Thermal Responses of the Largest Freshwater Lake in the Tibetan Plateau and Its Nearby Saline Lake to Climate Change
Abstract
:1. Introduction
- to further improve our developed lake model with salinity parameterizations, to apply it to a TP saline lake, and to evaluate the model performance in the TP;
- to study the long-term warming trends in a deep freshwater lake and a saline lake in the TP; and
- to quantify the contribution of meteorological factors and salinity effects on the thermal regime changes of a deep freshwater lake and a saline lake.
2. Study Area, Data and Methods
2.1. Study Area
2.1.1. Freshwater Ngoring Lake
2.1.2. Hajiang Salt Pond
2.2. Data
2.2.1. Observations Data in NL and HSP
2.2.2. ITPCAS Data and Its Correction
2.2.3. MODIS Data
2.3. Lake Model and Setup
2.3.1. Lake Model with Salinity Parameterizations
2.3.2. Model Parameters for the Freshwater NL
2.3.3. Model Parameters for the Saline HSP
2.3.4. Numerical Experiments Design
2.3.5. Model Performance Criteria
3. Results and Analysis
3.1. Performance of the Lake Model
3.1.1. Performance on the Freshwater Lake (NL)
3.1.2. Performance over a Saline Lake
3.2. Lake Temperature Variations and the Influence of Forcing Data
3.2.1. LSWT and Variation Trends
Annual LSWT
3.2.2. MLT and the Variation Trends
Annual MLT
Monthly MLT
3.2.3. Bottom Temperature and the Variation Trends
Annual BLT
Monthly BLT
3.3. Effects of Local Climate Drivers on the Lake Warming
3.3.1. Correlation between LSWT and Meteorological Forcing
3.3.2. Quantified Contribution of Individual Meteorological Forcing to Lake Warming
3.4. Effects of Salinity Parameters on the Lake Warming
4. Discussion
4.1. Salinity Effects and Parameterizations
4.2. Simulated Warming Rates of LSWT in Different Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviation
Abbreviation | Explain | Unit |
BLT | bottom lake temperature | °C |
CMA | China Meteorological Administration | |
CLM4-LISSS | the Lake, Ice, Snow, and Sediment Simulator in the Community Land model V4.0 | |
cpsw | specific heat capacity of saline water | kJ/kg/K |
d | lake depth | m |
ITPCAS | Institute of Tibetan Plateau Research, Chinese Academy of Sciences | |
LWD | downward longwave radiation | W m−2 |
HSP | Hajiang Salt Pond | |
LSWT | lake surface water temperature | °C |
LT | lake water temperature | °C |
MLT | mean lake water temperature | °C |
n | total number of observations | |
NL | Ngoring Lake | |
Q | specific humidity | g kg−1 |
i | represents the observations | |
R | correlation coefficient | |
RMSE | root mean square error | |
Rsvp | the ratio of the saturated vapor pressure | |
s | salinity | ‰ |
Si | represents the simulated results | |
SWD | downward shortwave radiation | W m−2 |
Ta | air temperature | °C |
Tf | freezing point | °C |
Tmaxd | temperature of the maximum density of saline water | °C |
TP | The Tibetan Plateau | |
WS | wind speed | m s−1 |
α | lake albedo | |
αmax | max values of the lake ice albedo | |
αmin | min values of the lake ice albedo | |
β | fraction of absorbed surface solar radiation | |
λsw | thermal conductivity of saline water | W m−1∙K |
η | light extinction coefficient | |
η0 | constant value 1.1925 |
References
- Zhang, G.; Luo, W.; Chen, W.; Zheng, G. A robust but variable lake expansion on the Tibetan Plateau. Sci. Bull. 2019, 64, 1306–1309. [Google Scholar] [CrossRef] [Green Version]
- Huang, A.; Lazhu; Wang, J.; Dai, Y.; Yang, K.; Wei, N.; Wen, L.; Wu, Y.; Zhu, X.; Zhang, X.; et al. Evaluating and Improving the Performance of Three 1-D Lake Models in a Large Deep Lake of the Central Tibetan Plateau. J. Geophys. Res. 2019, 124, 3143–3167. [Google Scholar] [CrossRef] [PubMed]
- Kirillin, G.; Wen, L.; Shatwell, T. Seasonal thermal regime and climatic trends in lakes of the Tibetan highlands. Hydrol. Earth Syst. Sci. 2017, 21, 1895–1909. [Google Scholar] [CrossRef] [Green Version]
