Desert Locust Cropland Damage Differentiated from Drought, with Multi-Source Remote Sensing in Ethiopia
Abstract
:1. Introduction
2. Data, Study Region, and Methodology
2.1. Datasets and Study Region
2.2. Methods
2.2.1. Desert Locust Swarm Data
2.2.2. Approach for Analyzing Satellite Land Surface Remote Sensing Products
2.2.3. Approach for Analyzing Climate Data
3. Results
3.1. Temporally Integrated Drought Condition and Vegetation Health Indices, and Evaluation
3.2. Cropland Phenology Time Series
4. Discussion
4.1. Drought Conditions in Ethiopia
4.2. Cropland Dynamics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Alemu, W.G.; Henebry, G.M. Land Surface Phenology and Seasonality Using Cool Earthlight in Croplands of Eastern Africa and the Linkages to Crop Production. Remote Sens. 2017, 9, 914. [Google Scholar] [CrossRef] [Green Version]
- Ilukor, J.; Gourlay, S. Locust Invasion in Ethiopia: Scope & Impact-Evidence from the World Bank-Supported High-Frequency Phone Surveys; World Bank: Washington, DC, USA, 2021. [Google Scholar]
- The Desert Locust in Africa and Western Asia: Complexities of War, Politics, Perilous Terrain, and Development. In Radcliffe's IPM World Textbook; Kika de la Garza Subtropical Agricultural Research Center: Weslaco, TX, USA, 2009.
- Peng, J.; Albergel, C.; Balenzano, A.; Brocca, L.; Cartus, O.; Cosh, M.H.; Crow, W.T.; Dabrowska-Zielinska, K.; Dadson, S.; Davidson, M.W. A Roadmap for High-Resolution Satellite Soil Moisture Applications–Confronting Product Characteristics with User Requirements. Remote Sens. Environ. 2020, 252, 112162. [Google Scholar]
- FAO Central & Eastern Region Outbreaks (May 2018 to Present). Available online: https://www.fao.org (accessed on 20 November 2020).
- FAO. Locust Hub—An Initiative of the Food and Agriculture Organization of the United Nations. Available online: https://locust-hub-hqfao.hub.arcgis.com/ (accessed on 21 January 2021).
- FAO. Desert Locust Bulletin—General Situation during October 2020; FAO: Rome, Italy, 2020. [Google Scholar]
- FAO, Ethiopian Ministry of Agriculture, Fewsnet & Partners. Impact of Desert Locust Infestation on Household Livelihoods and Food Security in Ethiopia: Joint Assessment Findings; Ethiopian Ministry of Agriculture: Addis Ababa, Ethiopia, 2020. [Google Scholar]
- FAO. Greater Horn of Africa and Yemen Desert Locust Crisis Appeal January 2020–June 2021; FAO: Rome, Italy, 2021. [Google Scholar]
- Reuters East Africa Drought Leaves Millions Hungry. Available online: https://www.reuters.com/article/us-eastafrica-drought/east-africa-drought-leaves-millions-hungry-idUSTRE58S1F520090929 (accessed on 19 June 2021).
- Alemu, W.G.; Melesse, A.M.; Senay, G.B. Drought Monitoring in East Africa Using Integrated Satellite Passive Microwave Drought Indices. Available online: https://scholar.google.com/citations?user=EiJeQE4AAAAJ&hl=en (accessed on 15 November 2021).
- Senamaw, A.; Addisu, S.; Suryabhagavan, K. Mapping the Spatial and Temporal Variation of Agricultural and Meteorological Drought Using Geospatial Techniques, Ethiopia. Environ. Syst. Res. 2021, 10, 15. [Google Scholar] [CrossRef]
- UN-WFP Drought in Ethiopia: 10 Million People in Need. Available online: https://www.wfp.org/stories/drought-ethiopia-10-million-people-need (accessed on 11 November 2020).
- IFPRI Ethiopia’s 2015 Drought: No Reason for a Famine. Available online: http://www.ifpri.org/blog/ethiopias-2015-drought-no-reason-famine (accessed on 11 November 2020).
