Research on a Simulation Model of a Skywave Over-the-Horizon Radar Sea Echo Spectrum
Abstract
:1. Introduction
2. Materials and Methods
2.1. SWR Sea Surface Scattering Cross-Section Model
2.2. Ocean Wave Spectrum Models
2.3. Radio Wave Propagation Path Model
2.4. SWR Sea Echo Simulation Method
2.4.1. SWR Parameter Settings
2.4.2. Data
3. Results
3.1. The Influence of Grazing Incidence Angle, Scattering Angle, Scattering Azimuth Angle, and Fetch Length on the First-Order and Second-Order Cross-Section
3.2. Simulation Results of SWR Sea Echo
3.2.1. Ideal SWR Sea Echo Simulation Results
3.2.2. Contaminated SWR Sea Echo Simulation
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maresca, J.; Barnum, J. Measurement of oceanic wind speed from HF sea scatter by skywave radar. IEEE Trans. Antennas Propag. 1977, 25, 132–136. [Google Scholar] [CrossRef]
- Feng, M.; Ai, W.; Lu, W.; Shan, C.; Ma, S.; Chen, G. Sea surface temperature retrieval based on simulated microwave polarimetric measurements of a one-dimensional synthetic aperture microwave radiometer. Acta Oceanol. Sin. 2021, 40, 122–133. [Google Scholar] [CrossRef]
- Barrick, D. First-order theory and analysis of MF/HF/VHF scatter from the sea. IEEE Trans. Antennas Propag. 1972, 20, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Lipa, B.J.; Barrick, D.E. Extraction of sea state from HF radar sea echo: Mathematical theory and modeling. Radio Sci. 1986, 21, 81–100. [Google Scholar] [CrossRef]
- Barrick, D.E. Extraction of wave parameters from measured HF radar sea-echo Doppler spectra. Radio Sci. 1977, 12, 415–424. [Google Scholar] [CrossRef]
- Maresca, J.W., Jr.; Georges, T.M. Measuring rms wave height and the scalar ocean wave spectrum with HF skywave radar. J. Geophys. Res. Ocean. 1980, 85, 2759–2771. [Google Scholar] [CrossRef]
- Heron, M.; Dexter, P.; McGann, B. Parameters of the air-sea interface by high-frequency ground-wave Doppler radar. Mar. Freshw. Res. 1985, 36, 655–670. [Google Scholar] [CrossRef]
- Wyatt, L.R. A relaxation method for integral inversion applied to HF radar measurement of the ocean wave directional spectrum. Int. J. Remote Sens. 1990, 11, 1481–1494. [Google Scholar] [CrossRef]
- Shahidi, R.; Gill, E.W. An efficient and accurate solution for the extraction of non-directional ocean wave spectra from second-order high-frequency radar Doppler spectra. In Proceedings of the OCEANS 2017-Aberdeen, Aberdeen, UK, 19–22 June 2017; pp. 1–6. [Google Scholar]
- Howell, R.; Walsh, J. Measurement of ocean wave spectra using narrow-beam HE radar. IEEE J. Ocean. Eng. 1993, 18, 296–305. [Google Scholar] [CrossRef]
- Harlan, J.A.; Georges, T.M. An empirical relation between ocean-surface wind direction and the Bragg line ratio of HF radar sea echo spectra. J. Geophys. Res. Ocean. 1994, 99, 7971–7978. [Google Scholar] [CrossRef]
- Huang, W.; Wu, S.; Gill, E.; Wen, B.; Hou, J. HF radar wave and wind measurement over the Eastern China Sea. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1950–1955. [Google Scholar] [CrossRef]
- Long, A.; Trizna, D. Mapping of North Atlantic winds by HF radar sea backscatter interpretation. IEEE Trans. Antennas Propag. 1973, 21, 680. [Google Scholar] [CrossRef]
- Huang, W.; Gill, E.; Wu, X.; Li, L. Measurement of Sea Surface Wind Direction Using Bistatic High-Frequency Radar. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4117–4122. [Google Scholar] [CrossRef]
- Green, D.; Gill, E.; Huang, W. An Inversion Method for Extraction of Wind Speed From High-Frequency Ground-Wave Radar Oceanic Backscatter. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3338–3346. [Google Scholar] [CrossRef]
