An NDVI Retrieval Method Based on a Double-Attention Recurrent Neural Network for Cloudy Regions
Abstract
:1. Introduction
2. Study Area and Data Source
2.1. Study Area
2.2. Dataset
3. Methodology
3.1. The Overall Workflow of the Double-Attention RNN
3.2. Architecture of the Double-Attention RNN
4. Results
4.1. The Performance of the Double-Attention RNN on Various Cloud Coverage Conditions
4.2. Evaluation of IDM Features on NDVI Retrieval
4.3. Comparative Evaluation
5. Discussion
5.1. The Influence of Crop Types on Retrieval Accuracy
5.2. Perspectives of Double-Attention on Vegetation Monitoring
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alencar, A.; Z Shimbo, J.; Lenti, F.; Balzani Marques, C.; Zimbres, B.; Rosa, M.; Arruda, V.; Castro, I.; Fernandes Márcico Ribeiro, J.P.; Varela, V. Mapping three decades of changes in the brazilian savanna native vegetation using landsat data processed in the google earth engine platform. Remote Sens. 2020, 12, 924. [Google Scholar] [CrossRef] [Green Version]
- Ye, C.; Sun, J.; Liu, M.; Xiong, J.; Zong, N.; Hu, J.; Huang, Y.; Duan, X.; Tsunekawa, A. Concurrent and lagged effects of extreme drought induce net reduction in vegetation carbon uptake on Tibetan Plateau. Remote Sens. 2020, 12, 2347. [Google Scholar] [CrossRef]
- Qiu, L.; Wu, Y.; Shi, Z.; Chen, Y.; Zhao, F. Quantifying the responses of evapotranspiration and its components to vegetation restoration and climate change on the Loess plateau of China. Remote Sens. 2021, 13, 2358. [Google Scholar] [CrossRef]
- Hou, W.; Hou, X. Spatial–temporal changes in vegetation coverage in the global coastal zone based on GIMMS NDVI3g data. Int. J. Remote Sens. 2020, 41, 1118–1138. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, X.; Yang, J.; Lin, K.; Du, G. NDVI indicated inter-seasonal non-uniform time-lag responses of terrestrial vegetation growth to daily maximum and minimum temperature. Glob. Planet. Change 2019, 177, 27–38. [Google Scholar] [CrossRef]
- Jia, K.; Yao, Y.; Wei, X.; Gao, S.; Jiang, B.; Zhao, X. A review on fractional vegetation cover estimation using remote sensing. Adv. Earth Sci. 2013, 28, 774. [Google Scholar] [CrossRef]
- Pang, G.; Yang, Q.; Wang, C.; Shan, L.; Wang, B. Influence of parameter determination methods of the pixel dichotomy model on the estimation accuracy of fractional vegetation cover by GF-1 PMS data. Geogr. Geo-Inf. Sci. 2019, 35, 27–33. [Google Scholar] [CrossRef]
- Long, X.; Li, X.; Lin, H.; Zhang, M. Mapping the vegetation distribution and dynamics of a wetland using adaptive-stacking and Google Earth Engine based on multi-source remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102453. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F. Daily Retrieval of NDVI and LAI at 3 m Resolution via the Fusion of CubeSat, Landsat, and MODIS Data. Remote Sens. 2018, 10, 890. [Google Scholar] [CrossRef] [Green Version]
- Gerber, F.; de Jong, R.; Schaepman, M.E.; Schaepman-Strub, G.; Furrer, R. Predicting missing values in spatio-temporal remote sensing data. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2841–2853. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Martínez, Á.; Izquierdo-Verdiguier, E.; Maneta, M.P.; Camps-Valls, G.; Robinson, N.; Muñoz-Marí, J.; Sedano, F.; Clinton, N.; Running, S.W. Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud. Remote Sens. Environ. 2020, 247, 111901. [Google Scholar] [CrossRef]
