Omega-KA-Net: A SAR Ground Moving Target Imaging Network Based on Trainable Omega-K Algorithm and Sparse Optimization
Abstract
:1. Introduction
2. SAR Imaging of GMT
2.1. SAR Echo Signal Model
2.2. GMT Imaging Method Based on Omega-KA
3. GMT Imaging Network Based on Trainable Omega-KA and Sparse Optimization
3.1. GMT Imaging Network
3.1.1. Implementation Scheme of Imaging-Net
3.1.2. 2-D Sparse Imaging Model Based on Omega-KA
3.1.3. Imaging-Net Architecture
3.2. Network Training
- ;
- ,
3.3. Gradient Computation by Backpropagation
4. Experiments
4.1. Imaging Experiment Based on Simulated Data
4.2. Imaging Experiment Based on Measured Data
5. Conclusions
- Incorporating the sparse optimization theory and Omega-KA into GMT imaging framework, an efficient 2-D sparse regularization-based GMT imaging model is formulated. The new model combined with the iterative optimization algorithm can be compatible with other existing GMT imaging methods.
- To solve the difficulties of slow imaging speed, obvious sidelobe interference, and high computational complexity in conventional GMT imaging methods, a novel SAR-GMT deep learning imaging method, namely Omega-KA-net, is proposed based on the 2-D sparse imaging model and RNN.
- According to the experimental results of simulated and measured data, it is proven that Omega-KA-net is superior to the conventional GMT imaging algorithms in terms of imaging quality and time. Moreover, the Omega-KA-net can be applied to side-looking mode and low squint mode imaging under down-sampling and low SNR, while reducing the computational complexity and substantially improving the imaging quality.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Zhao, Y.; Han, S.; Yang, J.; Zhang, L.; Xu, H.; Wang, J. A novel approach of slope detection combined with Lv’s distribution for airborne SAR imagery of fast moving targets. Remote Sens. 2018, 10, 764. [Google Scholar] [CrossRef] [Green Version]
- Graziano, M.D.; Errico, M.D.; Rufino, G. Wake component detection in X-band SAR images for ship heading and velocity estimation. Remote Sens. 2016, 8, 498. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Nie, L. A new ground moving target imaging algorithm for high-resolution airborne CSSAR-GMTI systems. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–2 August 2019; pp. 2308–2311. [Google Scholar]
- Zhang, Y.; Mu, H.L.; Xiao, T.; Jiang, Y.C.; Ding, C. SAR imaging of multiple maritime moving targets based on sparsity Bayesian learning. IET Radar Sonar Navig. 2020, 14, 1717–1725. [Google Scholar] [CrossRef]
- Zhao, S.Y.; Zhang, Z.H.; Guo, W.W.; Luo, Y. An Automatic Ship Detection Method Adapting to Different Satellites SAR Images with Feature Alignment and Compensation Loss. IEEE Trans. Geosci. Remote Sens. 2022, 1. [Google Scholar] [CrossRef]
- Chen, J.; Xing, M.; Yu, H.; Liang, B.; Peng, J.; Sun, G. Motion compensation/autofocus in airborne synthetic aperture radar: A review. IEEE Geosci. Remote Sens. Mag. 2021, 2–23. [Google Scholar] [CrossRef]
- Buckreuss, S. Motion compensation for airborne SAR based on inertial data, RDM and GPS. In Proceedings of the 1994 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Pasadena, CA, USA, 8–12 August 1994; pp. 1971–1973. [Google Scholar]
- Fornaro, G. Trajectory deviations in airborne SAR: Analysis and compensation. IEEE Trans. Aerosp. Electron. Syst. 1999, 35, 997–1009. [Google Scholar] [CrossRef]
- Li, G.; Xia, X.G.; Xu, J.; Peng, Y.N. A velocity estimation algorithm of moving targets using single antenna SAR. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 1052–1062. [Google Scholar] [CrossRef]
- Fornaro, G.; Franceschetti, G.; Perna, S. Motion compensation errors: Effects on the accuracy of airborne SAR images. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 1338–1352. [Google Scholar] [CrossRef]
- Zhang, L.; Qiao, Z.; Xing, M.; Yang, L.; Bao, Z. A robust motion compensation approach for UAV SAR imagery. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3202–3218. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, L.; Li, J.; Hu, Q. Precise aperture-dependent motion compensation for high-resolution synthetic aperture radar imaging. IET Radar Sonar Navig. 2017, 11, 204–211. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Lei, P.; Li, G.; Hong, W. High-resolution SAR-based ground moving target imaging with defocused ROI data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1062–1073. [Google Scholar] [CrossRef]
- Chen, Y.C.; Li, G.; Zhang, Q. Iterative Minimum Entropy Algorithm for Refocusing of Moving Targets in SAR Images. IET Radar Sonar Navig. 2019, 13, 1279–1286. [Google Scholar] [CrossRef]