- Georges, T.M. Progress toward a practical skywave sea-state radar. IEEE Trans. Antennas Propag. 1980, 28, 751–761. [Google Scholar] [CrossRef]
- Evans, M.W.; Georges, T.M. Coastal Ocean Dynamics Radar (CODAR): NOAA’s Surface Current Mapping System. In Proceedings of the Oceans, San Diego, CA, USA, 17–19 September 1979. [Google Scholar]
- Gurgel, K.W.; Antonischki, G.; Essen, H.H.; Schlick, T. Wellen Radar (WERA): A new ground-wave HF radar for ocean remote sensing. Coast. Eng. 1999, 37, 219–234. [Google Scholar] [CrossRef]
- Ahearn, J.L.; Curley, S.R.; Headrick, J.M.; Trizna, D.B. Tests of remote skywave measurement of ocean surface conditions. Proc. IEEE 1974, 62, 681–687. [Google Scholar] [CrossRef]
- Parent, J.; Bourdillon, A. A method to correct HF skywave backscattered signals for ionospheric frequency modulation. IEEE Trans. Antennas Propag. 1988, 36, 127–135. [Google Scholar] [CrossRef]
- Parent, J. A frequency averaging method to improve sea-state measurements with an HF skywave radar. IEEE Trans. Antennas Propag. 1987, 35, 467–469. [Google Scholar] [CrossRef]
- Gauthier, F.; Bourdillon, A.; Parent, J. On the estimation of quasi-instantaneous frequency modulation of HF signals propagated through the ionosphere. IEEE Trans. Antennas Propag. 1990, 38, 405–411. [Google Scholar] [CrossRef]
- Zhao, H.-S.; Feng, J.; Xu, Z.-W.; Wu, J.; Wu, Z.-S.; Xu, B.; Xue, K.; Xu, T.; Hu, Y.-L. A temporal three-dimensional simulation of samarium release in the ionosphere. J. Geophys. Res. Space Phys. 2016, 121, 10508–10519. [Google Scholar] [CrossRef]
- Croft, T.A.; Hoogansian, H. Exact Ray Calculations in a Quasi-Parabolic Ionosphere With No Magnetic Field. Radio Sci. 1968, 3, 69–74. [Google Scholar] [CrossRef]
- Davies, K.; Rush, C.M. High-frequency ray paths in ionospheric layers with horizontal gradients. Radio Sci. 1985, 20, 95–110. [Google Scholar] [CrossRef]
- Jones, R.M. A Three-Dimensional Ray-Tracing Computer Program (Digest of ESSA Technical Report, ITSA No. 17). Radio Sci. 1968, 3, 93–94. [Google Scholar] [CrossRef]
- Dexter, P.E.; Theodoridis, S. Surface wind speed extraction from HF sky wave radar Doppler spectra. Radio Sci. 1982, 17, 643–652. [Google Scholar] [CrossRef]
- Stewart, R.H.; Barnum, J.R. Radio measurements of oceanic winds at long ranges: An evaluation. Radio Sci. 1975, 10, 853–857. [Google Scholar] [CrossRef]
- Walsh, J.; Gill, E.W.; Huang, W.; Chen, S. On the Development of a High-Frequency Radar Cross Section Model for Mixed Path Ionosphere–Ocean Propagation. IEEE Trans. Antennas Propag. 2015, 63, 2655–2664. [Google Scholar] [CrossRef]
- Chen, S.; Huang, W.; Gill, E.W. The first-order FMCW HF radar cross section model for ionosphere-ocean propagation. In Proceedings of the 2014 Oceans, St. John’s, NL, Canada, 14–19 September 2014; pp. 1–5. [Google Scholar]
- Chen, S.; Gill, E.W.; Huang, W. A First-Order HF Radar Cross-Section Model for Mixed-Path Ionosphere–Ocean Propagation With an FMCW Source. IEEE J. Ocean. Eng. 2016, 41, 982–992. [Google Scholar] [CrossRef]
- Chen, S.; Gill, E.W.; Huang, W. A second-order monostatic high frequency radar power model for mixed-path propagation. In Proceedings of the 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Montréal, QC, Canada, 10–13 July 2016; pp. 1–2. [Google Scholar]
- Chen, S.; Gill, E.W.; Huang, W. A High-Frequency Surface Wave Radar Ionospheric Clutter Model for Mixed-Path Propagation With the Second-Order Sea Scattering. IEEE Trans. Antennas Propag. 2016, 64, 5373–5381. [Google Scholar] [CrossRef]