- Bolton, D.K.; Gray, J.M.; Melaas, E.K.; Moon, M.; Eklundh, L.; Friedl, M.A. Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery. Remote Sens. Environ. 2020, 240, 111685. [Google Scholar] [CrossRef]
- Kandasamy, S.; Baret, F.; Verger, A.; Neveux, P.; Weiss, M. A comparison of methods for smoothing and gap filling time series of remote sensing observations–application to MODIS LAI products. Biogeosciences 2013, 10, 4055–4071. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ. 2012, 123, 400–417. [Google Scholar] [CrossRef]
- Jonsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Beck, P.S.; Atzberger, C.; Høgda, K.A.; Johansen, B.; Skidmore, A.K. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sens. Environ. 2006, 100, 321–334. [Google Scholar] [CrossRef]
- Julien, Y.; Sobrino, J.A. Optimizing and comparing gap-filling techniques using simulated NDVI time series from remotely sensed global data. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 93–111. [Google Scholar] [CrossRef]
- Solano-Correa, Y.T.; Bovolo, F.; Bruzzone, L.; Fernández-Prieto, D. A method for the analysis of small crop fields in sentinel-2 dense time series. IEEE Trans. Geosci. Remote Sens. 2019, 58, 2150–2164. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, L.; Liu, Q.; Li, J. Review of forest above ground biomass inversion methods based on remote sensing technology. J. Remote Sens. 2015, 19, 62–74. [Google Scholar] [CrossRef]
- Pipia, L.; Muñoz-Marí, J.; Amin, E.; Belda, S.; Camps-Valls, G.; Verrelst, J. Fusing optical and SAR time series for LAI gap filling with multioutput Gaussian processes. Remote Sens. Environ. 2019, 235, 111452. [Google Scholar] [CrossRef]
- Mohite, J.; Sawant, S.; Pandit, A.; Pappula, S. Investigating the Performance of Random Forest and Support Vector Regression for Estimation of Cloud-Free Ndvi Using SENTINEL-1 SAR Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 1379–1383. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Ienco, D.; Interdonato, R.; Gaetano, R.; Minh, D.H.T. Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture. ISPRS J. Photogramm. Remote Sens. 2019, 158, 11–22. [Google Scholar] [CrossRef]
- Sun, J.; Lai, Z.; Di, L.; Sun, Z.; Tao, J.; Shen, Y. Multilevel deep learning network for county-level corn yield estimation in the us corn belt. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5048–5060. [Google Scholar] [CrossRef]
- He, W.; Yokoya, N. Multi-temporal sentinel-1 and-2 data fusion for optical image simulation. ISPRS Int. J. Geo-Inf. 2018, 7, 389. [Google Scholar] [CrossRef] [Green Version]
- Cresson, R.; Ienco, D.; Gaetano, R.; Ose, K.; Minh, D.H.T. Optical image gap filling using deep convolutional autoencoder from optical and radar images. In Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 218–221. [Google Scholar] [CrossRef]
- Scarpa, G.; Gargiulo, M.; Mazza, A.; Gaetano, R. A CNN-based fusion method for feature extraction from sentinel data. Remote Sens. 2018, 10, 236. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Li, J.; Liu, Q.; Zhao, J.; Dong, Y.; Wang, C.; Lin, S.; Zhu, X.; Zhang, H. Spatial–Temporal Prediction of Vegetation Index With Deep Recurrent Neural Networks. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Zhao, W.; Qu, Y.; Chen, J.; Yuan, Z. Deeply synergistic optical and SAR time series for crop dynamic monitoring. Remote Sens. Environ. 2020, 247, 111952. [Google Scholar] [CrossRef]
