Geophysical Study of the Diendorf-Boskovice Fault System (Austria)
Abstract
:1. Introduction
2. Geological and Geophysical Background
2.1. Major Geological Structures in the Study Area
2.2. Insight for Recent Tectonic Activity
3. Data and Methods
3.1. Datasets (Gravimetric, Magnetic, FDEM, Gamma-Ray)
3.1.1. Gravimetric Data
- Calibration. Due to the different institutions that conducted the acquisitions, the datum levels of the various data were different. After the appropriate modifications, each data was referred to the absolute gravimetric datum established by [32].
- Correction of wrong coordinates. The low quality of some old topographic maps, from which the horizontal coordinates of measuring stations were obtained, caused systematic errors. To check these errors, the station heights were compared with those obtained by interpolating a high-resolution digital terrain model (with spacing 50 m). Wrong coordinates were corrected using recent topographic maps and using the digital land registry [28].
- Mass correction. The gravitational effect of the topographic masses was calculated by applying an extremely accurate correction method: in the immediate vicinity of the stations (distance < 1200 m) the topography was approximated by bodies of arbitrary shape (polyhedral) [33], instead of flat-topped prisms. Considering the Earth’s curvature, all mass corrections were calculated in a spherical approximation with a radius of 167 km, assuming a density of 2670 kgm−3, a value very close to the density of the surface rocks of the investigated area. Rock densities measured in 1991 in situ and in drill cores in the study area within the Bohemian Massif area generally show a wide variation, depending not only on the type of rocks but also on the content of minerals. Nevertheless, they confirm this assumed average value of 2670 kgm−3 [34].
3.1.2. Airborne Data
A—Aero-Magnetic Data
B—Aero-Electromagnetic Data
C—Aero-Radiometric Data
3.2. Methods
3.2.1. EHD
3.2.2. Multi-Ridge Geometric Method
3.2.3. DEXP
4. Analysis and Results
4.1. EHD
4.2. Multi-Ridge Geometric Method & DEXP
- choice of the profile to be analyzed starting from the small-scale EHD map
- for each chosen profile, selection of the order of derivatives and analysis of the ridges
- selection of the ridges for the Multiridge Geometric Method [45] for detecting the average depth-to-the-sources
- choice of the proper ridge for Euler Deconvolution for studying of the degree of homogeneity of the field (Multiridge Euler Deconvolution, e.g., [49])
- from the degree of homogeneity obtained, we used the Scaling Function Method [50] to identify the structural index, taking into account the order p to be subtracted
- calculation of the DEXP along a profile or on an area, using the structural index previously obtained. In the gravimetric cases the DEXP was calculated on the horizontal derivative of the field, while in the magnetic cases the DEXP was calculated on the total gradient of the field.
5. Discussion and Conclusions
- Locate a series of sub-surface contacts within the Moldanubian unit and in the Molasse Basin from 2D imaging on gravimetric data, highlighted as DEXP maxima. Given the good correspondence between many already known faults (e.g., part of the Diendorf fault and some faults affecting the Molasse Basin) and the maxima of the medium-scale EHD function and based on the structural indices value (equal to –1), we assume that the maximums identified by the DEXP analysis represent the top of previously unknown subsurface faults. The depth-to-the-top depth of the top of these faults is larger than 500 m.
- Highlighted from 3D imaging on magnetic data is a series of surface magnetized structures (about 450 m deep) that could represent magmatic intrusions. In fact, the central section of the magnetic dataset falls within an area geologically known as Thaya Window—a tectonic window that emerges between the Moldanubian tassels [19]. Furthermore, a part of the magnetized area inside it also presents a strong contrast of resistivity, as can be seen from the inversion model relating to the aero-electromagnetic data.
