Ecology 2017, 98, 2585–2600. [Google Scholar] [CrossRef] [PubMed]
- Calder, W.J.; Parker, D.; Stopka, C.J.; Jiménez-Moreno, G.; Shuman, B.N. Medieval warming initiated exceptionally large wildfire outbreaks in the Rocky Mountains. Proc. Natl. Acad. Sci. USA 2015, 112, 13261–13266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muir, P.S.; Lotan, J.E. Disturbance History and Serotiny of Pinus contorta in Western Montana. Ecology 1985, 66, 1658–1668. [Google Scholar] [CrossRef]
- Guz, J.; Gill, N.S.; Kulakowski, D. Long-Term Empirical Evidence Shows Post-Disturbance Climate Controls Post-Fire Regen-eration. J. Ecol. 2021, 109, 4007–4024. [Google Scholar] [CrossRef]
- Stevens-Rumann, C.; Morgan, P. Repeated wildfires alter forest recovery of mixed-conifer ecosystems. Ecol. Appl. 2016, 26, 1842–1853. [Google Scholar] [CrossRef]
- Harris, L.B.; Drury, S.A.; Taylor, A.H. Strong Legacy Effects of Prior Burn Severity on Forest Resilience to a High-Severity Fire. Ecosystems 2021, 24, 774–787. [Google Scholar] [CrossRef]
- Chuvieco, E.; Aguado, I.; Salas, J.; García, M.; Yebra, M.; Oliva, P. Satellite Remote Sensing Contributions to Wildland Fire Science and Management. Curr. For. Rep. 2020, 6, 81–96. [Google Scholar] [CrossRef]
- Hardy, C.C.; Burgan, R.E. Evaluation of NDVI for Monitoring Live Moisture in Three Vegetation Types of the Western US. Photogramm. Eng. Remote Sens. 1999, 65, 603–610. [Google Scholar]
- Robinson, J.M. Fire from space: Global fire evaluation using infrared remote sensing. Int. J. Remote Sens. 1991, 12, 3–24. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Trugman, A.T.; Badgley, G.; Anderson, C.M.; Bartuska, A.; Ciais, P.; Cullenward, D.; Field, C.B.; Freeman, J.; Goetz, S.J.; et al. Climate-driven risks to the climate mitigation potential of forests. Science 2020, 368, eaaz7005. [Google Scholar] [CrossRef] [PubMed]
- Rogers, B.M.; Balch, J.K.; Goetz, S.J.; Lehmann, C.E.R.; Turetsky, M. Focus on changing fire regimes: Interactions with climate, ecosystems, and society. Environ. Res. Lett. 2020, 15, 030201. [Google Scholar] [CrossRef]
- Yuan, C.; Liu, Z.; Zhang, Y. Aerial Images-Based Forest Fire Detection for Firefighting Using Optical Remote Sensing Techniques and Unmanned Aerial Vehicles. J. Intell. Robot. Syst. 2017, 88, 635–654. [Google Scholar] [CrossRef]
- Mueller, E.; Skowronski, N.; Clark, K.; Gallagher, M.; Kremens, R.; Thomas, J.C.; El Houssami, M.; Filkov, A.; Hadden, R.M.; Mell, W.; et al. Utilization of remote sensing techniques for the quantification of fire behavior in two pine stands. Fire Saf. J. 2017, 91, 845–854. [Google Scholar] [CrossRef] [Green Version]
- Turner, M.G.; Hargrove, W.W.; Gardner, R.H.; Romme, W.H. Effects of Fire on Landscape Heterogeneity in Yellowstone Na-tional Park, Wyoming. J. Veg. Sci. 1994, 5, 731–742. [Google Scholar] [CrossRef] [Green Version]
- McKenna, P.; Lechner, A.; Phinn, S.; Erskine, P. Remote Sensing of Mine Site Rehabilitation for Ecological Outcomes: A Global Systematic Review. Remote Sens. 2020, 12, 3535. [Google Scholar] [CrossRef]
- Filipponi, F.; Manfron, G. Observing Post-Fire Vegetation Regeneration Dynamics Exploiting High-Resolution Sentinel-2 Data. Proceedings 2019, 18, 10. [Google Scholar] [CrossRef] [Green Version]