- Hao, C.; Zhang, J.; Yao, F. Combination of Multi-Sensor Remote Sensing Data for Drought Monitoring over Southwest China. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 270–283. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F.; Chaney, N.; Guan, K.; Sadri, S.; Yuan, X.; Olang, L.; Amani, A.; Ali, A.; Demuth, S.; et al. A Drought Monitoring and Forecasting System for Sub-Sahara African Water Resources and Food Security. Bull. Am. Meteorol. Soc. 2014, 95, 861–882. [Google Scholar] [CrossRef]
- Jiao, W.; Tian, C.; Chang, Q.; Novick, K.A.; Wang, L. A New Multi-Sensor Integrated Index for Drought Monitoring. Agric. For. Meteorol. 2019, 268, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Thenkabail, P.; Teluguntla, P.G.; Xiong, J.; Oliphant, A.; Congalton, R.G.; Ozdogan, M.; Gumma, M.K.; Tilton, J.C.; Giri, C.; Milesi, C.; et al. Global Cropland-Extent Product at 30-m Resolution (GCEP30) Derived from Landsat Satellite Time-Series Data for the Year 2015 Using Multiple Machine-Learning Algorithms on Google Earth Engine Cloud; Professional Paper; Reston, VA, 2021; p. 63. Available online: https://pubs.er.usgs.gov/publication/pp1868 (accessed on 2 February 2022).
- NASA JPL NASADEM Merged DEM Global 1 Arc Second V001. NASA EOSDIS Land Process. DAAC 2020. [CrossRef]
- Norwegian Ministry of Climate and Environment. Norway’s International Climate and Forests Initiative (NICFI) DATA Program User Guide; Planet.com: San Francisco, CA, USA, 2021.
- Roy, D.P.; Huang, H.; Houborg, R.; Martins, V.S. A Global Analysis of the Temporal Availability of PlanetScope High Spatial Resolution Multi-Spectral Imagery. Remote Sens. Environ. 2021, 264, 112586. [Google Scholar]
- Harrison, T.; Mascaro, J. Access to Planet High Spatial and Temporal Resolution Earth Observation Imagery via the NASA Commercial Smallsat Data Acquisition (CSDA) Program. LPI Contrib. 2021, 2549, 7107. [Google Scholar]
- European Space Agency. Sentiniel-2 User Handbook. ESA Standard Document, Issue 1 Rev 2, 64. 2015. Available online: https://sentinel.esa.int/documents/247904/685211/sentinel-2_user_handbook (accessed on 19 January 2021).
- European Space Agency. Sentinel-1 SAR User Guide. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/ (accessed on 19 January 2021).
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T. First Operational BRDF, Albedo Nadir Reflectance Products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X.M. MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterization of New Datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Alemu, W.G.; Wimberly, M.C. Evaluation of Remotely Sensed and Interpolated Environmental Datasets for Vector-Borne Disease Monitoring Using In Situ Observations Over the Amhara Region, Ethiopia. Sensors 2020, 20, 1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNally, A.; Arsenault, K.; Kumar, S.; Shukla, S.; Peterson, P.; Wang, S.; Funk, C.; Peters-Lidard, C.D.; Verdin, J.P. A Land Data Assimilation System for Sub-Saharan Africa Food and Water Security Applications. Sci. Data 2017, 4, 170012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Space Agency. Copernicus Sentinel-2 MSI User Guide. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/level-2a (accessed on 19 January 2021).
- Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. NASA EOSDIS Land Processes DAAC 2015, 10, 415. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Ghent University. European Space Agency Climate Change Initiative Global Land Evaporation Amsterdam Model (GLEAM); Ghent University: Ghent, Belgium, 2020. [Google Scholar]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Gansukh, B.; Batsaikhan, B.; Dorjsuren, A.; Jamsran, C.; Batsaikhan, N. Monitoring Wheat Crop Growth Parameters using Time Series Sentinel-1 and Sentinel-2 Data for Agricultural Application in Mongolia. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 989–994. [Google Scholar] [CrossRef]
- Fayad, I.; Baghdadi, N.; Bazzi, H.; Zribi, M. Near Real-Time Freeze Detection over Agricultural Plots Using Sentinel-1 Data. Remote Sens. 2020, 12, 1976. [Google Scholar] [CrossRef]
- Moharana, S.; Kambhammettu, B.V.N.P.; Chintala, S.; Rani, A.S.; Avtar, R. Spatial Distribution of Inter- and Intra-Crop Variability Using Time-Weighted Dynamic Time Warping Analysis from Sentinel-1 Datasets. Remote Sens. Appl. Soc. Environ. 2021, 24, 100630. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, N.; Li, J.; Chen, Z.; Niyogi, D. Multi-Sensor Integrated Framework and Index for Agricultural Drought Monitoring. Remote Sens. Environ. 2017, 188, 141–163. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Jia, G.; Wang, H. Improving Meteorological Drought Monitoring Capability over Tropical and Subtropical Water-Limited Ecosystems: Evaluation and Ensemble of the Microwave Integrated Drought Index. Environ. Res. Lett. 2019, 14, 044025. [Google Scholar] [CrossRef]
- Hao, Z.; Hao, F.; Singh, V.P.; Ouyang, W.; Cheng, H. An Integrated Package for Drought Monitoring, Prediction and Analysis to Aid Drought Modeling and Assessment. Environ. Model. Softw. 2017, 91, 199–209. [Google Scholar] [CrossRef]
- Peng, J.; Dadson, S.; Hirpa, F.; Dyer, E.; Lees, T.; Miralles, D.G.; Vicente-Serrano, S.M.; Funk, C. A Pan-African High-Resolution Drought Index Dataset. Earth Syst. Sci. Data 2020, 12, 753–769. [Google Scholar] [CrossRef] [Green Version]
- Beguería, S.; Vicente-Serrano, S.M.; Beguería, M.S. Package ‘SPEI.’. 2017. Available online: https://cran.r-project.org/web/packages/SPEI/SPEI.pdf (accessed on 19 January 2021).
- Kimathi, E.; Tonnang, H.E.; Subramanian, S.; Cressman, K.; Abdel-Rahman, E.M.; Tesfayohannes, M.; Niassy, S.; Torto, B.; Dubois, T.; Tanga, C.M. Prediction of Breeding Regions for the Desert Locust Schistocerca Gregaria in East Africa. Sci. Rep. 2020, 10, 11937. [Google Scholar] [CrossRef] [PubMed]
- Skaf, R.; Popov, G.; Roffey, J. The Desert Locust: An International Challenge. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1990, 328, 525–538. [Google Scholar]
- Devereux, S.; Sabates-Wheeler, R.; Slater, R.; Tefera, M.; Brown, T.; Teshome, A. Ethiopia’s Productive Safety Net Programme (PSNP): 2008 Assessment Report; Ethiopian Ministry of Agriculture: Addis Ababa, Ethiopia, 2008. [Google Scholar]
- Sharp, K.; Brown, T.; Teshome, A. Targeting Ethiopia’s Productive Safety Net Programme (PSNP); Overseas Development Institute: London, UK, 2006. [Google Scholar]
- Gilligan, D.O.; Hoddinott, J.; Taffesse, A.S. The Impact of Ethiopia’s Productive Safety Net Programme and Its Linkages. J. Dev. Stud. 2009, 45, 1684–1706. [Google Scholar] [CrossRef] [Green Version]
S/N | Datasets and Sources | Spatial Res. | Temporal Res. | Study Duration | Data Variables |