- Lazhu; Yang, K.; Wang, J.; Lei, Y.; Chen, Y.; Zhu, L.; Ding, B.; Qin, J. Quantifying evaporation and its decadal change for Lake Nam Co, central Tibetan Plateau. J. Geophys. Res. 2016, 121, 7578–7591. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, B.; Zhong, L.; Ma, W. The regional surface heating field over the heterogeneous landscape of the Tibetan Plateau using MODIS and in-situ data. Adv. Atmos. Sci. 2012, 29, 47–53. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Y.; Qin, H.; Huang, J.; Liu, C.; Hu, C.; Wang, W.; Liu, S.; Lee, X. Spatiotemporal characteristics of lake breezes over lake Taihu, China. J. Appl. Meteorol. Climatol. 2017, 56, 2053–2065. [Google Scholar] [CrossRef]
- Wen, L.; Lyu, S.; Kirillin, G.; Li, Z.; Zhao, L. Air-lake boundary layer and performance of a simple lake parameterization scheme over the Tibetan highlands. Tellus A 2016, 68, 31091. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J. China: The third pole. Nature 2008, 454, 393–396. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Cheng, B.; Kourzeneva, E.; Semmler, T.; Rontu, L.; Lepparanta, M.; Shirasawa, K.; Li, Z. Modelling experiments on air snow ice interactions over Kilpisjarvi, a lake in northern Finland. Boreal Environ. Res. 2013, 18, 341–358. [Google Scholar]
- Wu, G.; Duan, A.; Liu, Y.; Mao, J.; Ren, R.; Bao, Q.; He, B.; Liu, B.; Hu, W. Tibetan Plateau climate dynamics: Recent research progress and outlook. Natl. Sci. Rev. 2015, 2, 100–116. [Google Scholar] [CrossRef] [Green Version]
- You, Q.; Chen, D.; Wu, F.; Pepin, N.; Cai, Z.; Ahrens, B.; Jiang, Z.; Wu, Z.; Kang, S.; AghaKouchak, A. Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives. Earth Sci. Rev. 2020, 210, 103349. [Google Scholar] [CrossRef]
- O’Reilly, C.M.; Sharma, S.; Gray, D.K.; Hampton, S.E.; Read, J.S.; Rowley, R.J.; Schneider, P.; Lenters, J.D.; McIntyre, P.B.; Kraemer, B.M.; et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 2015, 42, 10773–10781. [Google Scholar] [CrossRef] [Green Version]
- Wan, W.; Zhao, L.; Xie, H.; Liu, B.; Li, H.; Cui, Y.; Ma, Y.; Hong, Y. Lake surface water temperature change over the Tibetan Plateau from 2001–2015: A sensitive indicator of the warming climate. Geophys. Res. Lett. 2018, 45, 11177–11186. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Xie, H.; Qin, J.; Ye, Q.; Dai, Y.; Guo, R. Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data. J. Geophys. Res. 2014, 119, 8552–8567. [Google Scholar] [CrossRef]
- Huang, L.; Wang, J.; Zhu, L.; Ju, J.; Daut, G. The Warming of Large Lakes on the Tibetan Plateau: Evidence from a Lake Model Simulation of Nam Co, China, during 1979–2012. J. Geophys. Res. 2017, 122, 13095–13107. [Google Scholar] [CrossRef] [Green Version]
- Su, D.; Hu, X.; Wen, L.; Lyu, S.; Gao, X.; Zhao, L.; Li, Z.; Du, J.; Kirillin, G. Numerical study on the response of the largest lake in China to climate change. Hydrol. Earth Syst. Sci. 2019, 23, 2093–2109. [Google Scholar] [CrossRef] [Green Version]
- Wen, L. Impacts of a Saline Lake and Its Salinity on Local Precipitation. Adv. Meteorol. 2015, 2015, 679634. [Google Scholar] [CrossRef]
- Antonopoulos, V.Z.; Gianniou, S.K. Simulation of water temperature and dissolved oxygen distribution in Lake Vegoritis, Greece. Ecol. Model. 2003, 160, 39–53. [Google Scholar] [CrossRef]
- Ito, Y.; Momii, K. Impacts of regional warming on long-term hypolimnetic anoxia and dissolved oxygen concentration in a deep lake. Hydrol. Process. 2015, 29, 2232–2242. [Google Scholar] [CrossRef]
- Farrell, K.J.; Ward, N.K.; Krinos, A.I.; Hanson, P.C.; Daneshmand, V.; Figueiredo, R.J.; Carey, C.C. Ecosystem-scale nutrient cycling responses to increasing air temperatures vary with lake trophic state. Ecol. Model. 2020, 430, 16. [Google Scholar] [CrossRef]