- Roteta, E.; Bastarrika, A.; Padilla, M.; Storm, T.; Chuvieco, E. Development of a Sentinel-2 Burned Area Algorithm: Gener-ation of a Small Fire Database for Sub-Saharan Africa. Remote Sens. Environ. 2019, 222, 1–17. [Google Scholar] [CrossRef]
- Szpakowski, D.M.; Jensen, J.L.R. A Review of the Applications of Remote Sensing in Fire Ecology. Remote Sens. 2019, 11, 2638. [Google Scholar] [CrossRef] [Green Version]
- Frazier, R.J.; Coops, N.C.; Wulder, M.; Hermosilla, T.; White, J. Analyzing spatial and temporal variability in short-term rates of post-fire vegetation return from Landsat time series. Remote Sens. Environ. 2018, 205, 32–45. [Google Scholar] [CrossRef]
- Hislop, S.; Jones, S.; Soto-Berelov, M.; Skidmore, A.; Haywood, A.; Nguyen, T.H. Using Landsat Spectral Indices in Time-Series to Assess Wildfire Disturbance and Recovery. Remote Sens. 2018, 10, 460. [Google Scholar] [CrossRef] [Green Version]
- Bright, B.C.; Hudak, A.T.; Kennedy, R.E.; Braaten, J.D.; Khalyani, A.H. Examining post-fire vegetation recovery with Landsat time series analysis in three western North American forest types. Fire Ecol. 2019, 15, 8. [Google Scholar] [CrossRef] [Green Version]
- Lutes, D.C.; Keane, R.E.; Caratti, J.F.; Key, C.H.; Benson, N.C.; Sutherland, S.; Gangi, L.J. FIREMON: Fire effects monitoring and inventory system. Gen. Tech. Rep. 2006, 164, LA-1-55. [Google Scholar] [CrossRef]
- Pleniou, M.; Koutsias, N. Sensitivity of spectral reflectance values to different burn and vegetation ratios: A multi-scale approach applied in a fire affected area. ISPRS J. Photogramm. Remote Sens. 2013, 79, 199–210. [Google Scholar] [CrossRef]
- Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.-L.; Quayle, B.; Howard, S. A Project for Monitoring Trends in Burn Severity. Fire Ecol. 2007, 3, 3–21. [Google Scholar] [CrossRef]
- Chu, T.; Guo, X. Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review. Remote Sens. 2014, 6, 470–520. [Google Scholar] [CrossRef] [Green Version]
- Idris, M.H.; Kuraji, K.; Suzuki, M. Evaluating Vegetation Recovery Following Large-Scale Forest Fires in Borneo and North-eastern China Using Multi-Temporal NOAA/AVHRR Images. J. For. Res. 2005, 10, 101–111. [Google Scholar] [CrossRef]
- Pickell, P.D.; Hermosilla, T.; Frazier, R.J.; Coops, N.; Wulder, M. Forest recovery trends derived from Landsat time series for North American boreal forests. Int. J. Remote Sens. 2015, 37, 138–149. [Google Scholar] [CrossRef]
- Zhao, B.; Zhong, Y.; Zhang, L. A spectral-structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2016, 116, 73–85. [Google Scholar] [CrossRef]
- Amiro, B.D.; Barr, A.; Black, T.A.; Bracho, R.; Brown, M.; Chen, J.; Clark, K.L.; Davis, K.J.; Desai, A.; Dore, S.; et al. Ecosystem carbon dioxide fluxes after disturbance in forests of North America. J. Geophys. Res. Earth Surf. 2010, 115. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Gunderson, L.H. Ecological Resilience—In Theory and Application. Annu. Rev. Ecol. Syst. 2000, 31, 425–439. [Google Scholar] [CrossRef] [Green Version]
- Chu, T.; Guo, X.; Takeda, K. Effects of Burn Severity and Environmental Conditions on Post-Fire Regeneration in Siberian Larch Forest. Forests 2017, 8, 76. [Google Scholar] [CrossRef]
- Chambers, M.E.; Fornwalt, P.J.; Malone, S.L.; Battaglia, M.A. Patterns of conifer regeneration following high severity wildfire in ponderosa pine—Dominated forests of the Colorado Front Range. For. Ecol. Manag. 2016, 378, 57–67. [Google Scholar] [CrossRef]
