Fast Radiative Transfer Approximating Ice Hydrometeor Orientation and Its Implication on IWP Retrievals
Abstract
:1. Introduction
2. Satellite and Model Data
2.1. Global Precipitation Measurement Microwave Imager
2.2. Ice Cloud Imager
2.3. CloudSat
2.4. ERA5
3. Tools and Methodology
3.1. Radiative Transfer Simulations
3.1.1. Atmospheric Scenarios
3.1.2. ARTS Setup
3.1.3. Hydrometeor Properties
3.2. Generation of Databases
3.3. Polarisation Ratio
3.4. Retrieval Algorithm
4. Results
4.1. Polarisation Ratio
4.1.1. Overview
4.1.2. Selecting the Optimal Polarisation Ratio
4.1.3. Polarisation Differences over Water and Land
4.1.4. Polarisation Differences at 660 GHz
4.2. Snow Emissivity Model
Polarisation Differences over Snow Covered Surfaces
4.3. Comparison of Simulations and Observations
4.3.1. TB Distribution and IWP
4.3.2. IWP Distributions
4.4. IWP Retrievals
4.4.1. Retrieval Experiments
4.4.2. Basic Retrieval Performance
4.4.3. Impact of Oriented Hydrometeors
4.5. Retrieval Applied to GMI Measurements
5. Discussion
5.1. Polarisation Differences
5.1.1. PDs over Water and Land
5.1.2. PDs over Snow Covered Surfaces
5.1.3. PD at 660 GHz
5.2. TB Distributions
5.3. Impact of Orientation on IWP Retrievals
5.4. Other Factors Affecting Retrieval Performance
5.5. Retrievals with GMI Observations
6. Summary and Conclusions
- The valid values of are not limited to a constant number. To reproduce the broad range of observed polarisation signals, variability in is necessary. Comparing the forward simulations (using the large plate aggregate) to the GMI observations showed that a random selection of from a uniform distribution between 1 and 1.4 has the best performance in mimicking the full variability of observed polarisation patterns;
- The selection of is slightly sensitive to the assumed microphysics. Among the two particle habits examined, the large plate aggregate and Evans snow aggregate, it was seen that up to 1.5 could be included for the latter;
- The selection of also shows a dependence on the frequency. Using identical polarisation models and microphysical assumptions yielded higher PDs at 166 GHz than at 660 GHz. However, this was to be expected as sub-mm frequencies have a higher sensitivity to small oriented hydrometeors;
- Further, to complement the polarisation model, we also implemented an empirical model to estimate surface emissivities for snow covered regions. Emissivity estimates from the literature were used to develop this model, covering snow emissivities between 160 and 190 GHz. The comparisons to observations showed that the snow emissivity model could provide a fair representation of PDs observed over snow covered surfaces.
- Even with the limited simulations in the database (1 month), it could be seen that including the orientation had a significant impact on the accuracy of IWP retrievals. Neglecting orientation introduced a large positive bias in the tropics with respect to the reference test data;
- A comparison of the retrievals based on the TRO and aARO assumptions showed that the most significant differences in retrieval accuracy occurred for cases with the highest polarisation differences. Neglecting orientation degraded the retrieval accuracy by almost 27% for PD > 10 K, while for PDs of the order of few kelvins, no significant differences were observed;
- The retrievals with GMI observations were analysed qualitatively. While it was difficult to assess the precision of the retrievals with GMI observations, a significant highlight was the improved performance with respect to GPROF (Goddard profiling algorithm) IWP retrievals. A crucial aspect was the retrieval of IWP over snow covered regions, which GPROF and other snow retrieval algorithms do not cover.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Estimation of ρ for Evans Snow Aggregate and Comparison with Observations
Appendix B. QRNN Configuration and Inputs
- The QRNN predicts the posterior distribution in terms of quantiles. The quantiles are user-defined and high-resolution quantile fractions are allowed. For this study, we selected 51 equally spaced quantile fractions between 1% and 99%;
- We selected the multiple hyper-parameters, such as the number of hidden layers, layer widths and batch size, by comparing network performance over a fixed set of values. Through this iterative approach, the network architecture with the lowest mean quantile loss was chosen for all QRNN training that was presented in this study. Finally, a neural network with five hidden layers and 256 neurons in each layer was selected. The batch size was fixed at 256;
- The update to the network parameters was made with a Stochastic Gradient Descent (SGD) optimiser and cosine annealing as the learning rate scheduler. We started with an initial learning rate of 0.01 and trained for 50 epochs, then the learning rate was reduced to 0.001 and trained for a further 50 epochs. Finally, the learning rate was reduced to 0.0001 and the model was trained for 100 epochs. Using a modified learning scheduler, such as this, produced better calibration than using only one kind of adaptive learning rate.
