Nitrous Oxide Profiling from Infrared Radiances (NOPIR): Algorithm Description, Application to 10 Years of IASI Observations and Quality Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. IASI
2.2. GEOS-Chem
2.3. RTTOV
2.4. NDACC
2.5. TCCON
3. The Nitrous Oxide Profiling from Infrared Radiances (NOPIR) Retrieval
3.1. Atmosphere and Surface Modelling
3.2. Tikhonov Regularization Setup
3.3. Micro-Windows Selection
- Channels with significant absorption signature of N2O (including isotopes) only were selected, and in addition some channels as transparent as possible;
- Only channels with post-retrieval root-mean-square of spectral residuals (RMSSR) mostly below 0.4 K were allowed;
- Only micro-windows of at least 4 spectral channels were kept.
3.4. Summary of Differences with Respect to Pre-Existing IASI N2O Retrieval Algorithms
- Our NOPIR algorithm uses the 3 spectral band as in SOFRID because it is the most sensitive to N2O within the IASI spectral range, but we have very carefully selected a list of micro-windows to avoid interfering gases instead of adding multiple gases in the retrieval; our selection of IASI spectral channels also allows improved sensitivity down to the lower troposphere, with respect to MUSICA.
- We use RTTOV as radiative transfer, as in SOFRID, but we use the latest available version 13.0.
- Our retrieval is based on the Tikhonov regularization [69,70], with a constraint on the profile shape and not on absolute concentrations. This choice allows observing long-term trends without possible bias linked to the a priori used in the retrieval. With an Optimal Estimation [73] retrieval (as in SOFRID) or a Tikhonov constraint mimicking the inverse of a covariance matrix (MUSICA), either the variability has to be set quite high to allow for the long-term increase (e.g., 10% in MUSICA, 5% in SOFRID), or the a priori must include a trend such as to mimic the expected trend, making the retrieved trend possibly dependent on the a priori trend.
- Our NOPIR retrieval is provided and validated on a pixel basis (like MUSICA, but unlike SOFRID that is validated on a monthly basis), and provides a decent quality also at Arctic and Antarctic stations (none of the other retrievals are presented there) and during day and nighttime (SOFRID uses only nighttime IASI data). We validate integrated N2O columns (instead of only the layer with the highest sensitivity) with the available quality controlled data from NDACC and TCCON stations.
- NOPIR retrieved products have about 2 degrees of freedom (DOF) (more than MUSICA, less than SOFRID) except at high latitudes where the DOF is reduced to about 1 (similar for MUSICA, not considered in SOFRID).
4. Results
4.1. Quality Control
- Maximum 10 iterations in the retrieval; after that, the retrieval is stopped and considered non-converging;
- The root-mean-square of the spectral residuals (RMSSR) must be below 0.2 K, which is about the IASI noise in our retrieval spectral range;
- Each spectral channel’s residual must be below 0.4 K, which is about twice the IASI noise in our retrieval spectral range;
- At least 0.75 DOF in the retrieval; below this threshold we consider that the sensitivity was too low to trust the result; this occurs very rarely;
- A retrieved Ts between 200 and 350 K; the minimum boundary allows filtering out scenes with undetected clouds and/or aerosols while the maximum boundary rejects unphysical results, occurring very rarely.
4.2. Characterization of the Retrieved N2O Profiles: Error Analysis, Averaging Kernels and Information Content
4.3. Validation against NDACC and TCCON
4.3.1. Comparison Methodology
4.3.2. Analysis
- Full period bias analysis at selected stations (the analysis was done at all stations, but it is impossible to show all plots): to determine if the data quality changes over time;
- Weekly bias analysis at all stations over a short period: to analyze any seasonal patterns in the bias;
- Bias and standard deviation for all stations for the period of improved quality: for an assessment of the NOPIR accuracy and precision;
- Correlation between ground-based and satellite data.
