Differentiate Soybean Response to Off-Target Dicamba Damage Based on UAV Imagery and Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Data Acquisition
2.2. Visual Dicamba Damage Assessment
2.3. UAV Imagery Data Acquisition
2.4. Image Processing and Features Extraction
2.5. Feature Significance
2.6. Classification Algorithms and Accuracy
3. Results
3.1. Distribution of Visual Dicamba Damage Scores
3.2. Image Features across Classes of Visual Dicamba Damage Scores
3.3. Model Performance and Overall Classification Accuracy
3.3.1. Artificial Neural Network Model Classification
3.3.2. Random Forest Model Classification
3.3.3. Random Forest Feature Importance
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gale, F.; Valdes, C.; Ash, M. Interdependence of China, United States, and Brazil in Soybean Trade; US Department of Agriculture’s Economic Research Service (USDA): New York, NY, USA, 2019; pp. 1–48.
- United States Department of Agriculture. Oilseeds: World Markets and Rade. 2021. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/tx31qh68h/gh93j0912/9s162713p/oilseeds.pdf (accessed on 15 December 2021).
- Vieira, C.C.; Chen, P. The numbers game of soybean breeding in the United States. Crop Breed. Appl. Biotechnol. 2021, 21, 387521–387531. [Google Scholar] [CrossRef]
- United States Department of Agriculture. World Agricultural Production. Circular Series. 2021; pp. 1–41. Available online: https://apps.fas.usda.gov/psdonline/circulars/production.pdf (accessed on 10 December 2021).
- Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 2005, 144, 31–43. [Google Scholar] [CrossRef]
- Fickett, N.D.; Boerboom, C.M.; Stoltenberg, D.E. Soybean Yield Loss Potential Associated with Early-Season Weed Competition across 64 Site-Years. Weed Sci. 2013, 61, 500–507. [Google Scholar] [CrossRef]
- Soltani, N.; Dille, J.A.; Burke, I.C.; Everman, W.J.; VanGessel, M.J.; Davis, V.M.; Sikkema, P.H. Perspectives on Potential Soybean Yield Losses from Weeds in North America. Weed Technol. 2017, 31, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Buhler, D.D.; Gunsolus, J.L.; Ralston, D.F. Integrated Weed Management Techniques to Reduce Herbicide Inputs in Soybean. Agron. J. 1992, 84, 973–978. [Google Scholar] [CrossRef]
- Herman, P.L.; Behrens, M.; Chakraborty, S.; Chrastil, B.M.; Barycki, J.; Weeks, D.P. A Three-component Dicamba O-Demethylase from Pseudomonas maltophilia, Strain DI-6. J. Biol. Chem. 2005, 280, 24759–24767. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Glenn, K.C.; Kessenich, C.; Bell, E.; Burzio, L.A.; Koch, M.S.; Li, B.; Silvanovich, A. Safety assessment of dicamba mono-oxygenases that confer dicamba tolerance to various crops. Regul. Toxicol. Pharmacol. 2016, 81, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Bayer CropScience LLC. Bayer Fuels Leading Market Positions in Crop Science through Delivery of Unmatched Innovation. 2021. Available online: https://media.bayer.com/baynews/baynews.nsf/id/9F6D3923DFF05C43C125877200331872?open&ref=irrefndcd (accessed on 17 December 2021).
- Bradley, K. A Final Report on Dicamba-Injured Soybean Acres. 2017. Available online: https://ipm.missouri.edu/IPCM/2017/10/final_report_dicamba_injured_soybean/ (accessed on 15 December 2021).
- Bradley, K. July 15 Dicamba Injury Update. Different Year, Same Questions. 2018. Available online: https://ipm.missouri.edu/IPCM/2018/7/July-15-Dicamba-injury-update-different-year-same-questions/ (accessed on 10 December 2021).
- Wechsler, S.; Smith, D.; McFadden, J.; Dodson, L.; Williamson, S. The Use of Genetically Engineered Dicamba-Tolerant Soybean Seeds Has Increased Quickly, Benefiting Adopters but Damaging Crops in Some Fields. 2019. Available online: https://www.ers.usda.gov/amber-waves/2019/october/the-use-of-genetically-engineered-dicamba-tolerant-soybean-seeds-has-increased-quickly-benefiting-adopters-but-damaging-crops-in-some-fields/ (accessed on 10 December 2021).