---|---|---|---|---|---|
1 | Locust Hub [6] | Point locations with impacted area (ha) | As it occurs | January 2020–February 2021 | Locust sites |
2 | Planet Scope Basemaps [20] | 5 m (resampled to 50 m) | Monthly | September 2020–February 2021 | NDVI |
3 | Sentinel 2 L2A Surface Reflectance [29] | 10 m (resampled to 50 m) | 5 days * | January 2020–February 2021 | NDVI |
4 | Sentinel-1 σ° [24] | 10 m (resampled to 50 m) | 6 days * | January 2020–February 2021 | VV, VH |
5 | GFSAD30 [18] | 30 m | Annual | January 2020–February 2021 | Cropland points |
6 | MOD13Q1 [30] | 250 m | 16 days * | January 2000–December 2020 | NDVI |
7 | CHIRPS † [31] | 5 km | Daily * | January 2000–December 2020 | rf |
8 | FLDAS †† [28] | 10 km | Daily * | January 2000–December 2020 | Ta, SM |
9 | GLEAM ††† [32] | 25 km | Monthly | January 2000–December 2020 | PET |
Drought Indices | Data Source | Formula |
---|---|---|
PCI | CHIRPS | |
SMCI | FLDAS | |
TCI | FLDAS | |
VCI | MODIS | |
IDCI | CHIPS, FLDAS, MODIS | |
VHI | MODIS, FLDAS |
Correlation Coefficient (r) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Drought Indices | Weight | Non-Affected Croplands | Affected Croplands | |||||||||
PCI | TCI | SMCI | VCI | SPEI1 | SPEI3 | SPEI6 | SPEI12 | SPEI1 | SPEI3 | SPEI6 | SPEI12 | |
PCI1 PCI3 PCI6 PCI12 | 0.87 | 0.93 | 0.96 | 0.96 | 0.87 | 0.92 | 0.96 | 0.96 | ||||
TCI1 | 0.38 | 0.45 | 0.48 | 0.43 | 0.39 | 0.45 | 0.47 | 0.41 | ||||
SMCI1 | 0.73 | 0.75 | 0.61 | 0.39 | 0.74 | 0.72 | 0.56 | 0.36 | ||||
VCI1 | 0.50 | 0.72 | 0.62 | 0.37 | 0.51 | 0.71 | 0.61 | 0.35 | ||||
IDCI1 IDCI3 IDCI6 IDCI12 | 0.7 | 0.1 | 0.1 | 0.1 | 0.87 | 0.93 | 0.95 | 0.94 | 0.88 | 0.92 | 0.94 | 0.93 |
0.6 | 0.2 | 0.1 | 0.1 | 0.86 | 0.92 | 0.93 | 0.91 | 0.86 | 0.91 | 0.92 | 0.90 | |
0.6 | 0.1 | 0.2 | 0.1 | 0.87 | 0.92 | 0.93 | 0.90 | 0.87 | 0.91 | 0.92 | 0.89 | |
0.5 | 0.1 | 0.3 | 0.1 | 0.86 | 0.90 | 0.89 | 0.84 | 0.86 | 0.89 | 0.88 | 0.83 | |
0.5 | 0.2 | 0.2 | 0.1 | 0.85 | 0.90 | 0.90 | 0.86 | 0.85 | 0.89 | 0.89 | 0.85 | |
0.5 | 0.1 | 0.2 | 0.2 | 0.85 | 0.91 | 0.90 | 0.86 | 0.86 | 0.90 | 0.89 | 0.85 | |
0.4 | 0.2 | 0.2 | 0.2 | 0.83 | 0.90 | 0.88 | 0.81 | 0.83 | 0.88 | 0.86 | 0.79 | |
VHI1 | 0.2 | 0.8 | 0.54 | 0.76 | 0.68 | 0.45 | 0.56 | 0.74 | 0.66 | 0.42 | ||
0.3 | 0.7 | 0.55 | 0.75 | 0.68 | 0.47 | 0.56 | 0.74 | 0.66 | 0.45 | |||
0.4 | 0.6 | 0.54 | 0.73 | 0.68 | 0.49 | 0.56 | 0.71 | 0.66 | 0.46 | |||
0.5 | 0.5 | 0.53 | 0.69 | 0.65 | 0.49 | 0.54 | 0.68 | 0.64 | 0.46 | |||
0.6 | 0.4 | 0.50 | 0.64 | 0.62 | 0.49 | 0.52 | 0.64 | 0.61 | 0.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alemu, W.G.; Neigh, C.S.R. Desert Locust Cropland Damage Differentiated from Drought, with Multi-Source Remote Sensing in Ethiopia. Remote Sens. 2022, 14, 1723. https://doi.org/10.3390/rs14071723
Alemu WG, Neigh CSR. Desert Locust Cropland Damage Differentiated from Drought, with Multi-Source Remote Sensing in Ethiopia. Remote Sensing. 2022; 14(7):1723. https://doi.org/10.3390/rs14071723
Chicago/Turabian StyleAlemu, Woubet G., and Christopher S. R. Neigh. 2022. "Desert Locust Cropland Damage Differentiated from Drought, with Multi-Source Remote Sensing in Ethiopia" Remote Sensing 14, no. 7: 1723. https://doi.org/10.3390/rs14071723
APA StyleAlemu, W. G., & Neigh, C. S. R. (2022). Desert Locust Cropland Damage Differentiated from Drought, with Multi-Source Remote Sensing in Ethiopia. Remote Sensing, 14(7), 1723. https://doi.org/10.3390/rs14071723