- Paladini, R.; Mese, E.; Berizzi, F.; Garzelli, A.; Martorella, M.; Capria, A. Fetch limited sea scattering spectral model for HF-OTH skywave radar. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 4177–4180. [Google Scholar]
- Walsh, J.; Huang, W.; Gill, E. The Second-Order High Frequency Radar Ocean Surface Cross Section for an Antenna on a Floating Platform. IEEE Trans. Antennas Propag. 2012, 60, 4804–4813. [Google Scholar] [CrossRef]
- Gill, E.W.; Walsh, J. High-frequency bistatic cross sections of the ocean surface. Radio Sci. 2001, 36, 1459. [Google Scholar] [CrossRef]
- Pierson, W.J.; Moskowitz, L. A proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitaigorodskii. J. Geophys. Res. Atmos. 1964, 69, 5181–5190. [Google Scholar] [CrossRef]
- Hasselmann, D.E.; Dunckel, M.; Ewing, J.A. Directional Wave Spectra Observed during JONSWAP 1973. J. Phys. Oceanogr. 1980, 10, 1264–1280. [Google Scholar] [CrossRef]
- Longuet-Higgins, M.; Cartwright, D.; Smith, N. Observations of the directional spectrum of sea waves using the motions of a floating buoy. In Ocean Wave Spectra; Prentice-Hall: Easton, MD, USA, 1963; pp. 111–136. [Google Scholar]
- Mitsuyasu, H.; Tasai, F.; Suhara, T.; Mizuno, S.; Ohkusu, M.; Honda, T.; Rikiishi, K. Observations of the Directional Spectrum of Ocean WavesUsing a Cloverleaf Buoy. J. Phys. Oceanogr. 1975, 5, 750–760. [Google Scholar] [CrossRef] [Green Version]
- Heron, M.L. The effect of bimodal sea spectra on HF radar wind analysis. In Proceedings of the Oceans ‘04 MTS/IEEE Techno-Ocean ‘04 (IEEE Cat. No.04CH37600), Kobe, Japan, 9–12 November 2004; pp. 537–541. [Google Scholar]
- Dyson, P.L.; Bennett, J.A. A model of the vertical distribution of the electron concentration in the ionosphere and its application to oblique propagation studies. J. Atmos. Terr. Phys. 1988, 50, 251–262. [Google Scholar] [CrossRef]
- Norman, R.J.; Cannon, P.S. An evaluation of a new two-dimensional analytic ionospheric ray-tracing technique: Segmented method for analytic ray tracing (SMART). Radio Sci. 1999, 34, 489–499. [Google Scholar] [CrossRef]
- Folkestad, K. Exact Ray Computations in a Tilted Ionosphere With No Magnetic Field. Radio Sci. 2016, 3, 81–84. [Google Scholar] [CrossRef]
- Ma, X.; Fang, H.; Wang, S.; Chang, S. Impact of the Ionosphere Disturbed by Rocket Plume on OTHR Radio Wave Propagation. Radio Sci. 2021, 56, e2020RS007183. [Google Scholar] [CrossRef]
- Bourdillon, A.; Gauthier, F.; Parent, J. Use of maximum entropy spectral analysis to improve ship detection by over-the-horizon radar. Radio Sci. 1987, 22, 313–320. [Google Scholar] [CrossRef]
- Marple, L. A new autoregressive spectrum analysis algorithm. IEEE Trans. Acoust. Speech Signal Processing 1980, 28, 441–454. [Google Scholar] [CrossRef]
- Georges, T.M.; Maresca, J.W., Jr. The effects of space and time resolution on the quality of sea echo Doppler spectra measured with HF sky wave radar. Radio Sci. 1979, 14, 455–469. [Google Scholar] [CrossRef]
- Wu, J. Wind stress and surface roughness at air-sea interface. J. Geophys. Res. 1969, 74, 444–455. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; Guo, L.; Ding, H. Numerical simulation for the sea echo spectrum of OTHR radar based on JONSWAP sea spectrum. In Proceedings of the 2011 IEEE International Conference on Microwave Technology & Computational Electromagnetics, Beijing, China, 22–25 May 2011; pp. 369–371. [Google Scholar]