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACE-FTS | Atmospheric Chemistry Experiment Fourier Transform Spectrometer |
AIRS | Atmospheric Infrared Sounder |
AGAGE | Advanced Global Atmospheric Gases Experiment |
AMSU | Advanced Microwave Sounding Unit |
BT | Brightness Temperature |
DOF | Degrees of Freedom |
EUMETSAT | European Organisation for the Exploitation of Meteorological Satellites |
FTIR | Fourier-Transform InfraRed |
GB | Ground-based |
GEOS | Goddard Earth Observing System |
GGGRN | Global Greenhouse Gas Reference Network |
HITRAN | HIgh-resolution TRANsmission molecular absorption |
IASI | Infrared Atmospheric Sounding Interferometer |
IASI-NG | Infrared Atmospheric Sounding Interferometer New-Generation |
IPSF | Instrument Point Spread Function |
IRWG | InfraRed Working Group |
LBLRTM | Line-By-Line Radiative Transfer Model |
LEO | Low Earth Orbit |
MAPIR | Mineral Aerosol Profiling from Infrared Radiances |
MERRA | Modern-Era Retrospective Analysis for Research and Applications |
MIPAS | Michelson Interferometer for Passive Atmospheric Sounding |
MHS | Microwave Humidity Sounder |
MLS | Microwave Limb Sounder |
MUSICA | MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of |
Atmospheric water | |
NASA | National Aeronautics and Space Administration |
NDACC | Network for the Detection of Atmospheric Composition Change |
NOAA | National Oceanic and Atmospheric Administration |
NOPIR | Nitrous Oxide Profiling from Infrared Radiances |
OEM | Optimal Estimation Method |
PCA | Principal Components Analysis |
PWLR | Piece-Wise Linear Regression |
RMSSR | Root Mean Square of Spectral Residuals |
RTTOV | Radiative Transfer for TOVS |
SOFRID | SOftware for a Fast Retrieval of IASI Data |
TCCON | Total Carbon Column Observing Network |
TES | Tropospheric Emission Spectrometer |
TIR | Thermal InfraRed |
WN | Wavenumber |
References
- Canadell, J.G.; Monteiro, P.M.; Costa, M.H.; da Cunha, L.C.; Cox, P.M.; Eliseev, A.V.; Henson, S.; Ishii, M.; Jaccard, S.; Koven, C.; et al. Global Carbon and other Biogeochemical Cycles and Feedbacks. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- Prather, M.J.; Hsu, J.; DeLuca, N.M.; Jackman, C.H.; Oman, L.D.; Douglass, A.R.; Fleming, E.L.; Strahan, S.E.; Steenrod, S.D.; Søvde, O.A.; et al. Measuring and modeling the lifetime of nitrous oxide including its variability. J. Geophys. Res. Atmos. 2015, 120, 5693–5705. [Google Scholar] [CrossRef] [PubMed]
- Stocker, T.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. (Eds.) IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Tian, H.; Xu, R.; Canadell, J.G.; Thompson, R.L.; Winiwarter, W.; Suntharalingam, P.; Davidson, E.A.; Ciais, P.; Jackson, R.B.; Janssens-Maenhout, G.; et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 2020, 586, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous Oxide (N20): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef] [Green Version]
- AGAGE Internet Site. Available online: https://agage.mit.edu/ (accessed on 3 August 2021).
- Prinn, R.G.; Weiss, R.F.; Arduini, J.; Arnold, T.; DeWitt, H.L.; Fraser, P.J.; Ganesan, A.L.; Gasore, J.; Harth, C.M.; Hermansen, O.; et al. History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE). Earth Syst. Sci. Data 2018, 10, 985–1018. [Google Scholar] [CrossRef] [Green Version]
- NOAA Global Greenhouse Gas Reference Network Internet Site. Available online: https://gml.noaa.gov/ccgg/about.html (accessed on 8 September 2021).
- TCCON Internet Site. Available online: http://www.tccon.caltech.edu/ (accessed on 3 August 2021).
- Wunch, D.; Toon, G.C.; Sherlock, V.; Deutscher, N.M.; Liu, X.; Feist, D.G.; Wennberg, P.O. The Total Carbon Column Observing Network’s GGG2014 Data Version. Tech. Rep. 2015. Available online: https://doi.org/10.14291/tccon.ggg2014.documentation.R0/1221662 (accessed on 10 February 2022). [CrossRef]
- NDACC IRWG Internet Site. Available online: https://www2.acom.ucar.edu/irwg (accessed on 3 August 2021).