- Xiong, S.; Ni, J.; Zhang, Q.; Luo, Y.; Yu, L. Ground moving target imaging for highly squint SAR by modified minimum entropy algorithm and spectrum rotation. Remote Sens. 2021, 13, 4373. [Google Scholar] [CrossRef]
- Chen, Y.; Li, G.; Zhang, Q.; Sun, J. Refocusing of moving targets in SAR images via parametric sparse representation. Remote Sens. 2017, 9, 795. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, G.; Qiao, Z.; Wang, H. Azimuth motion compensation with improved subaperture algorithm for airborne SAR imaging. IEEE J. Select. Topics Appl. Earth Observat. Remote Sens. 2017, 10, 184–193. [Google Scholar] [CrossRef]
- Gu, F.F.; Zhang, Q.; Chen, Y.C.; Huo, W.J.; Ni, J.C. Parametric sparse representation method for motion parameter estimation of ground moving target. IEEE Sens. J. 2016, 16, 7646–7652. [Google Scholar] [CrossRef]
- Kang, M.S.; Kim, K.T. Ground moving target imaging based on compressive sensing framework with single-channel SAR. IEEE Sens. J. 2020, 20, 1238–1250. [Google Scholar] [CrossRef]
- Wu, D.; Yaghoobi, M.; Davies, M.E. Sparsity-driven GMTI processing framework with multichannel SAR. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1434–1447. [Google Scholar] [CrossRef]
- Kelly, S.; Yaghoobi, M.; Davies, M.E. Sparsity-based autofocus for undersampled synthetic aperture radar. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 972–986. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.J.; Qin, Q.; Shi, H.Y.; Huang, H. SAR moving target imaging based on convolutional neural network. Digit Signal Process. 2020, 106, 102832. [Google Scholar] [CrossRef]
- Chen, X.; Peng, X.; Duan, R. Deep kernel learning method for SAR image target recognition. Rev. Sci. 2017, 10, 104706. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.Y.; Zhang, Z.H.; Guo, W.W.; Luo, Y. Transferable SAR Image Classification Crossing Different Satellites under Open Set Condition. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Mason, E.; Yonel, B.; Yazici, B. Deep learning for SAR image formation. In Proceedings of the 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Anaheim, CA, USA, 28 April 2017. [Google Scholar]
- Rittenbach, A.; Walters, J.P. RDAnet: A Deep learning based approach for synthetic aperture radar image formation. arXiv 2020, arXiv:2001.08202. [Google Scholar]
- Yonel, B.; Mason, E.; Yaz&Imath, B. Deep learning for passive synthetic aperture radar. IEEE J. Sel. Top. Signal Process. 2018, 12, 90–103. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Ni, J.; Liang, J.; Xiong, S.; Luo, Y. End-to-end SAR deep learning imaging method based on sparse optimization. Remote Sens. 2021, 13, 4429. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, W.Q.; Xing, M. A modified Omega-K algorithm for squint circular trace scanning SAR using improved range model. Signal Process. 2019, 160, 59–65. [Google Scholar] [CrossRef]
- Wang, C.; Su, W.; Gu, H. Focusing bistatic forward-looking synthetic aperture radar based on an improved hyperbolic range model and a modified Omega-K algorithm. Sensors 2019, 19, 3792. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yi, L.; Xing, M. An improved range model and Omega-K-based imaging algorithm for high-squint SAR with curved trajectory and constant acceleration. IEEE Geosci. Remote Sens. Lett. 2016, 13, 656–660. [Google Scholar] [CrossRef]
- Yang, H.; Wang, B.; Lin, S. Unsupervised extraction of video highlights via robust recurrent auto-encoders. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Washington, DC, USA, 7–13 December 2015; pp. 4633–4641. [Google Scholar]
- Daisuke, I.; Satoshi, T.; Tadashi, W. Trainable ISTA for sparse signal recovery. IEEE Trans. Signal Process. 2019, 67, 3113–3125. [Google Scholar]
- Cui, Y.; Wu, D.; Huang, J. Optimize TSK fuzzy systems for classification problems: Minibatch gradient descent with uniform regularization and batch normalization. IEEE Trans. Fuzzy Syst. 2020, 28, 3065–3075. [Google Scholar] [CrossRef] [Green Version]
- Candes, E.J.; Li, X.; Soltanolkotabi, M. Phase retrieval via wirtinger flow: Theory and algorithms. IEEE Trans. Inf. Theory. 2015, 61, 1985–2007. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Chang, T.S.; Yi, Z. A constructive algorithm for feedforward neural networks with incremental training. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2003, 49, 1876–1879. [Google Scholar]
- Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; Devito, Z. Automatic differentiation in PyTorch. In Proceedings of the 2017 International Conference of Neural Information Processing System, Long Beach, CA, USA, 4–9 December 2017; pp. 1–4. Available online: Pytorch.org (accessed on 22 January 2022).