- We add that several structures identified thanks to the magnetic data imaging do not have correspondence on the geological map, nor on the resistivity data map. This could be related to the large depth of the structures identified by the analysis of aeromagnetic data (of the order of hundreds of meters) that are masked by covering sediments. In fact, the depth of investigation of the AEM method in the Pulkau area is at most 150 m, not large enough to be able to locate possible resistive bodies and structures below the covering materials. Finally, the widespread presence of magmatic intrusions of the Cadomian age in the area [10], would suggest that the magnetized sources found in this work can be interpreted as intrusions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blakely, R.J. Potential Theory in Gravity and Magnetic Applications; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar] [CrossRef]
- Eppelbaum, L.V. Geophysical Potential Fields: Geological and Environmental Applications; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- IAEA-TECDOC-1363. Guidelines for Radioelement Mapping Using Gamma Ray Spectrometry Data. International Atomic Energy Agency (IAEA). 2003. Available online: https://www-pub.iaea.org/mtcd/publications/pdf/te_1363_web.pdf (accessed on 3 March 2022).
- Zuzana, S.; Vladislav, R.; Bedřich, M. Effect of small potassium-rich dykes on regional gamma-spectrometry image of a potassium-poor volcanic complex: A case from the Doupovské hory Volcanic Complex, NW Czech Republic. J. Volcanol. Geotherm. Res. 2009, 187, 26–32. [Google Scholar] [CrossRef]
- Paoletti, V.; Gruber, S.; Varley, N.; D’Antonio, M.; Supper, R.; Motschka, K. Insights into the Structure and Surface Geology of Isla Socorro, Mexico, from Airborne Magnetic and Gamma-Ray Surveys. Surv. Geophys. 2016, 37, 601–623. [Google Scholar] [CrossRef]
- Milano, M.; Fedi, M.; Fairhead, J.D. The deep crust beneath the Trans-European Suture Zone from a multiscale magnetic model. J. Geophys. Res. Solid Earth 2016, 121, 6276–6292. [Google Scholar] [CrossRef] [Green Version]
- Milano, M.; Fedi, M.; Fairhead, J.D. Joint analysis of the magnetic field and total gradient intensity in central Europe. Solid Earth 2019, 10, 697–712. [Google Scholar] [CrossRef] [Green Version]
- Paoletti, V.; Milano, M.; Baniamerian, J.; Fedi, M. Magnetic Field Imaging of Salt Structures at Nordkapp Basin, Barents Sea. Geophys. Res. Lett. 2020, 47, e2020GL089026. [Google Scholar] [CrossRef]
- Roštínský, P.; Pospíšil, L.; Švábenský, O. Recent geodynamic and geomorphological analyses of the Diendorf–Čebín Tectonic Zone, Czech Republic. Tectonophysics 2013, 599, 45–66. [Google Scholar] [CrossRef]
- Pospíšil, L.; Roštínský, P.; Švábenský, O.; Weigel, J.; Witiska, M. Active tectonics in the eastern margin of the Bohemian massif-based on the geophysical, geomorphological and GPS data. Acta Geodyn. Geomater. 2012, 9, 315–329. [Google Scholar]
- Decker, K. Tectonic Assessment of integrated Geological, geophysical, Morphological and structural Geological Data. Project N-C-036/F/98 Ground Potential of the Horn–Hollabrunn Environmental Area; Geologische Bundesanstalt: Wien, Austria, 1999. (In German) [Google Scholar]
- Schermann, O. Über Horizontalseitenverschiebungen arn Ostrand der Böhmischen Masse. Mitt. Ges. Geol. Bergbaustud. 1965, 16, 89–103. (In German) [Google Scholar]
- Figdor, H.; Scheidegger, A.E. Geophysical investigation of the Diendorf Fault. Verh. Der Geol. Bundesanst. 1977, 3, 243–270. (In German) [Google Scholar]
- Griesmeier, G.E.U.; Iglseder, C.; Schuster, R.; Petrakakis, K. Polyphase deformation along the South Bohemian Batholith-Moldanubian nappes boundary—The Freyenstein Fault System (Bohemian Massif/Austria). Austrian J. Earth Sci. 2020, 113, 139–153. [Google Scholar] [CrossRef]
- Seiberl, W.; Heinz, H. Aerogeophysikalische Vermessung Im Bereich Der Kremser Bucht. Technical Report. Vienna: Geological Survey of Austria, May 1986. Available online: http://opac.geologie.ac.at/ais312/dokumente/AeroGeoPh_1986_KremserBucht.pdf (accessed on 3 March 2022). (In German).