- Plieninger, J.; von Clarmann, T.; Stiller, G.P.; Grabowski, U.; Glatthor, N.; Kellmann, S.; Linden, A.; Haenel, F.; Kiefer, M.; Höpfner, M.; et al. Methane and nitrous oxide retrievals from MIPAS-ENVISAT. Atmos. Meas. Tech. 2015, 8, 4657–4670. [Google Scholar] [CrossRef] [Green Version]
- Bernath, P.; Steffen, J.; Crouse, J.; Boone, C. Sixteen-year trends in atmospheric trace gases from orbit. J. Quant. Spectrosc. Radiat. Transf. 2020, 253, 107178. [Google Scholar] [CrossRef]
- Livesey, N.J.; Read, W.G.; Froidevaux, L.; Lambert, A.; Santee, M.L.; Schwartz, M.J.; Millán, L.F.; Jarnot, R.F.; Wagner, P.A.; Hurst, D.F.; et al. Investigation and amelioration of long-term instrumental drifts in water vapor and nitrous oxide measurements from the Aura Microwave Limb Sounder (MLS) and their implications for studies of variability and trends. Atmos. Chem. Phys. 2021, 21, 15409–15430. [Google Scholar] [CrossRef]
- Worden, J.; Kulawik, S.; Frankenberg, C.; Payne, V.; Bowman, K.; Cady-Peirara, K.; Wecht, K.; Lee, J.E.; Noone, D. Profiles of CH4, HDO, H2O, and N2O with improved lower tropospheric vertical resolution from Aura TES radiances. Atmos. Meas. Tech. 2012, 5, 397–411. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.; Maddy, E.S.; Barnet, C.; Gambacorta, A.; Patra, P.K.; Sun, F.; Goldberg, M. Retrieval of nitrous oxide from Atmospheric Infrared Sounder: Characterization and validation. J. Geophys. Res. Atmos. 2014, 119, 9107–9122. [Google Scholar] [CrossRef]
- García, O.E.; Schneider, M.; Ertl, B.; Sepúlveda, E.; Borger, C.; Diekmann, C.; Wiegele, A.; Hase, F.; Barthlott, S.; Blumenstock, T.; et al. The MUSICA IASI CH4 and N2O products and their comparison to HIPPO, GAW and NDACC FTIR references. Atmos. Meas. Tech. 2018, 11, 4171–4215. [Google Scholar] [CrossRef] [Green Version]
- Barret, B.; Gouzenes, Y.; Le Flochmoen, E.; Ferrant, S. Retrieval of Metop-A/IASI N2O Profiles and Validation with NDACC FTIR Data. Atmosphere 2021, 12, 219. [Google Scholar] [CrossRef]
- EUMETSAT. IASI Level 2 Product Guide. Technical Report EUM/OPS-EPS/MAN/04/0033. 2017. Available online: https://www-cdn.eumetsat.int (accessed on 21 January 2022).
- Wiegele, A.; Schneider, M.; Hase, F.; Barthlott, S.; García, O.E.; Sepúlveda, E.; González, Y.; Blumenstock, T.; Raffalski, U.; Gisi, M.; et al. The MUSICA MetOp/IASI H2O and δD Products: Characterisation and long-term comparison to NDACC/FTIR data. Atmos. Meas. Tech. 2014, 7, 2719–2732. [Google Scholar] [CrossRef] [Green Version]
- Schneider, M.; Ertl, B.; Diekmann, C.J.; Khosrawi, F.; Weber, A.; Hase, F.; Höpfner, M.; García, O.E.; Sepúlveda, E.; Kinnison, D. Design and description of the MUSICA IASI full retrieval product. Earth Syst. Sci. Data Discuss. 2021, 2021, 1–51. [Google Scholar] [CrossRef]
- Saunders, R.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Geer, A.; et al. An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev. 2018, 11, 2717–2737. [Google Scholar] [CrossRef] [Green Version]
- Clerbaux, C.; Boynard, A.; Clarisse, L.; George, M.; Hadji-Lazaro, J.; Herbin, H.; Hurtmans, D.; Pommier, M.; Razavi, A.; Turquety, S.; et al. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmos. Chem. Phys. 2009, 9, 6041–6054. [Google Scholar] [CrossRef] [Green Version]
- EUMETSAT. EUMETSAT User Notification Service. Available online: https://uns.eumetsat.int/ (accessed on 30 June 2021).
- GEOS-Chem Community. GEOSChem Internet Site. Available online: http://www.geos-chem.org (accessed on 2 August 2021).
- Wells, K.C.; Millet, D.B.; Bousserez, N.; Henze, D.K.; Chaliyakunnel, S.; Griffis, T.J.; Luan, Y.; Dlugokencky, E.J.; Prinn, R.G.; O’Doherty, S.; et al. Simulation of atmospheric N2O with GEOS-Chem and its adjoint: Evaluation of observational constraints. Geosci. Model Dev. 2015, 8, 3179–3198. [Google Scholar] [CrossRef] [Green Version]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- NWPSAF. RTTOV Website. Available online: https://nwp-saf.eumetsat.int/site/software/rttov/ (accessed on 23 June 2021).
