On-Orbit Geometric Calibration and Accuracy Validation for Laser Footprint Cameras of GF-7 Satellite
Abstract
:1. Introduction
2. Geometric Positioning Model
2.1. Introduction to Laser Footprint Cameras of GF-7 Satellite
2.2. Geometric Positioning Model of Laser Footprint Cameras
3. Calibration Method
3.1. External Calibration
3.2. Internal Calibration
3.3. On-Orbit Geometric Calibration Process
4. On-Orbit Calibration Experiments
4.1. Internal Calibration Experiments
4.2. External Calibration Experiments
5. Accuracy Validation of Laser Footprint Images
5.1. Validation with Ground Checkpoints
5.2. Validation with High Accuracy Reference Images
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schutz, B.E.; Zwally, H.J.; Shuman, C.A.; Hancock, D.; Dimarzio, J. Overview of the ICESat mission. Geophys. Res. Lett. 2005, 32, 97–116. [Google Scholar] [CrossRef] [Green Version]
- Abshire, J.B.; Sun, X.; Riris, H.; Sirota, J.M.; Mcgarry, J.F.; Palm, S.; Yi, D.; Liiva, P. Geoscience laser altimeter system (GLAS) on the ICESat mission: On-orbit measurement performance. Geophys. Res. Lett. 2005, 32, L21S02. [Google Scholar] [CrossRef] [Green Version]
- Xinming, T.; Guoyuan, L.; Xiaoming, G.; Jiyi, C. The Rigorous Geometric Model of Satellite Laser Altimeter and Preliminarily Accuracy Validation. Acta Geod. Et Cartogr. 2016, 45, 1182–1191. (In Chinese) [Google Scholar]
- Renxiang, W. Chinese photogrammetry satellite without ground control points (2)—Technical thinking of 1:10,000 scale data-transferring photogrammetry satellite. Spacecr. Recov. Remote Sens. 2014, 35, 1–5. (In Chinese) [Google Scholar]
- Guoyuan, L.; Xinming, T.; Huabin, W.; Xiaoming, G. Research on the ZY-3 block adjustment supported by the GLAS laser altimetry data. In Proceedings of the 3rd China High Resolution Earth Observation Conference, Beijing: Major Special Management Office of High Resolution to Earth Observation System, Beijing, China, 1–2 December 2014; pp. 586–600. (In Chinese). [Google Scholar]
- Jin, W.; Yong, Z.; Zuxun, Z.; Xiao, L.; Pengjie, T.; Mengxiao, S. ICESat laser points assisted block adjustment for mapping satellite-1 stereo imagery. Acta Geod. Cartogr. Sin. 2018, 47, 359–369. (In Chinese) [Google Scholar]
- Ning, C.; Ping, Z.; Xia, W.; Xinming, T.; Guoyuan, L. Laser altimetry data-aided satellite geometry model refined processing. J. Remote 2019, 23, 291–302. (In Chinese) [Google Scholar]
- Guo, Z.; Kai, X.; Jia, P.; Hao, X.; Li, D. Integrating stereo images and laser altimeter data of the ZY3-02 satellite for improved earth topographic modeling. Remote Sens. 2019, 11, 2453–2477. [Google Scholar]
- Genghua, H.; Yuxing, D.; Jincai, W.; Rong, S.; Xin, W.; Ziqing, J. Design and implementation of key technology of GF-7 satellite laser altimeter subsystem. Spacecr. Eng. 2020, 29, 68–73. (In Chinese) [Google Scholar]
- Aiyan, G.; Jun, D.; Chenguang, Z.; Xinwei, Z. Design and on-orbit validation of GF-7 satellite laser altimeter. Spacecr. Eng. 2020, 29, 43–48. (In Chinese) [Google Scholar]
- Xinming, T.; Junfeng, X.; Ren, L.; Genghua, H.; Chenguang, Z.; Ying, Z.; Hongzhao, T.; Xianhui, D. Overview of the GF-7 laser altimeter system mission. Earth Space Sci. 2019, 7, e2019EA000777. [Google Scholar]
- Xinming, T.; Junfeng, X.; Fan, M.; Xianhui, D.; Xin, L.; Shaoning, L.; Song, L.; Genghua, H.; Xingke, F.; Ren, L. GF-7 dual-beam laser altimeter on-orbit geometric calibration and test verification. Acta Geod. Cartogr. Sin. 2021, 50, 384–395. (In Chinese) [Google Scholar]
- Jain, R.; Kasturi, R.; Schunck, B.G. Machine Vision; McGraw-Hill, Inc.: New York, NY, USA, 1995; ISBN 0-07-032018-7. [Google Scholar]
- Fraser, C. Digital camera self-calibration. ISPRS J. Photogramm. Remote Sens. 1997, 52, 149–159. [Google Scholar] [CrossRef]
- Yılmaztürk, F. Full-automatic self-calibration of color digital cameras using color targets. Opt. Express 2011, 19, 18164–18174. [Google Scholar] [CrossRef] [PubMed]
