Agents of Forest Disturbance in the Argentine Dry Chaco
Abstract
:1. Introduction
- What was the prevalence of different disturbance agents in the period from 1990 to 2017 in the Argentine Dry Chaco?
- What were the dynamics of different types of forest disturbances in this time period?
- How do different disturbances’ agents relate to anthropogenic features in the Chaco landscape, namely agricultural fields, forest smallholder homesteads, and roads?
2. Study Area
3. Materials and Methods
3.1. Forest Disturbance Map
3.2. Spectral-Temporal Metrics
3.3. Identifying and Characterizing Disturbance Patches
3.4. Disturbance Attribution
3.5. Analysing Disturbances in Relation to Agricultural Fields, Homesteads and Roads
4. Results
4.1. Prevalence and Estimated Areas of Different Disturbance Agents
4.2. Trends in Disturbance Agents
4.3. Disturbance Agents in Relation to Anthropogenic Features
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miles, L.; Newton, A.C.; DeFries, R.S.; Ravilious, C.; May, I.; Blyth, S.; Kapos, V.; Gordon, J.E. A global overview of the conservation status of tropical dry forests. J. Biogeogr. 2006, 33, 491–505. [Google Scholar] [CrossRef]
- Sunderland, T.; Apgaua, D.; Baldauf, C.; Blackie, R.; Colfer, C.; Cunningham, A.B.; Dexter, K.; Djoudi, H.; Gautier, D.; Gumbo, D.; et al. Global dry forests: A prologue. Int. For. Rev. 2015, 17, 1–9. [Google Scholar] [CrossRef]
- Hasnat, G.N.T.; Hossain, M.K. Global Overview of Tropical Dry Forests. In Handbook of Research on the Conservation and Restoration of Tropical Dry Forests; IGI Global: Hershey, PA, USA, 2020; pp. 1–23. [Google Scholar] [CrossRef]
- Banda, K.R.; Delgado-Salinas, A.; Dexter, K.G.; Linares-Palomino, R.; Oliveira-Filho, A.; Prado, D.; Pullan, M.; Quintana, C.; Riina, R.; Rodríguez, G.M.; et al. Plant diversity patterns in neotropical dry forests and their conservation implications. Science 2016, 353, 1383–1387. [Google Scholar] [CrossRef] [Green Version]
- Mares, M.A. Neotropical Mammals and the Myth of Amazonian Biodiversity. Science 1992, 255, 976–979. [Google Scholar] [CrossRef]
- Redford, K.H.; Taber, A.; Simonetti, J.A. There Is More to Biodiversity than the Tropical Rain Forests. Conserv. Biol. 1990, 4, 328–330. [Google Scholar] [CrossRef]
- Byron, N.; Arnold, M. What futures for the people of the tropical forests? World Dev. 1999, 27, 789–805. [Google Scholar] [CrossRef] [Green Version]
- Newton, P.; Kinzer, A.T.; Miller, D.C.; Oldekop, J.A.; Agrawal, A. The Number and Spatial Distribution of Forest-Proximate People Globally. One Earth 2020, 3, 363–370. [Google Scholar] [CrossRef]
- Siyum, Z.G. Tropical dry forest dynamics in the context of climate change: Syntheses of drivers, gaps, and management perspectives. Ecol. Process. 2020, 9, 25. [Google Scholar] [CrossRef]
- Pearson, T.R.H.; Brown, S.; Murray, L.; Sidman, G. Greenhouse gas emissions from tropical forest degradation: An underestimated source. Carbon Balance Manag. 2017, 12, 3. [Google Scholar] [CrossRef] [Green Version]
- Sedano, F.; Silva, J.A.; Machoco, R.; Meque, C.H.; Sitoe, A.; Ribeiro, N.; Anderson, K.; Ombe, Z.A.; Baule, S.H.; Tucker, C.J. The impact of charcoal production on forest degradation: A case study in Tete, Mozambique. Environ. Res. Lett. 2016, 11, 094020. [Google Scholar] [CrossRef]
- Chidumayo, E.N. Forest degradation and recovery in a miombo woodland landscape in Zambia: 22 years of observations on permanent sample plots. For. Ecol. Manag. 2013, 291, 154–161. [Google Scholar] [CrossRef]