- Saunders, R.; Hocking, J.; Turner, E.; Havemann, S.; Geer, A.; Lupu, C.; Vidot, J.; Chambon, P.; Köpken-Watts, C.; Scheck, L.; et al. RTTOV-13 Science and Validation Report. Tech. Rep. 2020. Available online: https://nwp-saf.eumetsat.int/site/ (accessed on 10 February 2022).
- Line-By-Line Radiative Transfer Model Internet Site. Available online: http://rtweb.aer.com/lblrtm.html (accessed on 21 January 2022).
- Pougatchev, N.S.; Connor, B.J.; Rinsland, C.P. Infrared measurements of the ozone vertical distribution above Kitt Peak. J. Geophys. Res. Atmos. 1995, 100, 16689–16697. [Google Scholar] [CrossRef] [Green Version]
- Hase, F.; Hannigan, J.; Coffey, M.; Goldman, A.; Höpfner, M.; Jones, N.; Rinsland, C.; Wood, S. Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements. J. Quant. Spectrosc. Radiat. Transf. 2004, 87, 25–52. [Google Scholar] [CrossRef]
- García, O.E.; Sepúlveda, E.; Schneider, M.; Hase, F.; August, T.; Blumenstock, T.; Kühl, S.; Munro, R.; Gómez-Peláez, A.J.; Hultberg, T.; et al. Consistency and quality assessment of the Metop-A/IASI and Metop-B/IASI operational trace gas products (O3, CO, N2O, CH4, and CO2) in the subtropical North Atlantic. Atmos. Meas. Tech. 2016, 9, 2315–2333. [Google Scholar] [CrossRef] [Green Version]
- TCCON. TCCON Wiki. Available online: https://tccon-wiki.caltech.edu/Main/TCCONSites (accessed on 2 August 2021).
- Strong, K.; Roche, S.; Franklin, J.E.; Mendonca, J.; Lutsch, E.; Weaver, D.; Fogal, P.F.; Drummond, J.R.; Batchelor, R.; Lindenmaier, R. TCCON Data from Eureka (CA), Release GGG2014R3. TCCON Data Archive, Hosted by CaltechDATA. 2019. Available online: https://data.caltech.edu/records/1171 (accessed on 10 February 2022).
- Notholt, J.; Warneke, T.; Petri, C.; Deutscher, N.M.; Weinzierl, C.; Palm, M.; Buschmann, M. TCCON Data from Ny ÅLesund, Spitsbergen (NO), Release GGG2014.R1. TCCON Data Archive, Hosted by CaltechDATA. 2019. Available online: https://data.caltech.edu/records/1289 (accessed on 10 February 2022).
- Kivi, R.; Heikkinen, P.; Kyrö, E. TCCON Data from Sodankyla (FI), Release GGG2014R1. TCCON Data Archive, Hosted by CaltechDATA. 2017. Available online: https://data.caltech.edu/records/20021 (accessed on 10 February 2022).
- Wunch, D.; Mendonca, J.; Colebatch, O.; Allen, N.; Blavier, J.F.L.; Roche, S.; Hedelius, J.K.; Neufeld, G.; Springett, S.; Worthy, D.E.J.; et al. TCCON Data from East Trout Lake (CA), Release GGG2014R1. TCCON Data Archive, Hosted by CaltechDATA. 2017. Available online: https://data.caltech.edu/records/362 (accessed on 10 February 2022).
- Deutscher, N.M.; Notholt, J.; Messerschmidt, J.; Weinzierl, C.; Warneke, T.; Petri, C.; Grupe, P. TCCON Data from Bialystok (PL), Release GGG2014R2. TCCON Data Archive, Hosted by CaltechDATA. 2019. Available online: https://data.caltech.edu/records/1300 (accessed on 10 February 2022).
- Notholt, J.; Petri, C.; Warneke, T.; Deutscher, N.M.; Palm, M.; Buschmann, M.; Weinzierl, C.; Macatangay, R.; Grupe, P. TCCON Data from Bremen (DE), Release GGG2014R1. TCCON Data Archive, Hosted by CaltechDATA. 2019. Available online: https://data.caltech.edu/records/268 (accessed on 10 February 2022).
- Hase, F.; Blumenstock, T.; Dohe, S.; Gross, J.; Kiel, M. TCCON Data from Karlsruhe (DE), Release GGG2014R1. TCCON Data Archive, Hosted by CaltechDATA. 2014. Available online: https://data.caltech.edu/records/278 (accessed on 10 February 2022).
- Te, Y.; Jeseck, P.; Janssen, C. TCCON Data from Paris (FR), Release GGG2014R0. TCCON Data Archive, Hosted by CaltechDATA. 2014. Available online: https://data.caltech.edu/records/284 (accessed on 10 February 2022).