- Haffey, C.; Sisk, T.D.; Allen, C.D.; Thode, A.E.; Margolis, E.Q. Limits to Ponderosa Pine Regeneration following Large High-Severity Forest Fires in the United States Southwest. Fire Ecol. 2018, 14, 143–163. [Google Scholar] [CrossRef]
- Turner, M.G.; Turner, D.M.; Romme, W.H.; Tinker, D.B. Cone production in young post-fire Pinus contorta stands in Greater Yellowstone (USA). For. Ecol. Manag. 2007, 242, 119–126. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2013. [Google Scholar]
- Fox, J.; Weisberg, S. Multivariate Linear Models in R. In An R Companion to Applied Regression; Sage Publications: London, UK, 2011. [Google Scholar]
- Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Rother, M.T.; Veblen, T.T. Limited conifer regeneration following wildfires in dry ponderosa pine forests of the Colorado Front Range. Ecosphere 2016, 7. [Google Scholar] [CrossRef]
- Hansen, W.D.; Braziunas, K.H.; Rammer, W.; Seidl, R.; Turner, M.G. It takes a few to tango: Changing climate and fire regimes can cause regeneration failure of two subalpine conifers. Ecology 2018, 99, 966–977. [Google Scholar] [CrossRef] [PubMed]
- Lotan, J.E. Cone Serotiny-Fire Relationships in Lodgepole Pine. Bark Beetles Fuels Fire Bibliogr. 1976, 8, 267–278. [Google Scholar]
- Sibold, J.S.; Veblen, T.T. Relationships of Subalpine Forest Fires in the Colorado Front Range with Interannual and Multide-cadal-Scale Climatic Variation. J. Biogeogr. 2006, 33, 833–842. [Google Scholar] [CrossRef]
- Schumacher, S.; Bugmann, H. The relative importance of climatic effects, wildfires and management for future forest landscape dynamics in the Swiss Alps. Glob. Chang. Biol. 2006, 12, 1435–1450. [Google Scholar] [CrossRef]
- Harvey, B.J.; Donato, D.C.; Turner, M.G. High and Dry: Postfire Drought and Large Stand-Replacing Burn Patches Reduce Postfire Tree Regeneration in Subalpine Forests. In Causes and Consequences of Spatial Patterns of Fire Severity in Northern Rocky Mountain Forests: The Role of Disturbance Interactions and Changing Climate; The University of Wisconsin-Madison: Madison, WI, USA, 2016; Volume 1001, p. 224. [Google Scholar]
- Davis, K.T.; Dobrowski, S.Z.; Higuera, P.E.; Holden, Z.A.; Veblen, T.T.; Rother, M.T.; Parks, S.A.; Sala, A.; Maneta, M.P. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl. Acad. Sci. USA 2019, 116, 6193–6198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Severity Level | dNBR Range (Scaled by 103) | Relationship to Ecological Damage |
---|---|---|
low severity | +100 to 269 | damaged ground herbaceous vegetation |
moderate severity | +270 to +659 | completely burned understory vegetation with some canopy mortality |
high severity | +660 to +1300 | completely burned understory vegetation with major canopy mortality |
Fire Year | 1999 | 2002 | 2006 |
---|---|---|---|
size (ha) | 10.600 | 4397 | 1200 |
mean elevation (masl) | 2426 | 2825 | 2645 |
dominant aspect | ESE | SE | E |
Variable Name | Data Type | Variable Definition | Significance for the NBR Recovery |
---|---|---|---|
Elevation | continuous | elevation on the latitude (m) | Reflecting the size and shape of stand-replacing fire Common in upper elevations |