- The input vector space consisted of TBs from the four high-frequency channels of GMI, i.e., 166V GHz, 166H GHz, 183V ± 3 GHz and 183V ± 7 GHz. We also included 2 m temperature, water vapour path, surface elevation and surface type as additional inputs to identify the environmental conditions. Seven surface types were considered: water, land, snow, sea ice, coastlines, snow–land boundary and sea ice–water boundary. We classified snow–water boundary data under snow during the training as GMI did not classify these types separately;
- The IWP had a very high dynamic range. A large majority of cases had very small or zero IWPs, but values as large at 25 kg m also existed. Thus, to facilitate the optimal use of data in the neural network, a log-linear transformation was applied, i.e., all IWPs less than 1.0 kg m were transformed into natural logarithmic spaces while the other IWPs remained unchanged. Additionally, all cases with IWPs less than 10 were replaced by a small random number from the interval (10, 10);
- To avoid over-fitting an ML training model, data augmentation is often used to increase the variability in the data by adding noise. Random noise was added to TB in each training cycle and epoch for our model. The noise was added according to the NET;
- A small randomisation of the surface types was also included to take account of misclassification in the database. The comparison of the simulations and observations showed that GPROF surface classification could be wrong, particularly in regions with mixed surface types. Thus, to enhance the robustness of the ML model to these perturbations, the surface type of 1% of the data were randomly shuffled at each epoch.
References
- Stephens, G.L.; Kummerow, C.D. The remote sensing of clouds and precipitation from space: A review. J. Atmos. Sci. 2007, 64, 3742–3765. [Google Scholar] [CrossRef]
- O’Dell, C.W.; Wentz, F.J.; Bennartz, R. Cloud liquid water path from satellite-based passive microwave observations: A new climatology over the global oceans. J. Clim. 2008, 21, 1721–1739. [Google Scholar] [CrossRef]
- Greenwald, T.J.; Stephens, G.L.; Vonder Haar, T.H.; Jackson, D.L. A physical retrieval of cloud liquid water over the global oceans using Special Sensor Microwave/Imager (SSM/I) observations. J. Geophys. Res. Atmos. 1993, 98, 18471–18488. [Google Scholar] [CrossRef] [Green Version]
- Weng, F.; Grody, N.C. Retrieval of cloud liquid water using the special sensor microwave imager (SSM/I). J. Geophys. Res. Atmos. 1994, 99, 25535–25551. [Google Scholar] [CrossRef]
- Weng, F.; Grody, N.C. Retrieval of ice cloud parameters using a microwave imaging radiometer. J. Atmos. Sci. 2000, 57, 1069–1081. [Google Scholar] [CrossRef]
- Evans, K.; Wang, J.; O’C Starr, D.; Heymsfield, G.; Li, L.; Tian, L.; Lawson, R.; Heymsfield, A.; Bansemer, A. Ice hydrometeor profile retrieval algorithm for high-frequency microwave radiometers: Application to the CoSSIR instrument during TC4. Atmos. Meas. Tech. 2012, 5, 2277–2306. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Wu, D.L. CloudSat-constrained cloud ice water path and cloud top height retrievals from MHS 157 and 183.3 GHz radiances. Atmos. Meas. Tech. 2014, 7, 1873–1890. [Google Scholar] [CrossRef] [Green Version]
- Geer, A.J.; Lonitz, K.; Weston, P.; Kazumori, M.; Okamoto, K.; Zhu, Y.; Liu, E.H.; Collard, A.; Bell, W.; Migliorini, S.; et al. All-sky satellite data assimilation at operational weather forecasting centres. Q. J. R. Meteorol. Soc. 2018, 144, 1191–1217. [Google Scholar] [CrossRef]
