QDA-System: A Cloud-Based System for Monitoring Water Quality in Brazilian Hydroelectric Reservoirs from Space
Abstract
:1. Introduction
2. QDA-System Design and Development
- Operational monitoring: A systematic and routine provision of information of various water quality parameters;
- Automated processing: Achieved without the need for interactions or processing performed by system operators;
- Customizable: The capacity to use multiple image sources (e.g., Sentinel-2 MSI, Landsat-8 OLI, Planet®) and implementation of different types of water quality models according to site-specific needs;
- Scalable: The capacity to be easily replicated and parameterized for different water bodies;
- User-friendly interface with different access levels: developed for accessing via an intuitive web interface, with different access levels, considering specific needs.
Digital Image Processing, Bio-Optical Modeling, and Water Quality Index Computation
3. Study Case—Foz do Chapecó Reservoir
3.1. Site Description
3.2. Selected Parameters and Available Dataset
- Optically active: (1) Chlorophyll-a (Chla-a); (2) Floating macrophytes; (3) Total of Suspended Solids (TSS); (4) Turbidity; and (5) Water transparency (Secchi Disk Depth—SDD);
- Optically inactive: (1) Conductivity; (2) Dissolved oxygen (DO); (3) Nitrate; and (4) pH.
3.2.1. In Situ Data
3.2.2. Satellite Images
3.3. Model Calibration and Validation
Floating Macrophytes
4. Results
4.1. System Overview
- QDA-Results: substructure comprised of a backend and a frontend (with Graphics User Interface) so that system users can upload auxiliary data to the system;
- QDA-Models: this substructure is a module, which has become a public domain project. It has the implementation of bio-optical models found in the literature to assess water quality through the analysis of satellite images. It can be accessed from the Python Package Index (PyPI) package repository https://pypi.org/project/qda-modelos/ (accessed on 5 January 2022);
- QDA-Backend: substructure comprised of different modules:
- ○
- Analysis controller: It is activated by the scheduler module and it performs the verification and the obtainment of data present in the reservoir module. It performs the described analysis and it manages the image processing modules;
- ○
- Image processor: It performs the pre-processing of images, uses the module imported from the QDA-Models to estimate the parameters, and it manages the life cycle of an execution;
- ○
- Image controller: It abstracts the image source and it stores and retrieves preprocessed images (if necessary);
- ○
- Reservoirs: This is the module for registering a reservoir;
- ○
- Scheduler: It is responsible for activating the analysis controller module and keeping a schedule of executions.
- QDA-Frontend: This is a frontend substructure responsible for communicating with the backend and for showing the user a graphical interface based on React technology (https://reactjs.org/ (accessed on 20 December 2021)). It is user-friendly and it is easy to interpret when checking the data processed by the system.
4.2. System Interface
4.3. Pilot Application
4.3.1. Model Calibration
4.3.2. Model Validation
4.3.3. User’s Interface and Data Access
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Topp, S.N.; Pavelsky, T.M.; Jensen, D.; Simard, M.; Ross, M.R.V. Research trends in the use of remote sensing for inland water quality science: Moving towards multidisciplinary applications. Water 2020, 12, 169. [Google Scholar] [CrossRef] [Green Version]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, D.R.; Ogashawara, I.; Gitelson, A.A. Bio-Optical Modeling and Remote Sensing of Inland Waters; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- EOLakeWatch: Satellite Earth Observations for Lake Monitoring. Available online: https://www.canada.ca/en/environment-climate-change/services/water-overview/satellite-earth-observations-lake-monitoring.html (accessed on 19 March 2021).
- U.S. Environmental Protection Agency (EPA). Cyanobacteria Assessment Network (CyAN). Available online: https://www.epa.gov/water-research/cyanobacteria-assessment-network-cyan (accessed on 19 March 2021).
- Morsy, M.M.; Goodal, J.L.; O’Neil, G.L.; Sadles, J.M.; Voce, D.; Hassan, G.; Huxley, C. A cloud-based flood warning system for forecasting impacts to transportation infrastructure systems. Environ. Model. Softw. 2018, 107, 231–244. [Google Scholar] [CrossRef]
- Ferreira, K.R.; Queiroz, G.R.; Câmara, G.; Souza, R.C.M.; Vinhas, L.; Marujo, R.E.O.; Simões, C.A.F.; Noronha, R.; Costa, W.; Arcanjo, J.S.; et al. Using remote sensing images and cloud services on aws to improve land use and cover monitoring. In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020; pp. 207–211. [Google Scholar]
- Malthus, T.J.; Lehmann, E.; Ho, X.; Botha, E.; Anstee, J. Implementation of a satellite based inland water algal bloom alerting system using analysis ready data. Remote Sens. 2019, 11, 2954. [Google Scholar] [CrossRef] [Green Version]
- The Foz do Chapecó Power Plant. Available online: http://www.fozdochapeco.com.br/usina/ (accessed on 2 February 2021).
- Ecossistêmica Meio Ambiente LTDA (Ecossistêmica). Foz do Chapecó Reservoir Use Plan; Ecossistêmica: Porto Alegre, Brazil, 2017. [Google Scholar]
- Companhia Ambiental do Estado de São Paulo (CETESB). Guia Nacional de Coleta e Preservação de Amostras: Água, Sedimento, Comunidades Aquáticas e Efluentes Líquidos; CETESB: São Paulo, Brazil, 2011. [Google Scholar]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Waste Water American Public Health Association; APHA: Washington, DC, USA, 2017. [Google Scholar]
- U.S. Environmental Protection Agency (EPA). Method 300.1: Determination of Inorganic Anions in Drinking Water by Ion Chromatography v. 1.0; EPA: Cincinnati, OH, USA, 1997. [Google Scholar]
- Sentinel-2 Mission. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 2 March 2021).