Aspect | discrete | direction the slope faces | North-facing slopes are cooler than south-facing slopes |
Slope | continuous | Slope gradient (°) | Steeper slopes retain less moisture and may be less suitable for regeneration. |
Fire Regime Group (FRG) | discrete | The LANDFIRE Fire dataset provides presumed historical fire regimes within landscapes based on interactions between vegetation dynamics, fire spread, fire effects, and spatial contexts. | Lodgepole pine is limited to crown fires every 200–350 years. |
USA Soils Hydraulic Group | discrete | The hydrologic soil group is displayed in seven classes that describe the rate at which the soil absorbs rainfall. | The physical properties of soil affect the rate at which water is absorbed. Hydrologic soil groups provide the rate at which water infiltrates the soil. |
USA Soils Bedrock Depth | discrete | The shallowest depth to bedrock from the top of the soil is displayed. | Bedrock is the material under soils. |
USA Soils Hydric Class | discrete | Hydric soils for conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions for the under part of the soil are displayed. | Hydric soils drain poorly and may have additional moisture. |
USA Soils Drainage Class | discrete | Soils are classified in seven classes based on the rate of water infiltration. | The rate at which water drains into the soil has a direct effect on how plants can grow. |
Burn Severity | discrete | The Monitoring Trends in Burn Severity (MTBS) provided burn severity. | Lodgepole pine is adapted to high-severity fires. Mixed-severity and low-severity fires can impact forest recovery. |
Fire | Severity | Five Years Post-Fire | Ten Years Post-Fire | Fifteen Years Post-Fire |
---|---|---|---|---|
1999 | high | 56.10 | 55.31 | 59.99 |
1999 | medium | 51.60 | 54.59 | 58.17 |
1999 | low | 36.20 | 41.68 | 45.81 |
2002 | high | 82.50 | 67.06 | 58.10 |
2002 | medium | 17.49 | 40.72 | 50.40 |
2002 | low | 17.49 | 32.94 | 41.89 |
2006 | high | 62.90 | 68.79 | 89.97 |
2006 | medium | 41.48 | 66.84 | 81.61 |
2006 | low | 27.84 | 46.14 | 61.55 |
Fire | Severity | Season | Variable | Estimate | SE | t-Value | Pr (>|t|) | R2 | p-Value |
---|---|---|---|---|---|---|---|---|---|
1999 | high | summer season | intercept | 28.63 | 10.94 | 2.62 | 0.05 | 0.33 | 0.09 |
ppt | −0.02 | 0.01 | −1.90 | 0.10 | |||||
1999 | medium | summer season | intercept | 58.36 | 22.22 | 2.62 | 0.03 | 0.50 | 0.11 |
tmean | −1.60 | 1.57 | −1.02 | 0.34 | |||||
tmin | 1.66 | 0.90 | 1.84 | 0.11 | |||||
1999 | low | summer season | intercept | 44.69 | 14.73 | 3.04 | 0.02 | 0.61 | 0.05 |
tmean | −1.42 | 1.04 | 1.04 | 0.22 | |||||
tmin | 1.41 | 0.60 | 0.60 | 0.06 | |||||
1999 | high | winter season | intercept | 20.78 | 9.69 | 2.14 | 0.07 | 0.49 | 0.02 |
ppt | −0.03 | 0.00 | −2.97 | 0.02 | |||||
1999 | medium | winter season | intercept | 14.40 | 10.88 | 1.39 | 0.21 | 0.52 | 0.01 |
ppt | −0.03 | 0.00 | −3.12 | 0.02 | |||||
1999 | low | winter season | intercept | 7.71 | 7.76 | 0.90 | 0.40 | 0.53 | 0.04 |
ppt | −0.16 | 0.00 | −1.89 | 0.10 | |||||
tmean | 0.49 | 0.53 | 0.91 | 0.39 | |||||
2002 | high | summer season | intercept | 77.74 | 2.07 | 37.49 | 0.00 | 0.91 | 0.00 |
tmean | −0.06 | 0.14 | −0.43 | 0.68 | |||||
tmin | −0.66 | 0.07 | −.96 | 0.00 | |||||
2002 | medium | summer season | intercept | 25.20 | 3.76 | 6.70 | 0.00 | 0.87 | 0.00 |