- Warneke, T.; Messerschmidt, J.; Notholt, J.; Weinzierl, C.; Deutscher, N.M.; Petri, C.; Grupe, P. TCCON Data from Orléans (FR), Release GGG2014R1. TCCON Data Archive, Hosted by CaltechDATA. 2019. Available online: https://data.caltech.edu/records/1301 (accessed on 10 February 2022).
- Sussmann, R.; Rettinger, M. TCCON Data from Garmisch (DE), Release GGG2014R2. TCCON Data Archive, Hosted by CaltechDATA. 2017. Available online: https://data.caltech.edu/records/956 (accessed on 10 February 2022).
- Sussmann, R.; Rettinger, M. TCCON Data from Zugspitze (DE), Release GGG2014R1. TCCON Data Archive, Hosted by CaltechDATA. 2018. Available online: https://data.caltech.edu/records/923 (accessed on 10 February 2022).
- Wennberg, P.O.; Roehl, C.; Wunch, D.; Toon, G.C.; Blavier, J.F.; Washenfelder, R.A.; Keppel-Aleks, G.; Allen, N.; Ayers, J. TCCON Data from Park Falls (US), Release GGG2014R1. TCCON Data Archive, Hosted by CaltechDATA. 2017. Available online: https://data.caltech.edu/records/295 (accessed on 10 February 2022).
- Morino, I.; Yokozeki, N.; Matzuzaki, T.; Horikawa, M. TCCON Data from Rikubetsu (JP), Release GGG2014R2. TCCON Data Archive, Hosted by CaltechDATA. 2017. Available online: https://data.caltech.edu/records/957 (accessed on 10 February 2022).
- Iraci, L.T.; Podolske, J.; Hillyard, P.W.; Roehl, C.; Wennberg, P.O.; Blavier, J.F.; Landeros, J.; Allen, N.; Wunch, D.; Zavaleta, J.; et al. TCCON Data from Indianapolis (US), Release GGG2014R1. TCCON Data Archive, Hosted by CaltechDATA. 2016. Available online: https://data.caltech.edu/records/274 (accessed on 10 February 2022).
- Dubey, M.; Lindenmaier, R.; Henderson, B.; Green, D.; Allen, N.; Roehl, C.; Blavier, J.F.; Butterfield, Z.; Love, S.; Hamelmann, J.; et al. TCCON Data from Four Corners (US), Release GGG2014R0. TCCON Data Archive, Hosted by CaltechDATA. 2014. Available online: https://data.caltech.edu/records/272 (accessed on 10 February 2022).
- Wennberg, P.O.; Wunch, D.; Roehl, C.; Blavier, J.F.; Toon, G.C.; Allen, N.; Dowell, P.; Teske, K.; Martin, C.; Martin, J. TCCON Data from Lamont (US), Release GGG2014R1. TCCON Data Archive, Hosted by CaltechDATA. 2016. Available online: https://data.caltech.edu/records/279 (accessed on 10 February 2022).
- Goo, T.Y.; Oh, Y.S.; Velazco, V.A. TCCON Data from Anmeyondo (KR), Release GGG2014R0. TCCON Data Archive, Hosted by CaltechDATA. 2014. Available online: https://data.caltech.edu/records/266 (accessed on 10 February 2022).
- Morino, I.; Matsuzaki, T.; Horikawa, M. TCCON Data from Tsukuba (JP), 125HR, Release GGG2014R2. TCCON Data Archive, Hosted by CaltechDATA. 2017. Available online: https://data.caltech.edu/records/958 (accessed on 10 February 2022).
- Petri, C.; Rousogenous, C.; Warneke, T.; Vrekoussis, M.; Sciare, J.; Notholt, J. TCCON Data from Nicosia, Cyprus (CY), Release GGG2014.R0. TCCON Data Archive, Hosted by CaltechDATA. 2019. Available online: https://data.caltech.edu/records/1690 (accessed on 10 February 2022).
- Iraci, L.T.; Podolske, J.; Hillyard, P.W.; Roehl, C.; Wennberg, P.O.; Blavier, J.F.; Allen, N.; Wunch, D.; Osterman, G.B.; Albertson, R. TCCON Data from Edwards (US), Release GGG2014R1. TCCON Data Archive, Hosted by CaltechDATA. 2016. Available online: https://data.caltech.edu/records/270 (accessed on 10 February 2022).