- Sagan, V.; Peterson, K.T.; Maimaitijiang, M.; Sidike, P.; Sloan, J.; Greeling, B.A.; Maalouf, S.; Adams, C. Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Sci. Rev. 2020, 205, 103–187. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Huete, A. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Villa, P.; Laini, A.; Bresciani, M.; Bolpagni, R. A remote sensing approach to monitor the conservation status of lacustrine Phragmites australis beds. Wetl. Ecol. Manag. 2013, 21, 399–416. [Google Scholar] [CrossRef]
- Villa, P.; Mousivand, A.; Bresciani, M. Aquatic vegetation indices assessment through radiative transfer modeling and linear mixture simulation. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 113–127. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Curtarelli, V.P.; Barbosa, C.C.F.; Maciel, D.A.; Junior, R.F.; Carlos, F.M.; Novo, E.M.L.M.; Curtarelli, M.P.; da Silva, E.F.F. Diffuse Attenuation of Clear Water Tropical Reservoir: A Remote Sensing Semi-Analytical Approach. Remote Sens. 2020, 12, 2828. [Google Scholar] [CrossRef]
- Conselho Nacional de Meio Ambiente (CONAMA). Resolução CONAMA n° 357, de 17 de Março de 2005; CONAMA: Brasília, Brazil, 2005. [Google Scholar]
Field Campaign | Data | Image Acquisition | Sampling Points |
---|---|---|---|
1 | 22 February 2019 | 22 February 2019 | 14 |
2 | 18 April 2019 | 18 April 2019 | 14 |
3 | 8 August 2019 | 6 August 2019 | 14 |
4 | 11 October 2019 | 10 October 2019 | 17 |
5 | 20 December 2019 | 19 December 2019 | 17 |
6 | 12 February 2020 | 12 February 2020 | 18 |
7 | 12 February 2020 | 10 February 2020 and 12 February 2020 | 17 |
8 | 27 May 2020 | 25 May 2020 and 27 May 2020 | 18 |
9 | 23 November 2020 | 23 November 2020 | 18 |
10 | 10 December 2020 | 8 December 2020 | 13 |
11 | 27 May 2021 | 27 May 2021 | 18 |
Parameter | Unit | n | R2 | Model with Best Calibration Performance |
---|---|---|---|---|
Chl-a | μg/L | 29 | 0.89 | |
SDD | m | 62 | 0.83 | |
TSS | mg/L | 22 | 0.73 | |
Turbidity | NTU | 62 | 0.94 | |
Conductivity | µS/cm | 48 | 0.46 | |
DO | mg/L | 30 | 0.50 | |
Nitrate | mg/L | 33 | 0.69 | |
pH | - | 99 | 0.11 |
Parameter | n | R2 | MAD | MSE | RMSE | MAPE |
---|---|---|---|---|---|---|
Floating macrophytes | 18 | 0.99 | - | - | 0.77 | 10.13 |
Chl-a | 15 | 0.00 | 1.670 | 4.51 | 2.12 | 60.00 |
SDD | 49 | 0.49 | 0.83 | 1.00 | 1.00 | 50.31 |
TSS | 10 | 0.70 | 17.89 | 401.48 | 20.04 | 43.47 |
Turbidity | 47 | 0.87 | 2.87 | 9.33 | 3.05 | 125.16 |
Conductivity | 20 | 0.11 | 7.52 | 136.70 | 11.69 | 20.51 |
DO | 44 | 0.10 | 0.67 | 1.05 | 1.02 | 9.35 |
Nitrate | 14 | 0.51 | 0.253 | 0.095 | 0.307 | 11.64 |
pH | 43 | 0.11 | 0.611 | 0.472 | 0.687 | 7.892 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curtarelli, M.; Neto, E.; de Siqueira, F.; Yopan, F.; Soares, G.; Pauli, G.; de Souza, J.; Silva, L.; Sagaz, M.; Demay, M.; et al. QDA-System: A Cloud-Based System for Monitoring Water Quality in Brazilian Hydroelectric Reservoirs from Space. Remote Sens. 2022, 14, 1541. https://doi.org/10.3390/rs14071541
Curtarelli M, Neto E, de Siqueira F, Yopan F, Soares G, Pauli G, de Souza J, Silva L, Sagaz M, Demay M, et al. QDA-System: A Cloud-Based System for Monitoring Water Quality in Brazilian Hydroelectric Reservoirs from Space. Remote Sensing. 2022; 14(7):1541. https://doi.org/10.3390/rs14071541
Chicago/Turabian StyleCurtarelli, Marcelo, Edmar Neto, Fanny de Siqueira, Felipe Yopan, Gilmar Soares, Gilnei Pauli, João de Souza, Luana Silva, Marcio Sagaz, Miguel Demay, and et al. 2022. "QDA-System: A Cloud-Based System for Monitoring Water Quality in Brazilian Hydroelectric Reservoirs from Space" Remote Sensing 14, no. 7: 1541. https://doi.org/10.3390/rs14071541
APA StyleCurtarelli, M., Neto, E., de Siqueira, F., Yopan, F., Soares, G., Pauli, G., de Souza, J., Silva, L., Sagaz, M., Demay, M., Bortolas, N., Yoshimura, R., & Guimarães, V. (2022). QDA-System: A Cloud-Based System for Monitoring Water Quality in Brazilian Hydroelectric Reservoirs from Space. Remote Sensing, 14(7), 1541. https://doi.org/10.3390/rs14071541