- Matricardi, E.A.T.; Skole, D.L.; Pedlowski, M.A.; Chomentowski, W.; Fernandes, L.C. Assessment of tropical forest degradation by selective logging and fire using Landsat imagery. Remote Sens. Environ. 2010, 114, 1117–1129. [Google Scholar] [CrossRef]
- Cochrane, M.A. Fire science for rainforests. Nature 2003, 421, 913–919. [Google Scholar] [CrossRef]
- Veldman, J.W.; Mostacedo, B.; Peña-Claros, M.; Putz, F.E. Selective logging and fire as drivers of alien grass invasion in a Bolivian tropical dry forest. For. Ecol. Manag. 2009, 258, 1643–1649. [Google Scholar] [CrossRef]
- Murdiyarso, D.; Skutsch, M.; Guariguata, M.; Kanninen, M.; Luttrell, C.; Verweij, P. How do we measure and monitor forest degradation? In Moving Ahead with REDD; Wiley: Hoboken, NJ, USA, 2007; pp. 99–156. [Google Scholar] [CrossRef]
- Sasaki, N.; Putz, F.E. Critical need for new definitions of “forest” and “forest degradation” in global climate change agreements. Conserv. Lett. 2009, 2, 226–232. [Google Scholar] [CrossRef]
- Schneibel, A.; Frantz, D.; Röder, A.; Stellmes, M.; Fischer, K.; Hill, J. Using annual landsat time series for the detection of dry forest degradation processes in south-central Angola. Remote Sens. 2017, 9, 905. [Google Scholar] [CrossRef] [Green Version]
- Vieira, D.L.M.; Scariot, A. Principles of natural regeneration of tropical dry forests for restoration. Restor. Ecol. 2006, 14, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Gao, Y.; Solórzano, J.V.; Quevedo, A.; Loya-Carrillo, J.O. How bfast trend and seasonal model components affect disturbance detection in tropical dry forest and temperate forest. Remote Sens. 2021, 13, 2033. [Google Scholar] [CrossRef]
- De Marzo, T.; Pflugmacher, D.; Baumann, M.; Lambin, E.F.; Gasparri, I.; Kuemmerle, T. Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102310. [Google Scholar] [CrossRef]
- Reiche, J.; Hamunyela, E.; Verbesselt, J.; Hoekman, D.; Herold, M. Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2. Remote Sens. Environ. 2017, 204, 147–161. [Google Scholar] [CrossRef]
- Smith, V.; Portillo-Quintero, C.; Sanchez-Azofeifa, A.; Hernandez-Stefanoni, J.L. Assessing the accuracy of detected breaks in Landsat time series as predictors of small scale deforestation in tropical dry forests of Mexico and Costa Rica. Remote Sens. Environ. 2019, 221, 707–721. [Google Scholar] [CrossRef]
- Hamunyela, E.; Verbesselt, J.; Herold, M. Using spatial context to improve early detection of deforestation from Landsat time series. Remote Sens. Environ. 2016, 172, 126–138. [Google Scholar] [CrossRef]
- Grogan, K.; Pflugmacher, D.; Hostert, P.; Verbesselt, J.; Fensholt, R. Mapping clearances in tropical dry forests using breakpoints, trend, and seasonal components from modis time series: Does forest type matter? Remote Sens. 2016, 8, 657. [Google Scholar] [CrossRef] [Green Version]
- Sebald, J.; Senf, C.; Seidl, R. Human or natural? Landscape context improves the attribution of forest disturbances mapped from Landsat in Central Europe. Remote Sens. Environ. 2021, 262, 112502. [Google Scholar] [CrossRef]
- Shimizu, K.; Ota, T.; Mizoue, N.; Yoshida, S. A comprehensive evaluation of disturbance agent classification approaches: Strengths of ensemble classification, multiple indices, spatio-temporal variables, and direct prediction. ISPRS J. Photogramm. Remote Sens. 2019, 158, 99–112. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Jones, S.D.; Soto-Berelov, M.; Haywood, A.; Hislop, S. A spatial and temporal analysis of forest dynamics using Landsat time-series. Remote Sens. Environ. 2018, 217, 461–475. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Braaten, J.; Copass, C.; Antonova, N.; Jordan, C.; Nelson, P. Attribution of disturbance change agent from Landsat time-series in support of habitat monitoring in the Puget Sound region, USA. Remote Sens. Environ. 2015, 166, 271–285. [Google Scholar] [CrossRef]