- Wennberg, P.O.; Roehl, C.; Blavier, J.F.; Wunch, D.; Landeros, J.; Allen, N. TCCON Data from Jet Propulsion Laboratory (US), 2011, Release GGG2014R1. TCCON Data Archive, Hosted by CaltechDATA. 2016. Available online: https://data.caltech.edu/records/277 (accessed on 10 February 2022).
- Wennberg, P.O.; Wunch, D.; Roehl, C.; Blavier, J.F.; Toon, G.C.; Allen, N. TCCON Data from Caltech (US), Release GGG2014R1. TCCON Data Archive, Hosted by CaltechDATA. 2014. Available online: https://data.caltech.edu/records/285 (accessed on 10 February 2022).
- Kawakami, S.; Ohyama, H.; Arai, K.; Okumura, H.; Taura, C.; Fukamachi, T.; Sakashita, M. TCCON Data from Saga (JP), Release GGG2014R0. TCCON Data Archive, Hosted by CaltechDATA. 2014. Available online: https://data.caltech.edu/records/288 (accessed on 10 February 2022).
- Cheng, L.; Wei, W.; Youwen, S. TCCON Data from Hefei (CN), Release GGG2014R0. TCCON Data Archive, Hosted by CaltechDATA. 2018. Available online: https://data.caltech.edu/records/1092 (accessed on 10 February 2022).
- Blumenstock, T.; Hase, F.; Schneider, M.; Garcia, O.E.; Sepulveda, E. TCCON Data from Izana (ES), Release GGG2014R1. TCCON Data Archive, Hosted by CaltechDATA. 2017. Available online: https://data.caltech.edu/records/302 (accessed on 10 February 2022).
- Morino, I.; Velazco, V.A.; Akihiro, H.; Osamu, U.; Griffith, D.W.T. TCCON Data from Burgos, Ilocos Norte (PH), Release GGG2014.R0. TCCON Data Archive, Hosted by CaltechDATA. 2018. Available online: https://data.caltech.edu/records/1090 (accessed on 10 February 2022).
- Dubey, M.; Henderson, B.; Green, D.; Butterfield, Z.; Keppel-Aleks, G.; Allen, N.; Blavier, J.F.; Roehl, C.; Wunch, D.; Lindenmaier, R. TCCON Data from Manaus (BR), Release GGG2014R0. TCCON Data Archive, Hosted by CaltechDATA. 2014. Available online: https://data.caltech.edu/records/282 (accessed on 10 February 2022).
- Feist, D.G.; Arnold, S.G.; John, N.; Geibel, M.C. TCCON Data from Ascension Island (SH), Release GGG2014R0. TCCON Data Archive, Hosted by CaltechDATA. 2014. Available online: https://data.caltech.edu/records/210 (accessed on 10 February 2022).
- Griffith, D.W.; Deutscher, N.M.; Velazco, V.A.; Wennberg, P.O.; Yavin, Y.; Aleks, G.K.; Washenfelder, R.a.; Toon, G.C.; Blavier, J.F.; Murphy, C.; et al. TCCON Data from Darwin (AU), Release GGG2014R0. TCCON Data Archive, Hosted by CaltechDATA. 2014. Available online: https://data.caltech.edu/records/269 (accessed on 10 February 2022).
- De Mazière, M.; Sha, M.K.; Desmet, F.; Hermans, C.; Scolas, F.; Kumps, N.; Metzger, J.M.; Duflot, V.; Cammas, J.P. TCCON Data from Reunion Island (RE), Release GGG2014R1. TCCON Data Archive, Hosted by CaltechDATA. 2017. Available online: https://data.caltech.edu/records/322 (accessed on 10 February 2022).
- Griffith, D.W.; Velazco, V.A.; Deutscher, N.M.; Murphy, C.; Jones, N.; Wilson, S.; Macatangay, R.; Kettlewell, G.; Buchholz, R.R.; Riggenbach, M. TCCON Data from Wollongong (AU), Release GGG2014R0. TCCON Data Archive, Hosted by CaltechDATA. 2014. Available online: https://data.caltech.edu/records/291 (accessed on 10 February 2022).
- Sherlock, V.; Connor, B.J.; Robinson, J.; Shiona, H.; Smale, D.; Pollard, D. TCCON Data from Lauder (NZ), 125HR, Release GGG2014R0. TCCON Data Archive, Hosted by CaltechDATA. 2014. Available online: https://data.caltech.edu/records/281 (accessed on 10 February 2022).
- Pollard, D.; Robinson, J.; Shiona, H. TCCON Data from Lauder (NZ), Release GGG2014R0. TCCON Data Archive, Hosted by CaltechDATA. 2019. Available online: https://ieeexplore.ieee.org/document/5523979 (accessed on 10 February 2022).