- Gruen, A.; Huang, T.S. Calibration and Orientation of Cameras in Computer Vision; Springer: Berlin/Heidelberg, Germany, 2001; ISBN 978-3-662-04567-1. [Google Scholar]
- Shao, X.; Eisa, M.M.; Chen, Z.; Dong, S.; He, X. Self-calibration single-lens 3d video extensometer for high-accuracy and real-time strain measurement. Opt. Express 2016, 24, 30124–30138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Jiang, Y.; Li, D.; Huang, W.; Pan, H.; Tang, X.; Zhu, X. In-orbit geometric calibration and validation of ZY-3 linear array sensors. Photogramm. Rec. 2014, 29, 68–88. [Google Scholar] [CrossRef]
- Delevit, J.M.; Greslou, D.; Amberg, V.; Dechoz, C.; de Lussy, F.; Lebegue, L.; Latry, C.; Artigues, S.; Bernard, L. Attitude assessment using Pleiades-HR capabilities. Proc. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, 525–530. [Google Scholar] [CrossRef] [Green Version]
- Radhadevi, P.V.; Müller, R.; d‘Angelo, P.; Reinartz, P. In-flight geometric calibration and orientation of ALOS/PRISM imagery with a generic sensor model. Photogram. Eng. Rem. Sens. 2011, 77, 531–538. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, M.; Jin, S.; He, L.; Tian, Y. New on-orbit geometric interior parameters self-calibration approach based on three-view stereoscopic images from high-resolution multi-TDI-CCD optical satellites. Opt. Express 2018, 26, 7475–7493. [Google Scholar] [CrossRef]
- Smiley, B.; Levine, J.; Chou, A. On-orbit calibration and validation of the skybox imaging constellation. In Proceedings of the ISPRS Technical Commission I Symposium, Sustaining Land Imaging: UAVs to Satellites, Denver, CO, USA, 17–20 November 2014. [Google Scholar]
- Wang, M.; Cheng, Y.; Chang, X.; Jin, S.; Zhu, Y. On-orbit geometric calibration and geometric quality assessment for the high-resolution geostationary optical satellite GaoFen4. ISPRS J. Photogramm. Remote Sens. 2017, 125, 63–77. [Google Scholar] [CrossRef]
- Xueli, C. Research on Key Technologies of Geometric Processing for High-Resolution Area-Array Camera of Stationary Orbit Satellite. Ph.D. Thesis, Wuhan University, Wuhan, China, 2015. (In Chinese). [Google Scholar]
- Jianqing, Z.; Li, P.; Shugen, W. Photogrammetry, 2nd ed; Wuhan University Press: Wuhan, China, 2009. (In Chinese) [Google Scholar]
- Xinming, T.; Jiyi, C.; Guoyuan, L.; Xiaoming, G.; Wenjun, Z. Error Analysis and Preliminary Pointing Angle Calibration of Laser Altimeter on Ziyuan-3 02 Satellite. Geomat. Inf. Sci. Wuhan Univ. 2018, 43, 1611–1619. (In Chinese) [Google Scholar]
- Chunmei, Z.; Xinming, T. Precise Orbit Determination for the ZY-3 Satellite Mission Using GPS Receiver. J. Astronaut. 2013, 34, 1202–1206. (In Chinese) [Google Scholar]
- Xinming, T.; Junfeng, X.; Xiao, W.; Wanshou, J. High-Precision Attitude Post-Processing and Initial Verification for the ZY-3 Satellite. Remote Sens. 2015, 7, 111–134. [Google Scholar]
- Xie, J.; Tang, X.; Mo, F.; Liu, Z. Domestic Stellar Image Post-processing Project Design and System Implementation for ZY-3 Satellite. Geomat. Inf. Sci. Wuhan Univ. 2017, 42, 434–440. (In Chinese) [Google Scholar]
- Murthy, K.; Chau, A.H.; Amin, M.B. An earth imaging camera simulation using wide-scale construction of reflectance surfaces. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XVII, Dresden, Germany, 24 October 2013. [Google Scholar]
- Chen, J.; Zou, L.; Zhang, J.; Dou, L. The comparison and application of corner detection algorithms. J. Multimed. 2009, 4, 435–441. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, F. High precision digital image correlation. In Proceedings of the 39th Photogrammetric Week, Stuttgart, Germany, 19–24 September 1984; pp. 231–243. [Google Scholar]
- OpenGeodata. NRW. Available online: https://www.opengeodata.nrw.de/produkte/geobasis/ (accessed on 16 August 2020).