- Li, Z.; Chen, J.; Du, W.; Gao, B.; Xing, M. Focusing of maneuvering high-squint-mode SAR data based on equivalent range model and wavenumber-domain imaging algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2419–2433. [Google Scholar] [CrossRef]
- Huang, L.; Liu, B.; Li, B.; Guo, W.; Yu, W.; Zhang, Z. OpenSARShip: A dataset dedicated to Sentinel-1 ship interpretation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 195–208. [Google Scholar] [CrossRef]
Algorithm | PSLR | ISLR | Imaging Time | PSLR | ISLR | Imaging Time |
---|---|---|---|---|---|---|
RMA | −11.48 dB | −11.97 dB | 7.79 s | −7.06 dB | −2.41 dB | 7.43 s |
Method in [13] | −12.63 dB | −9.36 dB | 816.01 s | −12.07 dB | −1.21 dB | 776.85 s |
Method in [14] | −12.89 dB | −9.25 dB | 50.62 s | −12.13 dB | −1.18 dB | 43.07 s |
Omega-KA-net with L = 3 | −14.93 dB | −12.91 dB | 0.32 s | −13.61 dB | −7.69 dB | 0.28 s |
Omega-KA-net with L = 5 | −21.09 dB | −22.40 dB | 0.32 s | −22.67 dB | −18.54 dB | 0.28 s |
Omega-KA-net with L = 7 | −31.77 dB | −30.86 dB | 0.32 s | −27.72 dB | −24.41 dB | 0.28 s |
Parameters | Value |
---|---|
Carrier frequency | 5.4 GHz |
Bandwidth | 60 MHz |
Pulse repetition frequency | 2.3 KHz |
Chirp rate |
Ship T1 | Ship T2 | Ship T3 | ||||
---|---|---|---|---|---|---|
Algorithm | Entropy | Imaging Time | Entropy | Imaging Time | Entropy | Imaging Time |
Method in [13] | 5.0778 | 7346.12 s | 4.5847 | 7238.67 s | 3.4498 | 7335.98 s |
Method in [14] | 4.9631 | 137.66 s | 4.5069 | 128.91 s | 3.4252 | 98.67 s |
Omega-KA-net with L = 3 | 6.3460 | 0.89 s | 5.6420 | 0.84 s | 5.1790 | 0.87 s |
Omega-KA-net with L = 5 | 4.1368 | 0.89 s | 2.5955 | 0.84 s | 2.1810 | 0.87 s |
Omega-KA-net with L = 7 | 2.5541 | 0.89 s | 2.2179 | 0.84 s | 1.7058 | 0.87 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Ni, J.; Xiong, S.; Luo, Y.; Zhang, Q. Omega-KA-Net: A SAR Ground Moving Target Imaging Network Based on Trainable Omega-K Algorithm and Sparse Optimization. Remote Sens. 2022, 14, 1664. https://doi.org/10.3390/rs14071664
Zhang H, Ni J, Xiong S, Luo Y, Zhang Q. Omega-KA-Net: A SAR Ground Moving Target Imaging Network Based on Trainable Omega-K Algorithm and Sparse Optimization. Remote Sensing. 2022; 14(7):1664. https://doi.org/10.3390/rs14071664
Chicago/Turabian StyleZhang, Hongwei, Jiacheng Ni, Shichao Xiong, Ying Luo, and Qun Zhang. 2022. "Omega-KA-Net: A SAR Ground Moving Target Imaging Network Based on Trainable Omega-K Algorithm and Sparse Optimization" Remote Sensing 14, no. 7: 1664. https://doi.org/10.3390/rs14071664
APA StyleZhang, H., Ni, J., Xiong, S., Luo, Y., & Zhang, Q. (2022). Omega-KA-Net: A SAR Ground Moving Target Imaging Network Based on Trainable Omega-K Algorithm and Sparse Optimization. Remote Sensing, 14(7), 1664. https://doi.org/10.3390/rs14071664