- Zhou, D.; Larar, A.; Liu, X.; Smith, W.; Strow, L.; Yang, P.; Schlüssel, P.; Calbet, X. Global Land Surface Emissivity Retrieved from Satellite Ultraspectral IR Measurements. Geosci. Remote Sens. IEEE Trans. 2011, 49, 1277–1290. [Google Scholar] [CrossRef]
- Tikhonov, A.N. Solution of incorrectly formulated problems and the regularization method. Soviet Math. Dokl. 1963, 4, 1035–1038. [Google Scholar]
- Tikhonov, A.N. Regularization of incorrectly posed problems. Soviet Math. Dokl. 1963, 4, 1624–1627. [Google Scholar]
- Doicu, A.; Trautmann, T.; Schreier, F. Numerical Regularization for Atmospheric Inverse Problems; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Steck, T. Methods for determining regularization for atmospheric retrieval problems. Appl. Opt. 2002, 41, 1788–1797. Available online: https://opg.optica.org/ao/abstract.cfm?uri=ao-41-9-1788 (accessed on 10 February 2022). [CrossRef] [PubMed]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding-Theory and Practice; Series on Atmospheric, Oceanic and Planetary Physics; World Scientific: Singapore, 2000; Volume 2. [Google Scholar]
- Ceccherini, S. Analytical determination of the regularization parameter in the retrieval of atmospheric vertical profiles. Opt. Lett. 2005, 30, 2554–2556. Available online: https://opg.optica.org/ol/abstract.cfm?uri=ol-30-19-2554 (accessed on 10 February 2022). [CrossRef] [PubMed]
- NWPSAF. RTTOV Website, Specific Section on IASI Bias Analysis. Available online: https://nwp-saf.eumetsat.int/downloads/rtcoef_rttov13/visir_lbl_comp/lbl_comp_rtcoef_metop_2_iasi_o3co2_v13pred_101L.html (accessed on 23 June 2021).
- EUMETSAT. IASI Level 1 Product Guide. Technical Report EUM/OPS-EPS/MAN/04/0032. 2019. Available online: https://www.eumetsat.int/media/44030 (accessed on 21 January 2022).
- Callewaert, S.; Vandenbussche, S.; Kumps, N.; Kylling, A.; Shang, X.; Komppula, M.; Goloub, P.; De Mazière, M. The Mineral Aerosol Profiling from Infrared Radiances (MAPIR) algorithm: Version 4.1 description and evaluation. Atmos. Meas. Tech. 2019, 12, 3673–3698. Available online: https://amt.copernicus.org/articles/12/3673/2019/ (accessed on 10 February 2022). [CrossRef] [Green Version]
- EUMETSAT. EUMETSAT IASI Description Page. Available online: https://www.eumetsat.int/iasi (accessed on 1 July 2021).
- Von Clarmann, T.; Degenstein, D.A.; Livesey, N.J.; Bender, S.; Braverman, A.; Butz, A.; Compernolle, S.; Damadeo, R.; Dueck, S.; Eriksson, P.; et al. Overview: Estimating and reporting uncertainties in remotely sensed atmospheric composition and temperature. Atmos. Meas. Tech. 2020, 13, 4393–4436. Available online: https://amt.copernicus.org/articles/13/4393/2020/ (accessed on 10 February 2022). [CrossRef]
- Rodgers, C.D.; Connor, B.J. Intercomparison of remote sounding instruments. J. Geophys. Res. Atmos. 2003, 108, 4116. Available online: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2002JD002299 (accessed on 10 February 2022). [CrossRef] [Green Version]
- Rothman, L.; Gordon, I.; Babikov, Y.; Barbe, A.; Chris Benner, D.; Bernath, P.; Birk, M.; Bizzocchi, L.; Boudon, V.; Brown, L.; et al. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2013, 130, 4–50. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0022407313002859?via%3Dihub (accessed on 10 February 2022). [CrossRef] [Green Version]
- Zhou, M.; Langerock, B.; Wells, K.C.; Millet, D.B.; Vigouroux, C.; Sha, M.K.; Hermans, C.; Metzger, J.M.; Kivi, R.; Heikkinen, P.; et al. An intercomparison of total column-averaged nitrous oxide between ground-based FTIR TCCON and NDACC measurements at seven sites and comparisons with the GEOS-Chem model. Atmos. Meas. Tech. 2019, 12, 1393–1408. Available online: https://amt.copernicus.org/articles/12/1393/2019/ (accessed on 10 February 2022).