- Shimizu, K.; Ahmed, O.S.; Ponce-Hernandez, R.; Ota, T.; Win, Z.C.; Mizoue, N.; Yoshida, S. Attribution of disturbance agents to forest change using a Landsat time series in tropical seasonal forests in the Bago Mountains, Myanmar. Forests 2017, 8, 218. [Google Scholar] [CrossRef]
- Senf, C.; Seidl, R. Storm and fire disturbances in Europe: Distribution and trends. Glob. Chang. Biol. 2021, 27, 3605–3619. [Google Scholar] [CrossRef]
- Oeser, J.; Pflugmacher, D.; Senf, C.; Heurich, M.; Hostert, P. Using intra-annual Landsat time series for attributing forest disturbance agents in Central Europe. Forests 2017, 8, 251. [Google Scholar] [CrossRef]
- Senf, C.; Pflugmacher, D.; Wulder, M.A.; Hostert, P. Characterizing spectral-temporal patterns of defoliator and bark beetle disturbances using Landsat time series. Remote Sens. Environ. 2015, 170, 166–177. [Google Scholar] [CrossRef]
- Huo, L.Z.; Boschetti, L.; Sparks, A.M. Object-based classification of forest disturbance types in the conterminous United States. Remote Sens. 2019, 11, 477. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, T.A.; Schleeweis, K.G.; Moisen, G.G.; Toney, C.; Cohen, W.B.; Freeman, E.A.; Yang, Z.; Huang, C. Testing a Landsat-based approach for mapping disturbance causality in U.S. forests. Remote Sens. Environ. 2017, 195, 230–243. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr-Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Cohen, W.B.; Kennedy, R.E.; Grodzki, W.; Pflugmacher, D.; Griffiths, P.; Hostert, P. Monitoring coniferous forest biomass change using a Landsat trajectory-based approach. Remote Sens. Environ. 2013, 139, 277–290. [Google Scholar] [CrossRef]
- Cohen, W.B.; Yang, Z.; Healey, S.P.; Kennedy, R.E.; Gorelick, N. A LandTrendr multispectral ensemble for forest disturbance detection. Remote Sens. Environ. 2018, 205, 131–140. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B.; Pfaff, E.; Braaten, J.; Nelson, P. Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan. Remote Sens. Environ. 2012, 122, 117–133. [Google Scholar] [CrossRef]
- Senf, C.; Pflugmacher, D.; Hostert, P.; Seidl, R. Using Landsat time series for characterizing forest disturbance dynamics in the coupled human and natural systems of Central Europe. ISPRS J. Photogramm. Remote Sens. 2017, 130, 453–463. [Google Scholar] [CrossRef]
- Schneibel, A.; Stellmes, M.; Röder, A.; Frantz, D.; Kowalski, B.; Haß, E.; Hill, J. Assessment of spatio-temporal changes of smallholder cultivation patterns in the Angolan Miombo belt using segmentation of Landsat time series. Remote Sens. Environ. 2017, 195, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, R.; Yang, Z.; Gorelick, N.; Braaten, J.; Cavalcante, L.; Cohen, W.; Healey, S. Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sens. 2018, 10, 691. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.S.; Roy, D.P.; Cochrane, M.A.; Souza, C.M.; Barber, C.P.; Boschetti, L. A quantitative study of the proximity of satellite detected active fires to roads and rivers in the Brazilian tropical moist forest biome. Int. J. Wildl. Fire 2014, 23, 532–543. [Google Scholar] [CrossRef]
- Sunderlin, W.D.; Dewi, S.; Puntodewo, A.; Müller, D.; Angelsen, A.; Epprecht, M. Why forests are important for global poverty alleviation: A spatial explanation. Ecol. Soc. 2008, 13, 24. [Google Scholar] [CrossRef] [Green Version]