- Chism, B.; Tindall, K.; Orlowski, J. Dicamba Use on Genetically Modified Dicamba-Tolerant (DT) Cotton and Soybean: Incidents and Impacts to Users and Non-Users from Proposed Registrations; Environmental Protection Agency: Washington, DC, USA, 2020. [Google Scholar]
- Wagman, M.; Farruggia, F.; Odenkirchen, E.; Connolly, J. Dicamba DGA and BAPMA Salts—2020 Ecological Assessment of Dicamba Use on Dicamba-Tolerant (DT) Cotton and Soybean Including Effects Determinations for Feder-Ally Listed Threatened and Endangered Species; Environmental Protection Agency: Washington, DC, USA, 2020. [Google Scholar]
- Weidenhamer, J.D.; Triplett, G.B.; Sobotka, F.E. Dicamba Injury to Soybean. Agron. J. 1989, 81, 637–643. [Google Scholar] [CrossRef]
- Andersen, S.M.; Clay, S.A.; Wrage, L.J.; Matthees, D. Soybean Foliage Residues of Dicamba and 2,4-D and Correlation to Application Rates and Yield. Agron. J. 2004, 96, 750–760. [Google Scholar] [CrossRef]
- Kniss, A.R. Soybean Response to Dicamba: A Meta-Analysis. Weed Technol. 2018, 32, 507–512. [Google Scholar] [CrossRef]
- Kelley, K.B.; Wax, L.M.; Hager, A.G.; Riechers, D.E. Soybean response to plant growth regulator herbicides is affected by other postemergence herbicides. Weed Sci. 2005, 53, 101–112. [Google Scholar] [CrossRef]
- Griffin, J.L.; Bauerle, M.J.; Stephenson, D.O.; Miller, D.K.; Boudreaux, J.M. Soybean Response to Dicamba Applied at Vegetative and Reproductive Growth Stages. Weed Technol. 2013, 27, 696–703. [Google Scholar] [CrossRef]
- Robinson, A.P.; Simpson, D.M.; Johnson, W. Response of Glyphosate-Tolerant Soybean Yield Components to Dicamba Exposure. Weed Sci. 2013, 61, 526–536. [Google Scholar] [CrossRef]
- Egan, J.F.; Barlow, K.M.; Mortensen, D.A. A Meta-Analysis on the Effects of 2,4-D and Dicamba Drift on Soybean and Cotton. Weed Sci. 2014, 62, 193–206. [Google Scholar] [CrossRef]
- Solomon, C.B.; Bradley, K.W. Influence of Application Timings and Sublethal Rates of Synthetic Auxin Herbicides on Soybean. Weed Technol. 2014, 28, 454–464. [Google Scholar] [CrossRef]
- Soltani, N.; Nurse, R.E.; Sikkema, P.H. Response of glyphosate-resistant soybean to dicamba spray tank contamination during vegetative and reproductive growth stages. Can. J. Plant Sci. 2016, 96, 160–164. [Google Scholar] [CrossRef]
- Naik, H.S.; Zhang, J.; Lofquist, A.; Assefa, T.; Sarkar, S.; Ackerman, D.; Singh, A.; Singh, A.K.; Ganapathysubramanian, B. A real-time phenotyping framework using machine learning for plant stress severity rating in soybean. Plant Methods 2017, 13, 23. [Google Scholar] [CrossRef] [Green Version]
- Chawade, A.; Van Ham, J.; Blomquist, H.; Bagge, O.; Alexandersson, E.; Ortiz, R. High-Throughput Field-Phenotyping Tools for Plant Breeding and Precision Agriculture. Agronomy 2019, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Pinter, P.J., Jr.; Hatfield, J.L.; Schepers, J.S.; Barnes, E.M.; Moran, M.S.; Daughtry, C.S.T.; Upchurch, D.R. Remote Sensing for Crop Management. Photogramm. Eng. Remote Sens. 2003, 69, 647–664. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Thomson, S.; Lan, Y.; Maas, S. Multispectral imaging systems for airborne remote sensing to support agricultural production management. Int. J. Agric. Biol. Eng. 2010, 3, 50–62. [Google Scholar]
- Foster, M.R.; Griffin, J.L. Injury Criteria Associated with Soybean Exposure to Dicamba. Weed Technol. 2018, 32, 656–657. [Google Scholar] [CrossRef] [Green Version]
- Gracia-Romero, A.; Kefauver, S.C.; Vergara-Díaz, O.; Zaman-Allah, M.; Prasanna, B.M.; Cairns, J.; Araus, J.L. Comparative Performance of Ground vs. Aerially Assessed RGB and Multispectral Indices for Early-Growth Evaluation of Maize Performance under Phosphorus Fertilization. Front. Plant Sci. 2017, 8, 2004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Zhou, J.; Ye, H.; Ali, L.; Nguyen, H.T.; Chen, P. Classification of soybean leaf wilting due to drought stress using UAV-based imagery. Comput. Electron. Agric. 2020, 175, 105576. [Google Scholar] [CrossRef]