- Mao, Y.; Heron, M.L. The Influence of Fetch on the Response of Surface Currents to Wind Studied by HF Ocean Surface Radar. J. Phys. Oceanogr. 2008, 38, 1107–1121. [Google Scholar] [CrossRef] [Green Version]
- Georges, T.M.; Harlan, J.A.; Meyer, L.R.; Peer, R.G. Tracking Hurricane Claudette with the U.S. Air Force Over-the-Horizon Radar. J. Atmos. Ocean. Technol. 1993, 10, 441. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Yue, X.; Zhang, L.; Wu, X.; Wang, L. Correction of Ionospheric Distortion on HF Hybrid Sky-Surface Wave Radar Calibrated by Direct Wave. Radio Sci. 2019, 54, 380–396. [Google Scholar] [CrossRef]
- Kun, L.; Jiong, W.; Xingzhao, L. A piecewise parametric method based on polynomial phase model to compensate ionospheric phase contamination. In Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003, Hong Kong, China, 6–10 April 2003; p. II-405. [Google Scholar]
Parameters | Values |
---|---|
Longitude and latitude of T | 32°N, 118.5°E (Nanjing, Jiangsu Province) |
Radio wave f | 10 MHz |
Evaluation angle β | 15–25° |
Azimuth angle φT | 80–100° |
Azimuth resolution | 0.5° |
Bandwidth B | 30 KHz |
Sweep duration TS | 0.2 s |
Coherent integration sweeps N | 400 |
Waveform ST |
WS | Retrieved Parameter | Relative Error | Relative Errors | Relative Errors | ||||||
---|---|---|---|---|---|---|---|---|---|---|
15 m/s | 4.207° | 4.207° | 0% | 4.207° | 4.207° | 0% | 4.207° | 4.207° | 0% | |
0.402 m | 0.346 m | 16.1% | 0.287 m | 0.270 m | 6.3% | 0.028 m | 0.046 m | 39.1% | ||
5 m/s | 4.207° | 4.207° | 0% | 4.207° | 4.207° | 0% | 4.207° | 4.207° | 0% | |
0.016 m | 0.013 m | 23.8% | 0.010 m | 0.009 m | 11.1% | 4.18 × 10−4 m | 0.005 m | 91.6% | ||
25 m/s | 4.207° | 4.207° | 0% | 4.207° | 4.207° | 0% | 4.207° | 4.207° | 0% | |
3.645 m | 3.076 m | 18.5% | 2.504 m | 2.271 m | 10.3% | 0.040 m | 0.096 m | 58.3% |
Retrieved Parameter | Relative Error | Relative Errors | Relative Errors | |||||||
---|---|---|---|---|---|---|---|---|---|---|
30° | 4.207° | 4.207° | 0% | 4.207° | 4.207° | 0% | 4.207° | 4.207° | 0% | |
0.402 m | 0.346 m | 16.1% | 0.287 m | 0.270 m | 6.3% | 0.028 m | 0.046 m | 39.1% | ||
90° | 90° | 90° | 0% | 90° | 90° | 0% | 90° | 90° | 0% | |
0.234 m | 0.203 m | 15.3% | 0.171 m | 0.159 m | 7.6% | 0.014 m | 0.025 m | 44% | ||
150° | 175.8° | 175.8° | 0% | 175.8° | 175.8° | 0% | 175.8° | 175.8° | 0% | |
0.402 m | 0.346 m | 16.1% | 0.287 m | 0.270 m | 6.3% | 0.028 m | 0.046 m | 39.1% |
1 | 0.005 | 0.005 | 0.005 |
2 | 0.01 | 0.005 | 0.005 |
3 | 0.005 | 0.01 | 0.005 |
4 | 0.005 | 0.005 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, M.; Fang, H.; Ai, W.; Wu, X.; Yue, X.; Zhang, L.; Guo, C.; Zhou, Q.; Li, X. Research on a Simulation Model of a Skywave Over-the-Horizon Radar Sea Echo Spectrum. Remote Sens. 2022, 14, 1461. https://doi.org/10.3390/rs14061461
Feng M, Fang H, Ai W, Wu X, Yue X, Zhang L, Guo C, Zhou Q, Li X. Research on a Simulation Model of a Skywave Over-the-Horizon Radar Sea Echo Spectrum. Remote Sensing. 2022; 14(6):1461. https://doi.org/10.3390/rs14061461
Chicago/Turabian StyleFeng, Mengyan, Hanxian Fang, Weihua Ai, Xiongbin Wu, Xianchang Yue, Lan Zhang, Chaogang Guo, Qing Zhou, and Xiaoyan Li. 2022. "Research on a Simulation Model of a Skywave Over-the-Horizon Radar Sea Echo Spectrum" Remote Sensing 14, no. 6: 1461. https://doi.org/10.3390/rs14061461
APA StyleFeng, M., Fang, H., Ai, W., Wu, X., Yue, X., Zhang, L., Guo, C., Zhou, Q., & Li, X. (2022). Research on a Simulation Model of a Skywave Over-the-Horizon Radar Sea Echo Spectrum. Remote Sensing, 14(6), 1461. https://doi.org/10.3390/rs14061461