- Blackie, R.; Baldauf, C.; Gautier, D.; Gumbo, D.; Kassa, H.; Parthasarathy, N.; Paumgarten, F.; Sola, P.; Pulla, S.; Waeber, P.; et al. Tropical Dry Forests: The State of Global Knowledge and Recommendations for Future Research; CIFOR: Bogor, Indonesia, 2014. [Google Scholar] [CrossRef] [Green Version]
- Cano-Crespo, A.; Oliveira, P.J.C.; Boit, A.; Cardoso, M.; Thonicke, K. Forest edge burning in the Brazilian Amazon promoted by escaping fires from managed pastures. J. Geophys. Res. Biogeosci. 2015, 120, 2095–2107. [Google Scholar] [CrossRef] [Green Version]
- Cabido, M.; Zeballos, S.R.; Zak, M.; Carranza, M.L.; Giorgis, M.A.; Cantero, J.J.; Acosta, A.T.R. Native woody vegetation in central Argentina: Classification of Chaco and Espinal forests. Appl. Veg. Sci. 2018, 21, 298–311. [Google Scholar] [CrossRef] [Green Version]
- Rueda, C.V.; Baldi, G.; Gasparri, I.; Jobbágy, E.G. Charcoal production in the Argentine Dry Chaco: Where, how and who? Energy Sustain. Dev. 2015, 27, 46–53. [Google Scholar] [CrossRef]
- Grau, H.R.; Gasparri, N.I.; Aide, T.M. Balancing food production and nature conservation in the Neotropical dry forests of northern Argentina. Glob. Chang. Biol. 2008, 14, 985–997. [Google Scholar] [CrossRef]
- Macchi, L.; Grau, H.R. Piospheres in the dry Chaco. Contrasting effects of livestock puestos on forest vegetation and bird communities. J. Arid Environ. 2012, 87, 176–187. [Google Scholar] [CrossRef]
- Baumann, M.; Levers, C.; Macchi, L.; Bluhm, H.; Waske, B.; Gasparri, N.I.; Kuemmerle, T. Mapping continuous fields of tree and shrub cover across the Gran Chaco using Landsat 8 and Sentinel-1 data. Remote Sens. Environ. 2018, 216, 201–211. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. Bioscience 2001, 51, 933. [Google Scholar] [CrossRef]
- Prado, D.E. What is the Gran Chaco vegetation in South America? I: A review. Contribution to the study of flora and vegetaion of the Chaco. V. Candollea 1993, 48, 145–172. [Google Scholar]
- Bucher, E.H. Chaco and Caatinga—South American Arid Savannas, Woodlands and Thickets. In Ecology of Tropical Savannas; Springer: Berlin/Heidelberg, Germany, 1982; pp. 48–79. [Google Scholar] [CrossRef]
- Gasparri, N.I.; Grau, H.R. Deforestation and fragmentation of Chaco dry forest in NW Argentina (1972–2007). For. Ecol. Manag. 2009, 258, 913–921. [Google Scholar] [CrossRef]
- Vallejos, M.; Volante, J.N.; Mosciaro, M.J.; Vale, L.M.; Bustamante, M.L.; Paruelo, J.M. Transformation dynamics of the natural cover in the Dry Chaco ecoregion: A plot level geo-database from 1976 to 2012. J. Arid Environ. 2015, 123, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Baumann, M.; Gasparri, N.I.; Buchadas, A.; Oeser, J. Frontier metrics for a process-based understanding of deforestation dynamics. EarthArXiv 2022. preprint. [Google Scholar] [CrossRef]
- Torrella, S.A.; Adámoli, J. Situación Ambiental de La Ecorregión Chaco Seco. In La Situación Ambiental Argentina 2005; Fundación Vida Silvestre Argentina: Buenos Aires, Argentina, 2005. [Google Scholar]
- Cotroneo, S.M.; Jacobo, E.J.; Brassiolo, M.M. Degradation processes and adaptive strategies in communal forests of Argentine dry Chaco. Integrating stakeholder knowledge and perceptions. Ecosyst. People 2021, 17, 507–522. [Google Scholar] [CrossRef]
- Krapovickas, J.; Sacchi, L.V.; Hafner, R. Firewood supply and consumption in the context of agrarian change: The Northern Argentine Chaco from 1990 to 2010. Int. J. Commons 2016, 10, 220–243. [Google Scholar] [CrossRef] [Green Version]