- Huang, Y.; Yuan, L.; Reddy, K.; Zhang, J. In-situ plant hyperspectral sensing for early detection of soybean injury from dicamba. Biosyst. Eng. 2016, 149, 51–59. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Huang, Y.; Reddy, K.N.; Wang, B. Assessing crop damage from dicamba on non-dicamba-tolerant soybean by hyperspectral imaging through machine learning. Pest Manag. Sci. 2019, 75, 3260–3272. [Google Scholar] [CrossRef]
- Abrantes, T.C.; Queiroz, A.R.S.; Lucio, F.R.; Júnior, C.W.M.; Kuplich, T.M.; Bredemeier, C.; Júnior, A.M. Assessing the effects of dicamba and 2,4 Dichlorophenoxyacetic acid (2,4D) on soybean through vegetation indices derived from Unmanned Aerial Vehicle (UAV) based RGB imagery. Int. J. Remote Sens. 2021, 42, 2740–2758. [Google Scholar] [CrossRef]
- Marques, M.; da Cunha, J.; Lemes, E. Dicamba Injury on Soybean Assessed Visually and with Spectral Vegetation Index. AgriEngineering 2021, 3, 240–250. [Google Scholar] [CrossRef]
- Ortiz, B.; Thomson, S.; Huang, Y.; Reddy, K.; Ding, W. Determination of differences in crop injury from aerial application of glyphosate using vegetation indices. Comput. Electron. Agric. 2011, 77, 204–213. [Google Scholar] [CrossRef]
- Yao, H.; Huang, Y.; Hruska, Z.; Thomson, S.J.; Reddy, K. Using vegetation index and modified derivative for early detection of soybean plant injury from glyphosate. Comput. Electron. Agric. 2012, 89, 145–157. [Google Scholar] [CrossRef]
- Huang, Y.; Reddy, K.N.; Thomson, S.J.; Yao, H. Assessment of soybean injury from glyphosate using airborne multispectral remote sensing. Pest Manag. Sci. 2014, 71, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.F.; Kunz, C.; Peteinatos, G.G.; Santel, H.-J.; Gerhards, R. Utilization of Chlorophyll Fluorescence Imaging Technology to Detect Plant Injury by Herbicides in Sugar Beet and Soybean. Weed Technol. 2017, 31, 523–535. [Google Scholar] [CrossRef]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Daughtry, C.S.T.; Eitel, J.U.H.; Long, D.S. Remote Sensing Leaf Chlorophyll Content Using a Visible Band Index. Agron. J. 2011, 103, 1090–1099. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Shannon, G.; Scaboo, A.; Crisel, M.; Smothers, S.; Clubb, M.; Selves, S.; Vieira, C.C.; Ali, L.; Mitchum, M.G.; et al. Registration of ‘S14-15146GT’ soybean, a high-yielding RR1 cultivar with high oil content and broad disease resistance and adaptation. J. Plant Regist. 2020, 14, 35–42. [Google Scholar] [CrossRef]
- Chen, P.; Shannon, G.; Scaboo, A.; Crisel, M.; Smothers, S.; Clubb, M.; Selves, S.; Vieira, C.C.; Ali, M.L.; Mitchum, M.G.; et al. Registration of ‘S13-2743C’ as a conventional soybean cultivar with high oil content, broad disease resistance, and high yield potential. J. Plant Regist. 2021, 15, 306–312. [Google Scholar] [CrossRef]
- Chen, P.; Shannon, G.; Scaboo, A.; Crisel, M.; Smothers, S.; Clubb, M.; Selves, S.; Vieira, C.C.; Ali, M.L.; Lee, D.; et al. Registration of ‘S13-3851C’ soybean as a high-yielding conventional cultivar with high oil content and broad disease resistance and adaptation. J. Plant Regist. 2021, 16, 21–28. [Google Scholar] [CrossRef]
- Fehr, W.R.; Caviness, C.E.; Burmood, D.T.; Pennington, J.S. Stage of Development Descriptions for Soybeans, Glycine Max (L.) Merrill 1. Crop Sci. 1971, 11, 929–931. [Google Scholar] [CrossRef]
- Zhou, J.; Yungbluth, D.; Vong, C.N.; Scaboo, A.; Zhou, J. Estimation of the Maturity Date of Soybean Breeding Lines Using UAV-Based Multispectral Imagery. Remote Sens. 2019, 11, 2075. [Google Scholar] [CrossRef] [Green Version]
- Whitaker, R.T. A Level-Set Approach to 3D Reconstruction from Range Data. Int. J. Comput. Vis. 1998, 29, 203–231. [Google Scholar] [CrossRef]
- Chan, T.F.; Vese, L.A. Active contours without edges. IEEE Trans. Image Process. 2001, 10, 266–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall-Beyer, M. Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. Int. J. Remote Sens. 2017, 38, 1312–1338. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: https://www.R-project.org/ (accessed on 1 December 2021).
- Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. Version 1.2-4. 2016. Available online: https://cran.r-project.org/web/packages/agricolae/index.html (accessed on 1 December 2021).
- Fritsch, S.; Guenther, F.; Wright, M.; Mueller, S. Neuralnet: Training of Neural Networks. R J. 2019, 2, 30. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and Regression by random Forest. R News 2002, 2, 18–22. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY, USA, 2013; p. 426. ISBN 978-1-4614-7137-0. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Zur, Y.; Stark, R.; Gritz, U. Non-destructive and remote sensing techniques for estimation of vegetation status. In Proceedings of the 3rd European Conference on Precision Agriculture, Montpelier, France, 18–20 June 2001; pp. 205–210. [Google Scholar]
- Gamon, J.A.; Serrano, L.; Surfus, J.S. The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 1997, 112, 492–501. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Han, T.; Jiang, D.; Zhao, Q.; Wang, L.; Yin, K. Comparison of random forest, artificial neural networks and support vector machine for intelligent diagnosis of rotating machinery. Trans. Inst. Meas. Control 2017, 40, 2681–2693. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Viña, A.; Gitelson, A.A.; Nguy-Robertson, A.L.; Peng, Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ. 2011, 115, 3468–3478. [Google Scholar] [CrossRef]
- Wernecke, S.J.; D’Addario, L.R. Maximum Entropy Image Reconstruction. IEEE Trans. Comput. 1977, C-26, 351–364. [Google Scholar] [CrossRef]
- Gull, S.; Skilling, J. Maximum entropy method in image processing. IEE Proc. F Commun. Radar Signal Process. 1984, 131, 646–659. [Google Scholar] [CrossRef]
- Pal, N.; Pal, S. Entropy: A new definition and its applications. IEEE Trans. Syst. Man Cybern. 1991, 21, 1260–1270. [Google Scholar] [CrossRef] [Green Version]
- Tsai, D.-Y.; Lee, Y.; Matsuyama, E. Information Entropy Measure for Evaluation of Image Quality. J. Digit. Imaging 2007, 21, 338–347. [Google Scholar] [CrossRef] [Green Version]
- Berns, R.S. Billmeyer and Saltzman’s Principles of Color Technology, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Grossmann, K. Auxin herbicides: Current status of mechanism and mode of action. Pest Manag. Sci. 2009, 66, 113–120. [Google Scholar] [CrossRef]
Location | Trial 1 | #Entries 2 | #Plots 3 | Planting | Imaging | DAP 4 | Visual Scoring | DAP |
---|---|---|---|---|---|---|---|---|
Fld-61 | AYT | 213 | 670 | 04/17/2020 | 08/20/2020 | 125 | 8/20/2020 | 125 |
Fld-63 | AYT | 213 | 670 | 04/28/2020 | 09/08/2020 | 133 | 9/9/2020 | 134 |
Fld-81 | AYT | 213 | 672 | 04/18/2020 | 08/21/2020 | 125 | 8/21/2020 | 125 |
Fld-86 | Subset | 48 | 144 | 06/01/2020 | 09/15/2020 | 106 | 9/14/2020 | 105 |
Fld-1210 | Subset | 48 | 144 | 05/27/2020 | 09/14/2020 | 110 | 9/14/2020 | 110 |
Image Feature | Tolerant 1 | Moderate | Susceptible | Field 2 | |||
---|---|---|---|---|---|---|---|
Canopy Coverage | 0.616 | a | 0.191 | b | −0.709 | c | N.S |
Contrast | −0.151 | b | −0.191 | b | 0.531 | a | N.S |