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Van Donk, E.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Wen, L.; Su, D. Reliability of three reanalysis dataset in simulation of three alpine lakes on the Qinghai-Tibetan Plateau. Plateau Meteorol. 2019, 38, 101–103, (In Chinese with English abstract). [Google Scholar]
- Song, K.; Wang, M.; Du, J.; Yuan, Y.; Ma, J.; Wang, M.; Mu, G. Spatiotemporal Variations of Lake Surface Temperature across the Tibetan Plateau Using MODIS LST Product. Remote Sens. 2016, 8, 854. [Google Scholar] [CrossRef] [Green Version]
- Lazhu; Yang, K.; Hou, J.; Wang, J.; Lei, Y.; Zhu, L.; Chen, Y.; Wang, M.; He, X. A new finding on the prevalence of rapid water warming during lake ice melting 2 on the Tibetan Plateau. Sci. Bull. 2021, 66, 2358–2361. [Google Scholar] [CrossRef]
- Zhou, J.; Han, F.; Pang, X.; Luo, C.; Yan, J. Preliminary investigation of Hajiang Salt Pond and Kuhai Lake in Yellow River Source Area. J. Salt Lake Res. 2010, 18, 18–22, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Yang, K.; He, J. China Meteorological Forcing Dataset (1979–2018); National Tibetan Plateau Data Center: Beijing, China, 2019; Available online: http://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49/ (accessed on 24 January 2022).
- Yang, K.; He, J.; Tang, W.; Qin, J.; Cheng, C.C.K. On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. Forest. Meteorol. 2010, 150, 38–46. [Google Scholar] [CrossRef]
- Yang, X.; Wen, J.; Huang, A.; Lu, Y.; Meng, X.; Zhao, Y.; Wang, Y.; Meng, L. Short-Term Climatic Effect of Gyaring and Ngoring Lakes in the Yellow River Source Area, China. Front. Earth Sci. 2022, 9, 770757. [Google Scholar] [CrossRef]
- Bennington, V.; Notaro, M.; Holman, K.D. Improving climate sensitivity of deep lakes within a regional climate model and its impact on simulated climate. J. Clim. 2014, 27, 2886–2911. [Google Scholar] [CrossRef]
- Subin, Z.M.; Riley, W.J.; Mironov, D. An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. J. Adv. Mod. Earth Sys. 2012, 4, M02001. [Google Scholar] [CrossRef]
- Deng, B.; Liu, S.; Xiao, W.; Wang, W.; Jin, J.; Lee, X. Evaluation of the CLM4 lake model at a large and shallow freshwater lake. J. Hydrometeorol. 2012, 14, 636–649. [Google Scholar] [CrossRef] [Green Version]
- Stepanenko, V.; Joehnk, K.D.; Machulskaya, E.; Perroud, M.; Subin, Z.; Nordbo, A.; Mammarella, I.; Mironov, D. Simulation of surface energy fluxes and stratification of a small boreal lake by a set of one-dimensional models. Tellus A 2014, 66, 21389. [Google Scholar] [CrossRef]
- Hu, C.; Wang, Y.; Wang, W.; Liu, S.; Piao, M.; Xiao, W.; Lee, X. Trends in evaporation of a large subtropical lake. Theor. Appl. Climatol. 2017, 129, 159–170. [Google Scholar] [CrossRef]
- Li, Z.; Ao, Y.; Lyu, S.; Lang, J.; Wen, L.; Stepanenko, V.; Meng, X.; Zhao, L. Investigation of the ice surface albedo in the Tibetan Plateau lakes based on the field observation and MODIS products. J. Glaciol. 2018, 64, 506–516. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Jin, J.; Wang, X.; Budy, P.; Barrett, N.; Null, S.E. Improving lake mixing process simulations in the Community Land Model by using K profile parameterization. Hydrol. Earth Syst. Sci. 2019, 23, 4969–4982. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Liu, H.; Du, Q.; Wang, L. Evaluation of the WRF-lake model over a highland freshwater lake in southwest China. J. Geophys. Res. 2016, 121, 13989–14005. [Google Scholar] [CrossRef]
- Wen, L.; Nagabhatla, N.; Zhao, L.; Li, Z.; Chen, S. Impacts of salinity parameterizations on temperature simulation over and in a hypersaline lake. Chin. J. Oceanol. Limnol. 2015, 33, 790–801. [Google Scholar] [CrossRef] [Green Version]
- Unesco. Algorithms for Computation of Fundamental Properties of Seawater. 1983. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000059832 (accessed on 24 January 2022).