- Seiberl, W.; Heinz, H. Aerogeophysikalische Vermessung Im Raum Ziersdorf. Technical Report. Vienna: Geological Survey of Austria, October 1986. Available online: http://opac.geologie.ac.at/ais312/dokumente/AeroGeoPh_1986_Ziersdorf.pdf (accessed on 3 March 2022). (In German).
- Seiberl, W.; Roetzel, R. Aerogeophysikalische Vermessung Im Bereich Geras, Niederösterreich. Technical Report. Vienna: Geological Survey of Austria, August 1998. Available online: http://opac.geologie.ac.at/ais312/dokumente/AeroGeoPh_1998_Geras.pdf (accessed on 3 March 2022). (In German).
- Seiberl, W.; Roetzel, R.; Pirkl, H.R. Aerogeophysikalische Vermessung im Bereich von Pulkau/NÖ.’ Technical report. Vienna: Geological Survey of Austria, May 1996. Available online: http://opac.geologie.ac.at/ais312/dokumente/AeroGeoPh_1996_Pulkau.pdf (accessed on 3 March 2022). (In German).
- Štípská, P.; Schulmann, K.; Höck, V. Complex metamorphic zonation of the Thaya dome: Result of buckling and gravitational collapse of an imbricated nappe sequence. Geol. Soc. London, Spéc. Publ. 1999, 169, 197–211. [Google Scholar] [CrossRef]
- Linner, M.; Roetzel, R.; Huet, B.; Hintersberger, E. A new subdivision for the Moravian Superunit—The redefined Pleißing and the newly defined Pulkau nappe. In Proceedings of the 4th Friends of the Bohemian Massif Meeting, Freistadt, Austria, 10 July–10 October 2021. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- Schuster, R.; Daurer, A.; Krenmayr, H.G.; Linner, M.; Mandl, G.W.; Pestal, G.; Reitner, J. Rocky Austria: The Geology of Austria-Brief and Colourful 2014. Geological Survey of Austria. Available online: https://geolba.maps.arcgis.com/apps/webappviewer/index.html?id=0e19d373a13d4eb19da3544ce15f35ec (accessed on 3 March 2022).
- Zych, D. Messungen Der Erdmagnetischen Vertikalintensität Und Suszeptibilitätsuntersuchungen Durch Die Ömv-Ag Als Beitrag Zur Kohlenwasserstoffexploration in Österreich; Zentralanstalt für Meteorologie und Geodynamik (ZAMG) Publikation: Vienna, Austria, 1985. (In German) [Google Scholar]
- Hösch, K.; Steinhauser, P. Gesteinsphysikalische Untersuchungen in Der Östlichen Böhmischen Masse Niederösterreichs; Bericht Bund/Bundesländer-Rohstoffprojekt N-C-006b/81, Bibl. Geol. B.-A./Wiss. Archiv Nr. A 06299–R, 28 S., 7 Abb.: Wien, Austria, 1985. (In German) [Google Scholar]
- Scheidegger, A.E. Untersuchungen des Beanspruchungsplanes im Einflußgebiet der Diendorfer Störung; Jahrbuch Der Geologischen Bundesanstalt: Vienna, Austria, 1976; Volume 119, pp. 83–95. (In German) [Google Scholar]
- Hammerl, C.; Lenhardt, W. Erdbeben in Niederösterreich von 1000 bis 2009 n. Chr. Abh. Der Geol. Bundesanst. 2013, 67, 297. (In German) [Google Scholar]
- Pospíšil, L.; Švábenský, O.; Weigel, J.; Witiska, M. Geological constraints on the GPS and precise levelling measurements along the DIENDORF-ČEBÍN tectonic zone. Acta Geodyn. Geomater. 2010, 7, 317–333. [Google Scholar]
- Vyskočil, P. Recent crustal movements in the Bohemian Massif. Tectonophysics 1975, 29, 349–358. [Google Scholar] [CrossRef]
- Vyskočil, P. Recent crustal movements their properties and results of studies at the territory of Czech Republic. In Seismicity, Neotectonics, and Recent Dynamics with Special Regard to the Territory of Czech Republic; Research Institute of Geodesy, Topography and Cartography: Zdiby, Czech Republic, 1996; pp. 77–120. ISBN 80-85881-04-7. [Google Scholar]
- Leichmann, J.; Hejl, E. Quaternary tectonics at the eastern border of the Bohemian Massif: New outcrop evidence. Geol. Mag. 1996, 133, 103–105. [Google Scholar] [CrossRef]
- Meurers, B.; Ruess, D. A new Bouguer gravity map of Austria. Austrian J. Earth Sci. 2009, 102, 62–70. [Google Scholar]
- Ruess, D. Der Beitrag Österreichs an UNIGRACE—Unification of Gravity Systems of Central and Eastern European Countries. VGI—Osterr. Z. Für Vermess. Und Geoinf. 2002, 90, 129–139. Available online: https://de.readkong.com/page/der-beitrag-osterreichs-an-unigrace-uni-cation-of-gravity-7039576 (accessed on 3 March 2022).