Projects | Technical Specification |
---|---|
Function | Imaging ground objects and output laser spots |
Detector | CMV4000 CMOS APS, Global shutter |
Focal length | 2.578 m |
Pixel size | 16.5 μm (9.0 μm optional *) |
Image size | 550 × 550 (832 × 360 optional *) |
Field of view | Taking the laser emission optical axis as the central optical axis, ±0.1° |
Ground resolution | 3.2 m @ 500 km (2.1 m optional *) |
Spectral range | 500–720 nm, and 1064 nm for laser pulse |
Quantization bits | 14 bit |
LFC Index | Mean Errors/Pixel | RMSE/Pixel | |||
---|---|---|---|---|---|
X Direction | Y Direction | X Direction | Y Direction | Horizontal | |
LFC1 | −0.231 | 0.048 | 0.649 | 1.581 | 1.709 |
LFC2 | 0.100 | −0.349 | 0.571 | 2.102 | 2.178 |
LFC Index | Mean Errors/Pixel | RMSE/Pixel | |||
---|---|---|---|---|---|
X Direction | Y Direction | X Direction | Y Direction | Horizontal | |
LFC1 | −0.009 | 0.002 | 0.519 | 0.456 | 0.691 |
LFC2 | 0.048 | 0.014 | 0.470 | 0.453 | 0.652 |
Date | Target Points | LFC1/m | LFC2/m | ||||||
---|---|---|---|---|---|---|---|---|---|
X Direction | Y Direction | Horizontal | RMS | X Direction | Y Direction | Horizontal | RMSE | ||
9 June | Tp1 | 1.704 | −0.677 | 1.834 | 1.182 | −0.821 | 0.882 | 1.205 | 1.056 |
Tp2 | −0.541 | 1.283 | 1.393 | −0.326 | −0.173 | 0.369 | |||
Tp3 | 0.497 | −0.481 | 0.692 | −0.767 | −0.589 | 0.966 | |||
Tp4 | −1.661 | −0.124 | 1.666 | 1.914 | −0.119 | 1.918 | |||
14 June | Tp1 | 1.756 | −0.528 | 1.834 | 1.051 | 0.794 | −1.096 | 1.354 | 1.163 |
Tp2 | −0.686 | 1.119 | 1.313 | −1.601 | 0.453 | 1.664 | |||
Tp3 | −0.465 | −0.068 | 0.470 | −0.346 | −0.604 | 0.696 | |||
Tp4 | −0.606 | −0.522 | 0.799 | 1.153 | 1.249 | 1.700 | |||
19 June | Tp1 | 1.127 | −0.309 | 1.168 | 0.916 | 0.828 | −1.690 | 1.882 | 1.282 |
Tp2 | −1.097 | 0.200 | 1.115 | −1.368 | 0.197 | 1.382 | |||
Tp3 | 0.513 | −0.029 | 0.513 | −1.141 | 0.143 | 1.150 | |||
Tp4 | −0.543 | 0.140 | 0.561 | 1.682 | 1.351 | 2.157 | |||
RMS of residuals | 1.055 (≈0.33 pixels) | RMS of residuals | 1.171 (≈0.37 pixels) |
LFC Index | Date | Images | Ground-Control Points | Mean Errors/m | Plane Positioning Accuracy/m | |||
---|---|---|---|---|---|---|---|---|
X Direction | Y Direction | Max | Min | RMSE | ||||
LFC1 | 9 June | 1 | 4 | 2.142 | 1.556 | 3.940 | 1.505 | 3.025 |
14 June | 1 | 4 | 1.785 | 0.503 | 3.929 | 0.956 | 2.270 | |
19 June | 1 | 4 | 1.664 | −1.421 | 3.518 | 1.168 | 2.427 | |
3 September | 6 | 10 | −2.250 | −0.325 | 4.269 | 0.891 | 3.148 | |
Total | 9 | 22 | −0.006 | −0.032 | 4.269 | 0.891 | 2.809 | |
LFC2 | 9 June | 1 | 4 | −0.545 | 4.491 | 6.049 | 3.436 | 4.799 |
14 June | 1 | 4 | 2.206 | 0.203 | 3.646 | 0.845 | 2.641 | |
19 June | 1 | 4 | 1.873 | −2.275 | 4.794 | 2.219 | 3.399 | |
3 September | 4 | 10 | −1.444 | −0.934 | 4.888 | 1.390 | 2.956 | |
Total | 7 | 22 | −0.014 | 0.015 | 6.049 | 0.845 | 3.366 |
LFC Index | Date | Images | Ground Checkpoints | Mean Errors/m | Plane Positioning Accuracy/m | |||