- Low, R.D.H. A Generalized Equation for the Solution Effect in Droplet Growth. J. Atmos. Sci. 1969, 26, 608–611. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, D.R. The maximum density points of pure and saline water. Deep Sea Res. 1978, 25, 175–181. [Google Scholar] [CrossRef]
- Mironov, D.; Heise, E.; Kourzeneva, E.; Ritter, B.; Schneider, N.; Terzhevik, A. Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO. Boreal Environ. Res. 2010, 15, 218–230. [Google Scholar]
- Su, D.; Wen, L.; Gao, X.; Leppäranta, M.; Song, X.; Shi, Q.; Kirillin, G. Effects of the largest lake of the Tibetan Plateau on the regional climate. J. Geophys. Res. 2020, 125, e2020JD033396. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, A.; Lazhu; Yang, X.; Tang, Y. Improvements of the coupled WRF-Lake model over Lake Nam Co, Central Tibetan Plateau. Clim. Dyn. 2020, 55, 2703–2724. [Google Scholar] [CrossRef]
- Duan, S.; Fan, S.; Cao, G.; Liu, X.; Sun, Y. The changing features and cause analysis of the lakes in the source regions of the Yellow River from 1976 to 2014. J. Glaciol. Geocryol. 2015, 37, 745–756, (In Chinese with English abstract). [Google Scholar]
- Gu, H.; Shen, X.; Jin, J.; Xiao, W.; Wang, Y. An application of a 1-D thermal diffusion lake model to Lake Taihu. Acta Meteorol. Sin. 2013, 71, 719–730, (In Chinese with English abstract). [Google Scholar]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: New York, NY, USA, 2011; 676p. [Google Scholar]
- Crosman, E.T.; Horel, J.D. MODIS-derived surface temperature of the Great Salt Lake. Remote Sens. Environ. 2009, 113, 73–81. [Google Scholar] [CrossRef]
- Liu, B.; Wan, W.; Xie, H.; Li, H.; Zhu, S.; Zhang, G.; Wen, L.; Hong, Y. A long-term dataset of lake surface water temperature over the Tibetan Plateau derived from AVHRR 1981–2015. Sci. Data 2019, 6, 48. [Google Scholar] [CrossRef]
- Song, X.; Wen, L.; Li, M. Comparative study on applicability of different lake models to typical lakes in Qinghai-Tibetan Plateau. Plateau Meteorol. 2020, 39, 213–225, (In Chinese with English Abstract). [Google Scholar]
- Kirillin, G. Modeling the impact of global warming on water temperature and seasonal mixing regimes in small temperate lakes. Boreal Environ. Res. 2010, 15, 279–293. [Google Scholar]
- Pilla, R.M.; Williamson, C.E.; Adamovich, B.V.; Adrian, R.; Anneville, O.; Chandra, S.; Colom-Montero, W.; Devlin, S.P.; Dix, M.A.; Dokulil, M.T.; et al. Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes. Sci. Rep. 2020, 10, 20514. [Google Scholar] [CrossRef]
- Yang, K.; Wu, H.; Qin, J.; Lin, C.; Tang, W.; Chen, Y. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Glob. Planet. Chang. 2014, 112, 79–91. [Google Scholar] [CrossRef]
- Austin, J.A.; Colman, S.M. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Pius, B.; Marszelewski, W. Effect of climatic changes on the development of the thermal-ice regime based on the example of Lake Charzykowskie (Poland). Bull. Geography. Phys. Geogr. Ser. 2016, 11, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global lake responses to climate change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Wang, W.; Lee, X.; Xiao, W.; Liu, S.; Schultz, N.; Wang, Y.; Zhang, M.; Zhao, L. Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate. Nat. Geosci. 2018, 11, 410–414. [Google Scholar] [CrossRef]
Experiment | S-NL | S-D1F | S-HSP | |
---|---|---|---|---|
Parameter | ||||
Lake | NL | D1F | HSP | |
Salinity (‰) | 0 | 0 | 220 | |
Lake depth (m) | 17 | 1 | 1 | |