- Evans, K.F.; Stephens, G.L. Microwave radiative transfer through clouds composed of realistically shaped ice crystals. Part I. Single scattering properties. J. Atmos. Sci. 1995, 52, 2041–2057. [Google Scholar] [CrossRef] [Green Version]
- Evans, K.F.; Stephens, G.L. Microwave radiative transfer through clouds composed of realistically shaped ice crystals. Part II. Remote sensing of ice clouds. J. Atmos. Sci. 1995, 52, 2058–2072. [Google Scholar] [CrossRef]
- Czekala, H. Effects of ice particle shape and orientation on polarized microwave radiation for off-nadir problems. Geophys. Res. Lett. 1998, 25, 1669–1672. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.; Emde, C.; Harwood, R. A 3-D polarized reversed Monte Carlo radiative transfer model for millimeter and submillimeter passive remote sensing in cloudy atmospheres. IEEE Trans. Geosci. Remote 2005, 43, 1096–1101. [Google Scholar] [CrossRef]
- Brath, M.; Ekelund, R.; Eriksson, P.; Lemke, O.; Buehler, S.A. Microwave and submillimeter wave scattering of oriented ice particles. Atmos. Meas. Tech. 2020, 13, 2309–2333. [Google Scholar] [CrossRef]
- Barlakas, V.; Geer, A.J.; Eriksson, P. Introducing hydrometeor orientation into all-sky microwave and submillimeter assimilation. Atmos. Meas. Tech. 2021, 14, 3427–3447. [Google Scholar] [CrossRef]
- Spencer, R.W.; Olson, W.S.; Rongzhang, W.; Martin, D.W.; Weinman, J.A.; Santek, D.A. Heavy thunderstorms observed over land by the Nimbus 7 scanning multichannel microwave radiometer. J. Appl. Meteorol. Clim. 1983, 22, 1041–1046. [Google Scholar] [CrossRef] [Green Version]
- Prigent, C.; Pardo, J.; Mishchenko, M.; Rossow, W. Microwave polarized scattering signatures in clouds: SSM/I observations interpreted with radiative transfer simulations. J. Geophys. Res. 2001, 106, 243-28. [Google Scholar]
- Defer, E.; Galligani, V.S.; Prigent, C.; Jimenez, C. First observations of polarized scattering over ice clouds at close-to-millimeter wavelengths (157 GHz) with MADRAS on board the Megha-Tropiques mission. J. Geophys. Res. Atmos. 2014, 119, 12–301. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Löhnert, U.; Kneifel, S.; Crewell, S. Snow particle orientation observed by ground-based microwave radiometry. J. Geophys. Res. Atmos. 2012, 117, D02206. [Google Scholar] [CrossRef]
- Gong, J.; Wu, D.L. Microphysical properties of frozen particles inferred from Global Precipitation Measurement (GPM) Microwave Imager (GMI) polarimetric measurements. Atmos. Chem. Phys. 2017, 17, 2741–2757. [Google Scholar] [CrossRef] [Green Version]
- Galligani, V.S.; Wang, D.; Corrales, P.B.; Prigent, C. A parameterization of the cloud scattering polarization signal derived from GPM observations for microwave fast radative transfer models. IEEE Trans. Geosci. Remote 2021, 59, 8968–8977. [Google Scholar] [CrossRef]
- Miao, J.; Johnsen, K.P.; Buehler, S.; Kokhanovsky, A. The potential of polarization measurements from space at mm and sub-mm wavelengths for determining cirrus cloud parameters. Atmos. Chem. Phys. 2003, 3, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Miao, J. Polarization difference due to nonrandomly oriented ice particles at millimeter/submillimeter waveband. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 1090–1098. [Google Scholar] [CrossRef]