- Lin, S.-S.; Shen, S.-L.; Zhou, A.; Lyu, H.-M. Sustainable development and environmental restoration in Lake Erhai, China. J. Clean. Prod. 2020, 258, 120758. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Moorthy, I.; Sturn, T.; Batic, M.; See, L.; Milčinski, G.; Fritz, S. Improving Cloud Detection in Satellite Imagery using a Citizen Science Approach. In Proceedings of the Digital Earth Observation, Salzburg, Austria, 1–4 July 2019. [Google Scholar]
- Banerjee, S.; Sinha Chaudhuri, S.; Mehra, R.; Misra, A. A Survey on Lee Filter and Its Improved Variants; Springer: Singapore, 2021; pp. 371–383. [Google Scholar] [CrossRef]
- Cho, K.; Merrienboer, B.v.; Gülçehre, Ç.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder Decoder for Statistical Machine Translation. In Proceedings of the EMNLP, Doha, Qatar, 25–29 October 2014. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Hübner, R.; Steinhauser, M.; Lehle, C. A dual-stage two-phase model of selective attention. Psychol. Rev. 2010, 117, 759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garioud, A.; Valero, S.; Giordano, S.; Mallet, C. Recurrent-based regression of Sentinel time series for continuous vegetation monitoring. Remote Sens. Environ. 2021, 263, 112419. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2015, arXiv:1412.6980. [Google Scholar]
- Vuolo, F.; Ng, W.-T.; Atzberger, C. Smoothing and gap-filling of high resolution multi-spectral time series: Example of Landsat data. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 202–213. [Google Scholar] [CrossRef]
- Belda, S.; Pipia, L.; Morcillo-Pallarés, P.; Rivera-Caicedo, J.P.; Amin, E.; De Grave, C.; Verrelst, J. DATimeS: A machine learning time series GUI toolbox for gap-filling and vegetation phenology trends detection. Environ. Model. Softw. 2020, 127, 104666. [Google Scholar] [CrossRef]
- Mandal, D.; Kumar, V.; Ratha, D.; Dey, S.; Bhattacharya, A.; Lopez-Sanchez, J.M.; McNairn, H.; Rao, Y.S. Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sens. Environ. 2020, 247, 111954. [Google Scholar] [CrossRef]
- John, E.; Bunting, P.; Hardy, A.; Silayo, D.S.; Masunga, E. A Forest Monitoring System for Tanzania. Remote Sens. 2021, 13, 3081. [Google Scholar] [CrossRef]
- Dumitru, C.O.; Schwarz, G.; Pulak-Siwiec, A.; Kulawik, B.; Lorenzo, J.; Datcu, M. Earth Observation Data Mining: A Use Case for Forest Monitoring. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 5359–5362. [Google Scholar] [CrossRef] [Green Version]
- Murugan, D.; Garg, A.; Singh, D. Development of an adaptive approach for precision agriculture monitoring with drone and satellite data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5322–5328. [Google Scholar] [CrossRef]
- Baek, Y.; Kim, H.Y. ModAugNet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module. Expert Syst. Appl. 2018, 113, 457–480. [Google Scholar] [CrossRef]
Dataset | Sample Number |
---|---|
Train | 421,839 |
Validation | 144,656 |
Test | 156,785 |
Time | Double-Attention RNN | MLP | WHIT | Linear Interpolation | SVM | RF | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
3 January 2020 | 0.879 | 0.092 | 0.613 | 0.156 | 0.691 | 0.155 | 0.376 | 0.227 | 0.415 | 0.157 | 0.488 | 0.163 |
15 January 2020 | 0.883 | 0.093 | 0.656 | 0.149 | 0.738 | 0.139 | 0.508 | 0.182 | 0.611 | 0.148 | 0.522 | 0.158 |
2 February 2020 | 0.855 | 0.087 | 0.674 | 0.162 | 0.757 | 0.143 | 0.517 | 0.197 | 0.338 | 0.295 | 0.464 | 0.152 |
17 February 2020 | 0.872 | 0.100 | 0.691 | 0.144 | 0.715 | 0.122 | 0.495 | 0.169 | 0.397 | 0.166 | 0.573 | 0.179 |