Entropy | 0.512 | a | 0.267 | b | −0.856 | c | N.S |
GLI | 0.455 | a | 0.252 | b | −0.798 | c | N.S |
Hue | 0.211 | a | 0.232 | a | −0.654 | b | N.S |
Sa | 0.295 | a | 0.044 | b | −0.222 | c | N.S |
TGI | 0.472 | a | 0.204 | b | −0.686 | c | N.S |
Dicamba Class | Overall 1 | Fld-61 | Fld-63 | Fld-81 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tol | Mod | Sus | Tol | Mod | Sus | Tol | Mod | Sus | Tol | Mod | Sus | |
Tolerant | 12 | 15 | 2 | 0 | 5 | 0 | 5 | 7 | 2 | 9 | 9 | 0 |
Moderate | 53 | 410 | 68 | 17 | 122 | 26 | 20 | 140 | 10 | 19 | 133 | 13 |
Susceptible | 7 | 46 | 120 | 2 | 16 | 25 | 0 | 7 | 22 | 0 | 9 | 21 |
Class Accuracy | 0.89 | 0.75 | 0.84 | 0.89 | 0.70 | 0.79 | 0.86 | 0.79 | 0.91 | 0.87 | 0.77 | 0.90 |
Precision | 0.41 | 0.77 | 0.71 | 0.00 | 0.74 | 0.58 | 0.36 | 0.82 | 0.76 | 0.50 | 0.81 | 0.70 |
Sensitivity | 0.17 | 0.87 | 0.63 | 0.00 | 0.85 | 0.49 | 0.20 | 0.91 | 0.65 | 0.32 | 0.88 | 0.62 |
Specificity | 0.97 | 0.54 | 0.91 | 0.97 | 0.39 | 0.89 | 0.95 | 0.49 | 0.96 | 0.95 | 0.48 | 0.95 |
Overall Accuracy 2 | 0.74 | 0.69 | 0.78 | 0.77 |
Dicamba Class | Overall 1 | Fld-61 | Fld-63 | Fld-81 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tol | Mod | Sus | Tol | Mod | Sus | Tol | Mod | Sus | Tol | Mod | Sus | |
Tolerant | 18 | 11 | 0 | 0 | 1 | 0 | 4 | 0 | 0 | 0 | 1 | 0 |
Moderate | 51 | 420 | 69 | 9 | 114 | 34 | 8 | 137 | 21 | 14 | 129 | 17 |
Susceptible | 3 | 40 | 121 | 0 | 18 | 37 | 2 | 11 | 30 | 0 | 16 | 36 |
Class Accuracy | 0.89 | 0.77 | 0.85 | 0.95 | 0.71 | 0.76 | 0.95 | 0.81 | 0.84 | 0.93 | 0.78 | 0.85 |
Precision | 0.62 | 0.78 | 0.74 | 0.00 | 0.86 | 0.52 | 0.29 | 0.93 | 0.59 | 0.00 | 0.88 | 0.68 |
Sensitivity | 0.25 | 0.89 | 0.64 | 0.00 | 0.73 | 0.67 | 1.00 | 0.83 | 0.70 | 0.00 | 0.81 | 0.69 |
Specificity | 0.98 | 0.54 | 0.92 | 0.96 | 0.66 | 0.78 | 0.95 | 0.77 | 0.88 | 0.93 | 0.69 | 0.89 |
Overall Accuracy 2 | 0.75 | 0.71 | 0.80 | 0.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieira, C.C.; Sarkar, S.; Tian, F.; Zhou, J.; Jarquin, D.; Nguyen, H.T.; Zhou, J.; Chen, P. Differentiate Soybean Response to Off-Target Dicamba Damage Based on UAV Imagery and Machine Learning. Remote Sens. 2022, 14, 1618. https://doi.org/10.3390/rs14071618
Vieira CC, Sarkar S, Tian F, Zhou J, Jarquin D, Nguyen HT, Zhou J, Chen P. Differentiate Soybean Response to Off-Target Dicamba Damage Based on UAV Imagery and Machine Learning. Remote Sensing. 2022; 14(7):1618. https://doi.org/10.3390/rs14071618
Chicago/Turabian StyleVieira, Caio Canella, Shagor Sarkar, Fengkai Tian, Jing Zhou, Diego Jarquin, Henry T. Nguyen, Jianfeng Zhou, and Pengyin Chen. 2022. "Differentiate Soybean Response to Off-Target Dicamba Damage Based on UAV Imagery and Machine Learning" Remote Sensing 14, no. 7: 1618. https://doi.org/10.3390/rs14071618
APA StyleVieira, C. C., Sarkar, S., Tian, F., Zhou, J., Jarquin, D., Nguyen, H. T., Zhou, J., & Chen, P. (2022). Differentiate Soybean Response to Off-Target Dicamba Damage Based on UAV Imagery and Machine Learning. Remote Sensing, 14(7), 1618. https://doi.org/10.3390/rs14071618