- Coy, J.J.; Bell, A.; Yang, P.; Wu, D.L. Sensitivity analyses for the retrievals of ice cloud properties from radiometric and polarimetric measurements in sub-mm/mm and infrared Bands. J. Geophys. Res. 2020, 125, e2019JD031422. [Google Scholar] [CrossRef]
- Jiménez, C.; Buehler, S.; Rydberg, B.; Eriksson, P.; Evans, K. Performance simulations for a submillimetre-wave satellite instrument to measure cloud ice. Q. J. R. Meteorol. Soc. 2007, 133, 129–149. [Google Scholar] [CrossRef]
- Prigent, C.; Defer, E.; Pardo, J.R.; Pearl, C.; Rossow, W.B.; Pinty, J.P. Relations of polarized scattering signatures observed by the TRMM Microwave Instrument with electrical processes in cloud systems. Geophys. Res. Lett. 2005, 32, L04810. [Google Scholar] [CrossRef] [Green Version]
- Evans, K.; Stephens, G. A new polarized atmospheric radiative transfer model. J. Quant. Spectrosc. Radiat. Transf. 1991, 46, 413–423. [Google Scholar] [CrossRef]
- Haferman, J.L. A Polarized Multi-Dimensional Discrete-Ordinates Radiative Transfer Model for Remote Sensing Applications. Ph.D. Thesis, The University of Iowa, Iowa City, IA, USA, 1995. [Google Scholar]
- Liu, Q.; Simmer, C.; Ruprecht, E. Three-dimensional radiative transfer effects of clouds in the microwave spectral range. J. Geophys. Res. Atmos. 1996, 101, 4289–4298. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, A.; Mantovani, S. Forward Monte Carlo computations of fully polarized microwave radiation in non-isotropic media. J. Quant. Spectrosc. Radiat. Transf. 2005, 95, 285–308. [Google Scholar] [CrossRef]
- Battaglia, A.; Davis, C.P.; Emde, C.; Simmer, C. Microwave radiative transfer intercomparison study for 3-D dichroic media. J. Quant. Spectrosc. Radiat. Transf. 2007, 105, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, P.; Jamali, M.; Mendrok, J.; Buehler, S.A. On the microwave optical properties of randomly oriented ice hydrometeors. Atmos. Meas. Tech. 2015, 8, 1913–1933. [Google Scholar] [CrossRef] [Green Version]
- Adams, I.S.; Bettenhausen, M.H. The scattering properties of horizontally aligned snow crystals and crystal approximations at millimeter wavelengths. Radio Sci. 2012, 47, 1–15. [Google Scholar] [CrossRef]
- Eriksson, P.; Ekelund, R.; Mendrok, J.; Brath, M.; Lemke, O.; Buehler, S.A. A general database of hydrometeor single scattering properties at microwave and sub-millimetre wavelengths. Earth Syst. Sci. Data 2018, 10, 1301–1326. [Google Scholar] [CrossRef] [Green Version]
- Troitsky, A.; Osharin, A.; Korolev, A.; Strapp, J. Polarization of thermal microwave atmospheric radiation due to scattering by ice particles in clouds. J. Atmos. Sci. 2003, 60, 1608–1620. [Google Scholar] [CrossRef]
- Battaglia, A.; Saavedra, P.; Simmer, C.; Rose, T. Rain observations by a multifrequency dual-polarized radiometer. IEEE Geosci. Remote Sens. Lett. 2009, 6, 354–358. [Google Scholar] [CrossRef]
- Balaji, C.; Deiveegan, M.; Venkateshan, S.; Gairola, R.; Sarkar, A.; Agarwal, V. Retrieval of hydrometeors from microwave radiances with a polarized radiative transfer model. J. Earth Syst. Sci. 2010, 119, 97–115. [Google Scholar] [CrossRef] [Green Version]
- Ekelund, R.; Eriksson, P.; Kahnert, M. Microwave single-scattering properties of non-spheroidal raindrops. Atmos. Meas. Tech. 2020, 13, 6933–6944. [Google Scholar] [CrossRef]
- Geer, A.J.; Bauer, P.; Lonitz, K.; Barlakas, V.; Eriksson, P.; Mendrok, J.; Doherty, A.; Hocking, J.; Chambon, P. Bulk hydrometeor optical properties for microwave and sub-millimetre radiative transfer in RTTOV-SCATT v13.0. Geosci. Model Dev. 2021, 14, 7497–7526. [Google Scholar] [CrossRef]