---|---|---|---|---|---|---|---|---|
X Direction | Y Direction | Max | Min | RMSE | ||||
LFC1 | 26 April | 3 | 13 | −2.973 | −1.857 | 7.492 | 2.076 | 4.833 |
1 May | 3 | 10 | −0.252 | −2.840 | 7.827 | 2.807 | 5.039 | |
Total | 6 | 23 | −1.790 | −2.284 | 7.827 | 2.076 | 4.924 | |
LFC2 | 26 April | 2 | 7 | −2.287 | 0.333 | 6.331 | 2.556 | 4.490 |
1 May | 3 | 11 | −0.240 | −2.287 | 8.600 | 1.700 | 4.692 | |
Total | 5 | 18 | −1.036 | −1.268 | 8.600 | 1.700 | 4.615 |
LFC Index | Date | Mean Error/m | RMSE/m | Site | |||
---|---|---|---|---|---|---|---|
Eastern | Northern | Eastern | Northern | Horizontal | |||
LFC1 | 21 June 2020 | −0.152 | −0.950 | 1.265 | 1.029 | 1.631 | North Rhine-Westphalia, Germany |
5 July 2020 | 0.236 | 0.269 | 3.082 | 2.388 | 3.899 | Tianjin, China | |
5 November 2020 | −1.34 | 3.059 | 1.894 | 3.354 | 3.852 | Tianjin, China | |
30 December 2020 | 3.325 | 1.249 | 3.395 | 1.981 | 3.930 | Shenyang, China | |
4 January 2021 | 2.920 | −2.712 | 3.836 | 3.341 | 5.087 | Shenyang, China | |
17 April 2021 | 1.519 | 3.185 | 2.347 | 3.477 | 4.195 | North Rhine-Westphalia, Germany | |
15 June 2021 | −0.222 | 5.614 | 1.832 | 5.659 | 5.949 | North Rhine-Westphalia, Germany | |
2 September 2021 | 2.672 | −0.115 | 3.724 | 2.150 | 4.301 | Shenyang, China | |
LFC2 | 21 June 2020 | −0.979 | 0.033 | 2.002 | 1.265 | 2.368 | North Rhine-Westphalia, Germany |
5 July 2020 | −0.367 | 1.053 | 1.415 | 2.226 | 2.638 | Tianjin, China | |
5 November 2020 | −1.760 | 4.389 | 2.313 | 4.785 | 5.315 | Tianjin, China | |
30 December 2020 | 3.298 | 0.991 | 4.355 | 2.180 | 4.870 | Shenyang, China | |
4 January 2021 | 1.287 | 1.303 | 2.449 | 3.349 | 4.149 | Shenyang, China | |
17 April 2021 | 0.067 | 4.409 | 1.642 | 4.712 | 4.990 | North Rhine-Westphalia, Germany | |
15 June 2021 | −1.653 | 4.436 | 2.276 | 4.954 | 5.452 | North Rhine-Westphalia, Germany | |
2 September 2021 | 1.281 | 1.960 | 2.108 | 2.931 | 3.610 | Shenyang, China |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Zhang, B.; Tang, X.; Li, G.; Zhou, X.; Hu, L.; Dou, X. On-Orbit Geometric Calibration and Accuracy Validation for Laser Footprint Cameras of GF-7 Satellite. Remote Sens. 2022, 14, 1408. https://doi.org/10.3390/rs14061408
Chen J, Zhang B, Tang X, Li G, Zhou X, Hu L, Dou X. On-Orbit Geometric Calibration and Accuracy Validation for Laser Footprint Cameras of GF-7 Satellite. Remote Sensing. 2022; 14(6):1408. https://doi.org/10.3390/rs14061408
Chicago/Turabian StyleChen, Jiyi, Bin Zhang, Xinming Tang, Guoyuan Li, Xiaoqing Zhou, Liuru Hu, and Xianhui Dou. 2022. "On-Orbit Geometric Calibration and Accuracy Validation for Laser Footprint Cameras of GF-7 Satellite" Remote Sensing 14, no. 6: 1408. https://doi.org/10.3390/rs14061408
APA StyleChen, J., Zhang, B., Tang, X., Li, G., Zhou, X., Hu, L., & Dou, X. (2022). On-Orbit Geometric Calibration and Accuracy Validation for Laser Footprint Cameras of GF-7 Satellite. Remote Sensing, 14(6), 1408. https://doi.org/10.3390/rs14061408