tmean | 0.45 | 0.25 | 1.80 | 0.12 | |||||
tmin | 0.95 | 0.13 | 7.16 | 0.00 | |||||
2002 | low | summer season | intercept | 22.26 | 2.07 | 10.73 | 0.00 | 0.91 | 0.00 |
tmean | 0.06 | 0.13 | 0.42 | 0.68 | |||||
tmin | 0.65 | 0.07 | 8.95 | 0.00 | |||||
2002 | high | winter season | intercept | 76.32 | 1.95 | 39.03 | 0.00 | 0.87 | 0.00 |
tmax | 0.44 | 0.06 | 6.58 | 0.00 | |||||
tmean | −1.02 | 0.17 | −5.95 | 0.00 | |||||
2002 | medium | winter season | intercept | 28.43 | 2.79 | 10.15 | 0.00 | 0.89 | 0.00 |
tmax | −0.60 | 0.09 | −6.17 | 0.00 | |||||
tmean | 1.83 | 0.24 | 7.43 | 0.00 | |||||
2002 | low | winter season | intercept | 23.67 | 1.95 | 12.10 | 0.00 | 0.87 | 0.00 |
tmax | −0.44 | 0.06 | −6.58 | 0.00 | |||||
tmean | 1.028 | 0.17 | 5.95 | 0.00 | |||||
2006 | high | summer season | intercept | 67.42 | 8.06 | 8.36 | 0.00 | 0.81 | 0.00 |
tmean | −2.17 | 0.73 | −2.96 | 0.02 | |||||
tmin | 1.87 | 0.46 | 4.04 | 0.00 | |||||
2006 | medium | summer season | intercept | 65.27 | 9.88 | 6.60 | 0.00 | 0.84 | 0.00 |
tmax | −1.33 | 0.41 | −3.21 | 0.01 | |||||
tmin | 0.96 | 0.14 | 6.68 | 0.00 | |||||
2006 | low | summer season | intercept | 20.45 | 2.11 | 9.67 | 0.00 | 0.75 | 0.00 |
tmin | 0.43 | 0.08 | 5.11 | 0.00 | |||||
2006 | high | winter season | intercept | 46.69 | 3.03 | 15.41 | 0.00 | 0.65 | 0.00 |
tmin | 0.58 | 0.14 | 4.04 | 0.00 | |||||
2006 | medium | winter season | intercept | 37.55 | 3.72 | 10.09 | 0.00 | 0.65 | 0.00 |
tmin | 0.72 | 0.17 | 4.02 | 0.00 | |||||
2006 | low | winter season | intercept | 22.12 | 1.60 | 13.77 | 0.00 | 0.83 | 0.00 |
tmin | 0.49 | 0.07 | 6.35 | 0.00 |
Severity | Response Variables | Explanatory Variables | Mean Absolute Error (MAE) | Percent Variance Explained | mtry |
---|---|---|---|---|---|
all | magnitude | severity, elevation, and slope | 21,949.49 | 46.88 | 3 |
high | magnitude | elevation, slope, and aspect | 20,461.66 | 18.12 | 2 |
medium | magnitude | elevation, slope, and aspect | 31,936.84 | −6.03 | 2 |
low | magnitude | elevation, slope, and fire regime | 2287.456 | 10.77 | 2 |
all | rate | severity, elevation, and slope | 763.1918 | 33.13 | 2 |
high | rate | elevation, slope, and aspect | 2536.23 | 23.45 | 2 |
medium | rate | elevation, slope, and aspect | 819.4543 | −9.18 | 2 |
low | rate | elevation, slope, and aspect | 56.15127 | −11.5 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guz, J.; Sangermano, F.; Kulakowski, D. The Influence of Burn Severity on Post-Fire Spectral Recovery of Three Fires in the Southern Rocky Mountains. Remote Sens. 2022, 14, 1363. https://doi.org/10.3390/rs14061363
Guz J, Sangermano F, Kulakowski D. The Influence of Burn Severity on Post-Fire Spectral Recovery of Three Fires in the Southern Rocky Mountains. Remote Sensing. 2022; 14(6):1363. https://doi.org/10.3390/rs14061363
Chicago/Turabian StyleGuz, Jaclyn, Florencia Sangermano, and Dominik Kulakowski. 2022. "The Influence of Burn Severity on Post-Fire Spectral Recovery of Three Fires in the Southern Rocky Mountains" Remote Sensing 14, no. 6: 1363. https://doi.org/10.3390/rs14061363
APA StyleGuz, J., Sangermano, F., & Kulakowski, D. (2022). The Influence of Burn Severity on Post-Fire Spectral Recovery of Three Fires in the Southern Rocky Mountains. Remote Sensing, 14(6), 1363. https://doi.org/10.3390/rs14061363