- Geer, A.J. Physical characteristics of frozen hydrometeors inferred with parameter estimation. Atmos. Meas. Tech. 2021, 14, 5369–5395. [Google Scholar] [CrossRef]
- Eriksson, P.; Rydberg, B.; Mattioli, V.; Thoss, A.; Accadia, C.; Klein, U.; Buehler, S.A. Towards an operational Ice Cloud Imager (ICI) retrieval product. Atmos. Meas. Tech. 2020, 13, 53–71. [Google Scholar] [CrossRef] [Green Version]
- Ekelund, R.; Eriksson, P.; Pfreundschuh, S. Using passive and active observations at microwave and sub-millimetre wavelengths to constrain ice particle models. Atmos. Meas. Tech. 2020, 13, 501–520. [Google Scholar] [CrossRef] [Green Version]
- Precipitation Processing System. NASA Global Precipitation Measurement (GPM) Microwave Imager (GMI) Level 1B (L1B) Algorithm Theoretical Basis Document (ATBD) Version 3.0; Technical Report, National Aeronautics and Space Administration Goddard Space Flight Center Code 610.2/PPS Greenbelt, Maryland 20771; NASA: Washington, DC, USA, 2016. [Google Scholar]
- Kummerow, C.D.; Randel, D.L.; Kulie, M.; Wang, N.Y.; Ferraro, R.; Munchak, S.J.; Petkovic, V. The evolution of the Goddard Profiling Algorithm to a fully parametric scheme. J. Atmos. Ocean. Technol. 2015, 32, 2265–2280. [Google Scholar] [CrossRef]
- Marchand, R.; Mace, G.G.; Ackerman, T.; Stephens, G. Hydrometeor detection using Cloudsat—An earth-orbiting 94-GHz cloud radar. J. Atmos. Ocean. Technol. 2008, 25, 519–533. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 hourly data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). ECMWF 2018, 147, 5–6. [Google Scholar] [CrossRef]
- Buehler, S.A.; Mendrok, J.; Eriksson, P.; Perrin, A.; Larsson, R.; Lemke, O. ARTS, the Atmospheric Radiative Transfer Simulator–version 2.2, the planetary toolbox edition. Geosci. Model Dev. 2018, 11, 1537–1556. [Google Scholar] [CrossRef] [Green Version]
- Barlakas, V.; Eriksson, P. Three dimensional radiative effects in passive millimeter/sub-millimeter all-sky observations. Remote Sens. 2020, 12, 531. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, A.; Tanelli, S.; Kobayashi, S.; Zrnic, D.; Hogan, R.J.; Simmer, C. Multiple-scattering in radar systems: A review. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 917–947. [Google Scholar] [CrossRef]
- Aires, F.; Prigent, C.; Bernardo, F.; Jiménez, C.; Saunders, R.; Brunel, P. A Tool to Estimate Land-Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction. Q. J. R. Meteorol. Soc. 2011, 137, 690–699. [Google Scholar] [CrossRef] [Green Version]
- Prigent, C.; Aires, F.; Wang, D.; Fox, S.; Harlow, C. Sea-surface emissivity parametrization from microwaves to millimetre waves. Q. J. R. Meteorol. Soc. 2017, 143, 596–605. [Google Scholar] [CrossRef]
- Field, P.R.; Heymsfield, A.J.; Bansemer, A. Snow size distribution parameterization for midlatitude and tropical ice clouds. J. Atmos. Sci. 2007, 64, 4346–4365. [Google Scholar] [CrossRef]
- Marshall, J.S.; Palmer, W.M.K. The distribution of raindrops with size. J. Atmos. Sci. 1948, 5, 165–166. [Google Scholar] [CrossRef]
- Rosenkranz, P.W. Absorption of microwaves by atmospheric gases. In Atmospheric Remote Sensing by Microwave Radiometry; Janssen, M.A., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1993; pp. 37–90. [Google Scholar]
- Ellison, W. Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100 °C. J. Phys. Chem. Ref. Data 2007, 36, 1–18. [Google Scholar] [CrossRef]