- Levers, C.; Romero-muñoz, A.; Baumann, M.; De Marzo, T. Agricultural expansion and the ecological marginalization of forest-dependent people. Proc. Natl. Acad. Sci. USA 2021, 118, e2100436118. [Google Scholar] [CrossRef]
- Adamoli, J.; Sennhauser, E.; Acero, J.M.; Rescia, A. Stress and disturbance: Vegetation dynamics in the dry Chaco region of Argentina. J. Biogeogr. 1990, 17, 147–156. [Google Scholar] [CrossRef]
- Bachmann, L.; Daniele, C.; Mereb, J.; Frassetto, A. Identificación Expeditiva de Los Principales Problemas Ambientales en el Gran Chaco Argentino; Instituto de Geografía-UBA: Buenos Aires, Argentina, 2007. [Google Scholar]
- Kunst, C. Ecología y uso del fuego en la Región Chaqueña Argentina: Una revisión. Boletín 2011, 10, 31–52. [Google Scholar]
- Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef] [Green Version]
- McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps; Computer Software Program Produced by the Authors; University of Massachusetts, Amherst: Amherst, MA, USA, 2012. [Google Scholar]
- Prieto, M.R.; Rojas, F. Determination of droughts and high floods of the Bermejo River (Argentina) based on documentary evidence (17th to 20th century). J. Hydrol. 2015, 529, 676–683. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Stehman, S.V. Estimating area from an accuracy assessment error matrix. Remote Sens. Environ. 2013, 132, 202–211. [Google Scholar] [CrossRef]
- Baumann, M.; Gasparri, I.; Piquer-Rodríguez, M.; Gavier Pizarro, G.; Griffiths, P.; Hostert, P.; Kuemmerle, T. Carbon emissions from agricultural expansion and intensification in the Chaco. Glob. Chang. Biol. 2017, 23, 1902–1916. [Google Scholar] [CrossRef]
- Romero-Muñoz, A.; Benítez-López, A.; Zurell, D.; Baumann, M.; Camino, M.; Decarre, J.; Castillo, H.; Giordano, A.J.; Gómez-Valencia, B.; Levers, C.; et al. Increasing synergistic effects of habitat destruction and hunting on mammals over three decades in the Gran Chaco. Ecography 2020, 43, 954–966. [Google Scholar] [CrossRef]
- Fernandez, P.D.; le Polain de Waroux, Y.; Jobbágy, E.G.; Loto, D.E.; Gasparri, I.N. A hard-to-keep promise: Vegetation use and aboveground carbon storage in silvopastures of the Dry Chaco. Agric. Ecosyst. Environ. 2020, 303, 107117. [Google Scholar] [CrossRef]
- Bravo, S.; Kunst, C.; Grau, R.; Aráoz, E. Fire–rainfall relationships in Argentine Chaco savannas. J. Arid Environ. 2010, 74, 1319–1323. [Google Scholar] [CrossRef]
- Boletta, P.E.; Ravelo, A.C.; Planchuelo, A.M.; Grilli, M. Assessing deforestation in the Argentine Chaco. For. Ecol. Manag. 2006, 228, 108–114. [Google Scholar] [CrossRef]
- Tálamo, A.; Caziani, S.M. Variation in woody vegetation among sites with different disturbance histories in the Argentine Chaco. For. Ecol. Manag. 2003, 184, 79–92. [Google Scholar] [CrossRef]
- Fischer, M.A.; Di Bella, C.M.; Jobbágy, E.G. Fire patterns in central semiarid Argentina. J. Arid Environ. 2012, 78, 161–168. [Google Scholar] [CrossRef]
- Argañaraz, J.P.; Pizarro, G.G.; Zak, M.; Bellis, L.M. Fire regime, climate, and vegetation in the Sierras de Córdoba, Argentina. Fire Ecol. 2015, 11, 55–73. [Google Scholar] [CrossRef]
- Di Bella, C.M.; Jobbágy, E.G.; Paruelo, J.M.; Pinnock, S. Continental fire density patterns in South America. Glob. Ecol. Biogeogr. 2006, 15, 192–199. [Google Scholar] [CrossRef]
- Volante, J.N.; Mosciaro, M.J.; Gavier-Pizarro, G.I.; Paruelo, J.M. Agricultural expansion in the Semiarid Chaco: Poorly selective contagious advance. Land Use Policy 2016, 55, 154–165. [Google Scholar] [CrossRef] [Green Version]