- Meurers, B.; Ruess, D.; Graf, J. A program system for high precise Bouguer gravity gravity determination. In Proceedings of the 8th International Meeting on Alpine Gravimetry: Leoben 2000; Österreichische Beiträge zu Meteorologie und Geophysik; ZAMG: Wien, Austria, 2001; pp. 217–226. [Google Scholar]
- Aric, K.; Gutdeutsch, R.; Heinz, H.; Meurers, B.; Seiberl, W.; Adam, A.; Smythe, D. Geophysical Investigations in the Southern Bohemian Massif. Jahrbuch Der Geologischen Bundesanstalt 1997, 140, 9–28. [Google Scholar]
- Meurers, B.; Ruess, D. Compilation of a new Bouguer gravity data base in Austria. VGI—Osterr. Z. Für. Vermess. Und. Geoinf. 2007, 2, 90–94. [Google Scholar]
- Motschka, K. Aerogeophysics in Austria. Bull. Geol. Surv. Jpn. 2001, 52, 83–88. [Google Scholar]
- Paoletti, V.; D’Antonio, M.; Rapolla, A. The structural setting of the Ischia Island (Phlegrean Volcanic District, Southern Italy): Inferences from geophysics and geochemistry. J. Volcanol. Geotherm. Res. 2013, 249, 155–173. [Google Scholar] [CrossRef]
- Supper, R.; Baroň, I.; Ottowitz, D.; Motschka, K.; Gruber, S.; Winkler, E.; Jochum, B.; Römer, A. Airborne geophysical mapping as an innovative methodology for landslide investigation: Evaluation of results from the Gschliefgraben landslide, Austria. Nat. Hazards Earth Syst. Sci. 2013, 13, 3313–3328. [Google Scholar] [CrossRef] [Green Version]
- Bohrson, W.A.; Reid, M.R. Petrogenesis of alkaline basalts from Socorro Island, Mexico: Trace element evidence for contamination of ocean island basalt in the shallow ocean crust. J. Geophys. Res. Earth Surf. 1995, 100, 24555–24576. [Google Scholar] [CrossRef]
- Grasty, R.; Minty, B.R.S. A Guide to the Technical Specifications for Airborne Gamma-Ray Surveys; Australian Geological Survey Organization: Canberra, Australia, 1995; ISBN 0642223661. [Google Scholar]
- Fedi, M. Multiscale derivative analysis: A new tool to enhance detection of gravity source boundaries at various scales. Geophys. Res. Lett. 2002, 29, 507. [Google Scholar] [CrossRef]
- Fedi, M.; Florio, G. Detection of potential fields source boundaries by enhanced horizontal derivative method. Geophys. Prospect. 2001, 49, 40–58. [Google Scholar] [CrossRef]
- Luiso, P.; Paoletti, V.; Nappi, R.; La Manna, M.; Cella, F.; Gaudiosi, G.; Fedi, M.; Iorio, M. A multidisciplinary approach to characterize the geometry of active faults: The example of Mt. Massico, Southern Italy. Geophys. J. Int. 2018, 213, 1673–1681. [Google Scholar] [CrossRef]
- Luiso, P.; Paoletti, V.; Nappi, R.; Gaudiosi, G.; Cella, F.; Fedi, M. Testing the value of a multi-scale gravimetric analysis in characterizing active fault 2 geometry at hypocentral depths: The 2016-2017 Central Italy seismic sequence. Ann. Geophys. 2018, 61, 29. [Google Scholar] [CrossRef]
- Fedi, M.; Florio, G.; Quarta, T.A. Multiridge analysis of potential fields: Geometric method and reduced Euler deconvolution. Geophysics 2009, 74, L53–L65. [Google Scholar] [CrossRef]