- Saunders, R.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Geer, A.; et al. An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev. 2018, 11, 2717–2737. [Google Scholar] [CrossRef] [Green Version]
- Turner, E.; Rayer, P.; Saunders, R. AMSUTRAN: A microwave transmittance code for satellite remote sensing. J. Quant. Spectrosc. Radiat. Transf. 2019, 227, 117–129. [Google Scholar] [CrossRef]
- Emde, C.; Buehler, S.; Davis, C.; Eriksson, P.; Sreerekha, T.; Teichmann, C. A polarized discrete ordinate scattering model for simulations of limb and nadir long-wave measurements in 1-D/3-D spherical atmospheres. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Pfreundschuh, S.; Eriksson, P.; Duncan, D.; Rydberg, B.; Håkansson, N.; Thoss, A. A neural network approach to estimating a posteriori distributions of Bayesian retrieval problems. Atmos. Meas. Tech. 2018, 11, 4627–4643. [Google Scholar] [CrossRef] [Green Version]
- Pfreundschuh, S. Quantile regression neural networks on top of Keras and Pytorch. 2021; Unpublished work. [Google Scholar]
- Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic differentiation in PyTorch. In Proceedings of the NIPS-W, Long Beach, CA, USA, 9 December 2017. [Google Scholar]
- Fox, S. An evaluation of radiative transfer simulations of cloudy scenes from a numerical weather prediction model at sub-millimetre frequencies using airborne observations. Radio Sci. 2020, 12, 2758. [Google Scholar] [CrossRef]
- Pfreundschuh, S.; Fox, S.; Eriksson, P.; Duncan, D.; Buehler, S.A.; Brath, M.; Cotton, R.; Ewald, F. Synergistic radar and sub-millimeter radiometer retrievals of ice hydrometeors in mid-latitude frontal cloud systems. Atmos. Meas. Tech. 2022, 15, 677–699. [Google Scholar] [CrossRef]
- Wang, D.; Prigent, C.; Kilic, L.; Fox, S.; Harlow, C.; Jimenez, C.; Aires, F.; Grassotti, C.; Karbou, F. Surface emissivity at microwaves to millimeter waves over polar regions: Parameterization and evaluation with aircraft experiments. J. Atmos. Ocean. Technol. 2017, 34, 1039–1059. [Google Scholar] [CrossRef]
- Boukabara, S.A.; Garrett, K.; Chen, W.; Iturbide-Sanchez, F.; Grassotti, C.; Kongoli, C.; Chen, R.; Liu, Q.; Yan, B.; Weng, F.; et al. MiRS: An all-weather 1DVAR satellite data assimilation and retrieval system. IEEE Trans. Geosci. Remote 2011, 49, 3249–3272. [Google Scholar] [CrossRef]
- Hewison, T.; Selbach, N.; Heygster, G.; Taylor, J.; McGrath, A. Airborne measurements of Arctic sea ice, glacier and snow emissivity at 24-183 GHz. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Volume 5, pp. 2851–2855. [Google Scholar] [CrossRef] [Green Version]
- Harlow, R.C.; Essery, R. Tundra snow emissivities at MHS Frequencies: MEMLS Validation using airborne microwave data measured during CLPX-II. IEEE Geosci. Remote Sens. 2012, 50, 4262–4278. [Google Scholar] [CrossRef]
- Delanoë, J.; Hogan, R.J. A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer. J. Geophys. Res. Atmos. 2008, 113, D07204. [Google Scholar] [CrossRef] [Green Version]
- Heymsfield, A.J.; Protat, A.; Bouniol, D.; Austin, R.T.; Hogan, R.J.; Delanoë, J.; Okamoto, H.; Sato, K.; van Zadelhoff, G.J.; Donovan, D.P.; et al. Testing IWC Retrieval Methods Using Radar and Ancillary Measurements with In Situ Data. J. Appl. Meteorol. Clim. 2008, 47, 135–163. [Google Scholar] [CrossRef] [Green Version]