- Baldi, G.; Houspanossian, J.; Murray, F.; Rosales, A.A.; Rueda, C.V.; Jobbágy, E.G. Cultivating the dry forests of South America: Diversity of land users and imprints on ecosystem functioning. J. Arid Environ. 2015, 123, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W. Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics. Remote Sens. Environ. 2015, 170, 121–132. [Google Scholar] [CrossRef]
- Maertens, M.; De Lannoy, G.J.M.; Vincent, F.; Massart, S.; Gimenez, R.; Houspanossian, J.; Gasparri, I.; Vanacker, V. Spatial patterns of soil salinity in the central Argentinean Dry Chaco. Anthropocene 2022, 37, 100322. [Google Scholar] [CrossRef]
Patch-Based Metric | Variable (# Metrics) | Description |
---|---|---|
Spectral-temporal metrics | ||
Pre-disturbance | Prevalue (2) | Mean of the spectral value before the disturbance of Tasseled Cap Wetness (TCW) and Normalized Burn Ratio (NBR) |
Disturbance | Magnitude (4) | Mean and STDV of the spectral magnitude (difference between spectral values at the end and beginning of the disturbance segment) of TCW and NBR |
Relative magnitude (2) | Mean of the ratio between Magnitude and Prevalue TCW and NBR | |
Duration (1) | Mean of the duration in years of the disturbance segment (same for TCW and NBR time series) | |
Post-disturbance | Endvalue (2) | Mean of the spectral value at the end of the disturbance of TCW and NBR |
Recovery | Magnitude (4) | Mean and STDV of the difference between spectral values at the end and beginning of the recovery segment TCW and NBR |
Duration (1) | Mean of the duration in years of the recovery segment (same for TCW and NBR time series) | |
Spatial metrics | ||
Area (1) | Patch area | |
Perimeter (1) | Patch perimeter | |
Perimeter/area (1) | Ratio between patch perimeter and area | |
Fractal index (1) | Patch fractal index |
Variable | Source | Reference |
---|---|---|
Distance to agricultural fields | Land-cover maps for the years 1990, 1995, 2000, 2005, 2010, and 2015 | [72] |
Distance to smallholders homesteads | Homesteads screen digitalization based on the Landsat archive and very-high-resolution imagery in Google Earth | [62] |
Distance to roads | Road network for the years 1995, 2000, 2005, 2010, 2015 | openstreetmap.org (accessed on 15 May 2017), [73] |
Observed | |||||||
---|---|---|---|---|---|---|---|
Partial Clearing | Fire | Logging | Riparian | Drought | User’s Accuracy | ||
Predicted | Partial Clearing | 16.1 | 1.4 | 1.1 | 0.0 | 0.3 | 85.5 (±4.3) |
Fire | 5.4 | 21.9 | 4.9 | 0.0 | 1.9 | 64.3 (±5.8) | |
Logging | 6.9 | 6.0 | 10.6 | 1.8 | 3.7 | 36.5 (±6.1) | |
Riparian | 2.2 | 1.1 | 1.8 | 1.5 | 0.7 | 20.0 (±5.2) | |
Drought | 2.3 | 0.7 | 0.7 | 0.5 | 6.5 | 60.9 (±6.1) | |
Producer’s Accuracy | 48.9 (±3.6) | 70.6 (±4.2) | 55.6 (±6.3) | 38.5 (±11.3) | 49.4 (±6.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Marzo, T.; Gasparri, N.I.; Lambin, E.F.; Kuemmerle, T. Agents of Forest Disturbance in the Argentine Dry Chaco. Remote Sens. 2022, 14, 1758. https://doi.org/10.3390/rs14071758
De Marzo T, Gasparri NI, Lambin EF, Kuemmerle T. Agents of Forest Disturbance in the Argentine Dry Chaco. Remote Sensing. 2022; 14(7):1758. https://doi.org/10.3390/rs14071758
Chicago/Turabian StyleDe Marzo, Teresa, Nestor Ignacio Gasparri, Eric F. Lambin, and Tobias Kuemmerle. 2022. "Agents of Forest Disturbance in the Argentine Dry Chaco" Remote Sensing 14, no. 7: 1758. https://doi.org/10.3390/rs14071758
APA StyleDe Marzo, T., Gasparri, N. I., Lambin, E. F., & Kuemmerle, T. (2022). Agents of Forest Disturbance in the Argentine Dry Chaco. Remote Sensing, 14(7), 1758. https://doi.org/10.3390/rs14071758