- Fedi, M. DEXP: A fast method to determine the depth and the structural index of potential fields sources. Geophysics 2007, 72, I1–I11. [Google Scholar] [CrossRef]
- Fedi, M.; Pilkington, M. Understanding imaging methods for potential field data. Geophysics 2012, 77, G13–G24. [Google Scholar] [CrossRef] [Green Version]
- Paoletti, V.; Buggi, A.; Pašteka, R. UXO Detection by Multiscale Potential Field Methods. Pure Appl. Geophys. 2019, 176, 4363–4381. [Google Scholar] [CrossRef]
- Paoletti, V.; Ialongo, S.; Florio, G.; Fedi, M.; Cella, F. Self-constrained inversion of potential fields. Geophys. J. Int. 2013, 195, 854–869. [Google Scholar] [CrossRef] [Green Version]
- Florio, G.; Fedi, M.; Rapolla, A. Interpretation of regional aeromagnetic data by the scaling function method: The case of Southern Apennines (Italy). Geophys. Prospect. 2009, 57, 479–489. [Google Scholar] [CrossRef]
- Cella, F.; Fedi, M. Inversion of potential field data using the structural index as weighting function rate decay. Geophys. Prospect. 2011, 60, 313–336. [Google Scholar] [CrossRef]
Aerogeophysical Survey/y | Magnetic Device | Electromagnetic Device/Frequencies | Radiometric Device | Data per sec (Mag/EM/Rad) | Average Line Spacing [m] |
---|---|---|---|---|---|
Kremser Bucht/1983 | G-801/3 | DIGHEM II/900 Hz (vert./coaxial), 3600 Hz (horiz./coplanar) | GR-800 B | 1/4/1 | 200 |
Kamptal-Ziersdorf/1983 | G-801/3 | DIGHEM II/900 Hz (vert./coaxial), 3600 Hz (horiz./coplanar) | GR-800 B | 1/4/1 | 200 |
Pulkau/1994 | Scintrex CS-2 | DIGHEM II/900 Hz (vert./coaxial), 7200 Hz (horiz./coplanar) | Scintrex PGAM-1000 | 5/10/1 | 250 |
Pulkau north/1995 | Scintrex CS-2 | DIGHEM II/900 Hz (vert./coaxial), 7200 Hz (horiz./coplanar) | Scintrex PGAM-1000 | 5/10/1 | 200 |
Geras/1996–1997 | Scintrex CS-2 | GEOTECH “Hummingbird”/434 Hz (vertic./coplanar), 3212 Hz (horiz./coaxial), 7002 Hz(vertic./coplanar), 34,133 Hz (horiz./coaxial) | Scintrex PGAM-1000 | 5/10/1 | 200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paoletti, V.; Hintersberger, E.; Schattauer, I.; Milano, M.; Deidda, G.P.; Supper, R. Geophysical Study of the Diendorf-Boskovice Fault System (Austria). Remote Sens. 2022, 14, 1807. https://doi.org/10.3390/rs14081807
Paoletti V, Hintersberger E, Schattauer I, Milano M, Deidda GP, Supper R. Geophysical Study of the Diendorf-Boskovice Fault System (Austria). Remote Sensing. 2022; 14(8):1807. https://doi.org/10.3390/rs14081807
Chicago/Turabian StylePaoletti, Valeria, Esther Hintersberger, Ingrid Schattauer, Maurizio Milano, Gian Piero Deidda, and Robert Supper. 2022. "Geophysical Study of the Diendorf-Boskovice Fault System (Austria)" Remote Sensing 14, no. 8: 1807. https://doi.org/10.3390/rs14081807
APA StylePaoletti, V., Hintersberger, E., Schattauer, I., Milano, M., Deidda, G. P., & Supper, R. (2022). Geophysical Study of the Diendorf-Boskovice Fault System (Austria). Remote Sensing, 14(8), 1807. https://doi.org/10.3390/rs14081807