Albedo | Equation (7) | Equation (7) | 0.15 | |
Parameter of the light extinction coefficient η0 | 1.1925 | 1.1925 | 2 × 1.1925 | |
Fraction of absorbed surface solar radiation β | 0.5 | 0.5 | 0.6 | |
Meteorological forcing | Bias-corrected ITPCAS | Bias-corrected ITPCAS | Bias-corrected ITPCAS |
Experiment | Lake | Forcing |
---|---|---|
S-NL-dTa | NL | Same as S-NL except that Ta was detrended |
S-NL-dWS | NL | Same as S-NL except that WS was detrended |
S-NL-dQ | NL | Same as S-NL except that Q was detrended |
S-NL-dSWD | NL | Same as S-NL except that SWD was detrended |
S-NL-dLWD | NL | Same as S-NL except that LWD was detrended |
S-NL-dTa&LWD | NL | Same as S-NL except that Ta and LWD were detrended |
S-D1F-dTa | D1F | Same as S-D1F except that Ta was detrended |
S-D1F-dWS | D1F | Same as S-D1F except that WS was detrended |
S-D1F-dQ | D1F | Same as S-D1F except that Q was detrended |
S-D1F-dSWD | D1F | Same as S-D1F except that SWD was detrended |
S-D1F-dLWD | D1F | Same as S-D1F except that LWD was detrended |
S-D1F-dTa&LWD | D1F | Same as S-D1F except that Ta and LWD were detrended |
S-HSP-dTa | HSP | Same as S-HSP except that Ta was detrended |
S-HSP-dWS | HSP | Same as S-HSP except that WS was detrended |
S-HSP-dQ | HSP | Same as S-HSP except that Q was detrended |
S-HSP-dSWD | HSP | Same as S-HSP except that SWD was detrended |
S-HSP-dLWD | HSP | Same as S-HSP except that LWD was detrended |
S-HSP-dTa&LWD | HSP | Same as S-HSP except that Ta and LWD were detrended |
Experiment | Model Setting |
---|---|
S-HSP-α | Same as S-HSP except that albedo was set to that in S-NL |
S-HSP-η0 | Same as S-HSP except that the parameter of the light extinction coefficient η0 was set from 2 × 1.1925 to 1.1925 as in S-NL |
S-HSP-β | Same as S-HSP except that the fraction of absorbed surface solar radiation β was set from 0.6 to 0.5 as in S-NL |
S-HSP-Rsvp | Same as S-HSP except that the ratio of the saturated vapor pressure Rsvp over the saline water to that over the fresh water in Equation (2) was set to 1 as in S-NL |
S-HSP-Tmaxd | Same as S-HSP except that the temperature of the maximum density Tmaxd was changed from minus to 3.98 °C as in S-NL |
S-HSP-Tf | Same as S-HSP except that the freezing temperature Tf was changed from −12.65 °C to 0 °C as in S-NL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, L.; Wang, C.; Li, Z.; Zhao, L.; Lyu, S.; Leppäranta, M.; Kirillin, G.; Chen, S. Thermal Responses of the Largest Freshwater Lake in the Tibetan Plateau and Its Nearby Saline Lake to Climate Change. Remote Sens. 2022, 14, 1774. https://doi.org/10.3390/rs14081774
Wen L, Wang C, Li Z, Zhao L, Lyu S, Leppäranta M, Kirillin G, Chen S. Thermal Responses of the Largest Freshwater Lake in the Tibetan Plateau and Its Nearby Saline Lake to Climate Change. Remote Sensing. 2022; 14(8):1774. https://doi.org/10.3390/rs14081774
Chicago/Turabian StyleWen, Lijuan, Chan Wang, Zhaoguo Li, Lin Zhao, Shihua Lyu, Matti Leppäranta, Georgiy Kirillin, and Shiqiang Chen. 2022. "Thermal Responses of the Largest Freshwater Lake in the Tibetan Plateau and Its Nearby Saline Lake to Climate Change" Remote Sensing 14, no. 8: 1774. https://doi.org/10.3390/rs14081774
APA StyleWen, L., Wang, C., Li, Z., Zhao, L., Lyu, S., Leppäranta, M., Kirillin, G., & Chen, S. (2022). Thermal Responses of the Largest Freshwater Lake in the Tibetan Plateau and Its Nearby Saline Lake to Climate Change. Remote Sensing, 14(8), 1774. https://doi.org/10.3390/rs14081774