3 March 2020 | 0.891 | 0.081 | 0.704 | 0.139 | 0.814 | 0.118 | 0.523 | 0.172 | 0.543 | 0.183 | 0.624 | 0.181 |
15 March 2020 | 0.877 | 0.094 | 0.687 | 0.157 | 0.802 | 0.099 | 0.468 | 0.195 | 0.486 | 0.152 | 0.441 | 0.253 |
2 April 2020 | 0.844 | 0.107 | 0.663 | 0.159 | 0.721 | 0.161 | 0.505 | 0.188 | 0.607 | 0.175 | 0.635 | 0.139 |
17 April 2020 | 0.826 | 0.102 | 0.715 | 0.124 | 0.703 | 0.133 | 0.601 | 0.171 | 0.593 | 0.168 | 0.556 | 0.157 |
2 May 2020 | 0.882 | 0.086 | 0.625 | 0.135 | 0.608 | 0.152 | 0.549 | 0.149 | 0.662 | 0.149 | 0.481 | 0.232 |
19 May 2020 | 0.886 | 0.091 | 0.642 | 0.138 | 0.686 | 0.147 | 0.622 | 0.154 | 0.497 | 0.181 | 0.654 | 0.146 |
1 June 2020 | 0.875 | 0.105 | 0.722 | 0.145 | 0.652 | 0.158 | 0.553 | 0.178 | 0.445 | 0.164 | 0.503 | 0.186 |
16 June 2020 | 0.756 | 0.118 | 0.708 | 0.131 | 0.598 | 0.150 | 0.634 | 0.135 | 0.687 | 0.142 | 0.637 | 0.194 |
1 July 2020 | 0.804 | 0.104 | 0.692 | 0.143 | 0.711 | 0.172 | 0.402 | 0.193 | 0.569 | 0.197 | 0.519 | 0.211 |
16 July 2020 | 0.853 | 0.099 | 0.677 | 0.152 | 0.585 | 0.156 | 0.530 | 0.182 | 0.495 | 0.185 | 0.483 | 0.188 |
2 August 2020 | 0.766 | 0.121 | 0.639 | 0.172 | 0.735 | 0.135 | 0.646 | 0.148 | 0.462 | 0.183 | 0.522 | 0.247 |
15 August 2020 | 0.868 | 0.103 | 0.701 | 0.140 | 0.554 | 0.157 | 0.637 | 0.164 | 0.571 | 0.225 | 0.504 | 0.225 |
1 September 2020 | 0.841 | 0.087 | 0.592 | 0.159 | 0.773 | 0.127 | 0.592 | 0.176 | 0.601 | 0.159 | 0.476 | 0.195 |
16 September 2020 | 0.797 | 0.110 | 0.603 | 0.177 | 0.817 | 0.103 | 0.613 | 0.162 | 0.385 | 0.246 | 0.507 | 0.208 |
1 October 2020 | 0.857 | 0.083 | 0.647 | 0.133 | 0.839 | 0.119 | 0.557 | 0.167 | 0.493 | 0.192 | 0.538 | 0.173 |
16 October 2020 | 0.869 | 0.085 | 0.711 | 0.121 | 0.762 | 0.111 | 0.582 | 0.143 | 0.478 | 0.207 | 0.442 | 0.199 |
3 November 2020 | 0.894 | 0.096 | 0.739 | 0.132 | 0.722 | 0.138 | 0.608 | 0.156 | 0.537 | 0.213 | 0.596 | 0.151 |
15 November 2020 | 0.881 | 0.099 | 0.690 | 0.146 | 0.801 | 0.129 | 0.569 | 0.166 | 0.522 | 0.164 | 0.487 | 0.172 |
3 December 2020 | 0.875 | 0.101 | 0.728 | 0.165 | 0.784 | 0.131 | 0.661 | 0.173 | 0.624 | 0.148 | 0.423 | 0.210 |
15 December 2020 | 0.863 | 0.109 | 0.718 | 0.151 | 0.826 | 0.105 | 0.685 | 0.192 | 0.579 | 0.151 | 0.531 | 0.195 |
Method | Processing/Training for 1 Epoch (s) | Testing (s) | Total (s) |
---|---|---|---|
Double-attention RNN | 2543.8 | 105.2 | 2649.0 |
MLP | 3357.6 | 278.6 | 3636.2 |
WHIT | 4970.3 | - | 4970.3 |
Linear interpolation | 1427.1 | - | 1427.1 |
SVM | 17,249.4 | 350.7 | 17,600.1 |
RF | 15,493.5 | 412.5 | 15,906.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, R.; Duan, F.; Lu, F.; Zhang, M.; Zhao, W. An NDVI Retrieval Method Based on a Double-Attention Recurrent Neural Network for Cloudy Regions. Remote Sens. 2022, 14, 1632. https://doi.org/10.3390/rs14071632
Jing R, Duan F, Lu F, Zhang M, Zhao W. An NDVI Retrieval Method Based on a Double-Attention Recurrent Neural Network for Cloudy Regions. Remote Sensing. 2022; 14(7):1632. https://doi.org/10.3390/rs14071632
Chicago/Turabian StyleJing, Ran, Fuzhou Duan, Fengxian Lu, Miao Zhang, and Wenji Zhao. 2022. "An NDVI Retrieval Method Based on a Double-Attention Recurrent Neural Network for Cloudy Regions" Remote Sensing 14, no. 7: 1632. https://doi.org/10.3390/rs14071632
APA StyleJing, R., Duan, F., Lu, F., Zhang, M., & Zhao, W. (2022). An NDVI Retrieval Method Based on a Double-Attention Recurrent Neural Network for Cloudy Regions. Remote Sensing, 14(7), 1632. https://doi.org/10.3390/rs14071632