- Eliasson, S.; Buehler, S.A.; Milz, M.; Eriksson, P.; John, V.O. Assessing observed and modelled spatial distributions of ice water path using satellite data. Atmos. Chem. Phys. 2011, 11, 375–391. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Wu, D.L.; Eriksson, P. The first global 883 GHz cloud ice survey: IceCube Level 1 data calibration, processing and analysis. Earth Syst. Sci. Data 2021, 13, 5369–5387. [Google Scholar] [CrossRef]
- Holl, G.; Eliasson, S.; Mendrok, J.; Buehler, S.A. SPARE-ICE: Synergistic ice water path from passive operational sensors. J. Geophys. Res. 2014, 119, 1504–1523. [Google Scholar] [CrossRef]
- Teichmann, C.; Buehler, S.A.; Emde, C. Understanding the polarization signal of spherical particles for microwave limb radiances. J. Quant. Spectrosc. Radiat. Transf. 2006, 101, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Munchak, S.J.; Ringerud, S.; Brucker, L.; You, Y.; de Gelis, I.; Prigent, C. An active–passive microwave land surface database from GPM. IEEE Trans. Geosci. Remote 2020, 58, 6224–6242. [Google Scholar] [CrossRef]
- Camplani, A.; Casella, D.; Sanò, P.; Panegrossi, G. The Passive microwave Empirical cold Surface Classification Algorithm (PESCA): Application to GMI and ATMS. J. Hydrometeorol. 2021, 22, 1727–1744. [Google Scholar] [CrossRef]
- Duncan, D.I.; Eriksson, P. An update on global atmospheric ice estimates from satellite observations and reanalyses. Atmos. Chem. Phys. 2018, 18, 11205–11219. [Google Scholar] [CrossRef] [Green Version]
- Rysman, J.F.; Panegrossi, G.; Sanò, P.; Marra, A.C.; Dietrich, S.; Milani, L.; Kulie, M.S. SLALOM: An all-surface snow water path retrieval algorithm for the GPM Microwave Imager. Radio Sci. 2018, 10, 1278. [Google Scholar] [CrossRef] [Green Version]
Channel | Polarisation | NET [K] |
---|---|---|
166 GHz | V | 0.70 |
166 GHz | H | 0.65 |
183 ± 3 GHz | V | 0.56 |
183 ± 7 GHz | V | 0.47 |
Name | Orientation | Particle Habit | D [m] |
---|---|---|---|
LPA-aARO | aARO | Large plate aggregate | 19–4563 |
LPA-TRO | TRO | Large plate aggregate | 19–4563 |
ESA-aARO | aARO | Evans snow aggregate | 50–2506 |
ESA-TRO | TRO | Evans snow aggregate | 50–2506 |
Surface Type | 2D Divergence | ||||||
---|---|---|---|---|---|---|---|
Polarisation Ratio | |||||||
1.0 | 1.1 | 1.2 | 1.3 | 1.4 | U(1, 1.4) | ||
Water | 1.64 | 1.62 | 1.68 | 1.94 | 2.04 | 0.86 | 0.99 |
Land | 1.63 | 1.59 | 1.53 | 1.70 | 2.15 | 0.87 | 0.95 |
All | 1.69 | 1.89 | 1.74 | 1.71 | 1.86 | 1.05 | 1.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaur, I.; Eriksson, P.; Barlakas, V.; Pfreundschuh, S.; Fox, S. Fast Radiative Transfer Approximating Ice Hydrometeor Orientation and Its Implication on IWP Retrievals. Remote Sens. 2022, 14, 1594. https://doi.org/10.3390/rs14071594
Kaur I, Eriksson P, Barlakas V, Pfreundschuh S, Fox S. Fast Radiative Transfer Approximating Ice Hydrometeor Orientation and Its Implication on IWP Retrievals. Remote Sensing. 2022; 14(7):1594. https://doi.org/10.3390/rs14071594
Chicago/Turabian StyleKaur, Inderpreet, Patrick Eriksson, Vasileios Barlakas, Simon Pfreundschuh, and Stuart Fox. 2022. "Fast Radiative Transfer Approximating Ice Hydrometeor Orientation and Its Implication on IWP Retrievals" Remote Sensing 14, no. 7: 1594. https://doi.org/10.3390/rs14071594
APA StyleKaur, I., Eriksson, P., Barlakas, V., Pfreundschuh, S., & Fox, S. (2022). Fast Radiative Transfer Approximating Ice Hydrometeor Orientation and Its Implication on IWP Retrievals. Remote Sensing, 14(7), 1594. https://doi.org/10.3390/rs14071594