Start Date | Version | Comment |
---|---|---|
2 December 2010 | 5.1 | |
20 October 2011 | 5.2.1 | Updated to RTTOV version 10 + updated cloud screening |
28 February 2012 | 5.3 | Improved cloud product |
30 September 2014 | 6.0.5 | Fully updated processor; improved all-sky retrievals using AMSU/MHS * and a statistics method (PWLR **); updated cloud flags |
24 September 2015 | 6.1.1 | Land surface temperature update |
2 June 2016 | 6.2.2 | New first guess (PWLR3); better quality T and H2O profiles |
7 March 2018 | 6.4.4 | Updated PWLR3 |
4 December 2019 | 6.5 | Updated to RTTOV version 12 + cloud mask + T profile |
Station Name | Lat. (°N) | Long. (°E) | Alt. (m) | Syst. (%) | Rand. (%) |
---|---|---|---|---|---|
Eureka | 80.06 | −86.42 | 610 | 4.3 | 0.13 |
Ny Ålesund | 78.92 | 11.92 | 24 | 4.0 | 2.10 |
Thule | 76.52 | −68.77 | 225 | 2.5 | 1.00 |
Kiruna | 67.84 | 20.4 | 420 | 3.5 | 0.44 |
St Petersburg | 59.88 | 29.83 | 20 | 4.3 | 1.70 |
Garmisch | 47.48 | 11.06 | 743 | 3.1 | 0.35 |
Zugspitze | 47.42 | 10.98 | 2954 | 2.1 | 0.39 |
Jungfraujoch | 46.55 | 7.98 | 3580 | 2.7 | 2.40 |
Rikubetsu | 43.46 | 143.77 | 380 | 2.4 | 0.36 |
Boulder | 40.04 | −105.24 | 1612 | 2.2 | 0.49 |
Izaña | 28.30 | −16.48 | 2370 | 2.1 | 0.38 |
Mauna Loa | 19.54 | −155.57 | 3396 | 2.0 | 0.56 |
Altzomoni | 19.12 | −98.66 | 3985 | 2.0 | 0.37 |
Réunion St Denis | −20.90 | 55.49 | 85 | 4.2 | 0.66 |
Réunion Maido | −21.08 | 55.38 | 2155 | 3.7 | 1.40 |
Wollongong | −34.41 | 150.88 | 31 | 3.3 | 0.51 |
Lauder | −45.04 | 169.68 | 370 | 3.7 | 0.67 |
Arrival Heights | −77.83 | 166.66 | 200 | 3.5 | 0.57 |
Station Name | Lat. (° N) | Long. (° E) | Alt. (m) | Rand. (%) | Data Ref. |
---|---|---|---|---|---|
Eureka | 80.05 | −86.42 | 610 | 0.35 | [35] |
Ny Ålesund | 78.92 | 11.92 | 24 | 0.21 | [36] |
Sodankylä | 67.37 | 26.63 | 190 | 0.14 | [37] |
Easttroutlake | 54.36 | −104.99 | 500 | 0.34 | [38] |
Bialystok | 53.23 | 23.02 | 190 | 0.42 | [39] |
Bremen | 53.10 | 8.85 | 30 | 0.30 | [40] |
Karlsruhe | 49.10 | 8.44 | 110 | 0.16 | [41] |
Paris | 48.85 | 2.36 | 60 | 0.31 | [42] |
Orleans | 47.97 | 2.11 | 130 | 0.28 | [43] |
Garmisch | 47.48 | 11.06 | 740 | 0.30 | [44] |
Zugspitze | 47.42 | 10.98 | 2960 | 0.53 | [45] |
Parkfalls | 45.94 | −90.27 | 440 | 0.41 | [46] |
Rikubetsu | 43.46 | 143.77 | 380 | 0.40 | [47] |
Indianapolis | 39.86 | −86.00 | 270 | 0.25 | [48] |
Fourcorners | 36.80 | −108.48 | 1640 | 0.20 | [49] |
Lamont | 36.60 | −97.49 | 320 | 0.34 | [50] |
Anmeyondo | 36.54 | 126.33 | 30 | 0.29 | [51] |
Tsukuba | 36.05 | 140.12 | 30 | 0.38 | [52] |
Nicosia | 35.14 | 33.38 | 190 | 0.41 | [53] |
Edwards | 34.96 | −117.88 | 700 | 0.23 | [54] |
Jpl | 34.20 | −118.18 | 390 | 0.28 | [55] |
Pasadena | 34.14 | −118.13 | 240 | 0.22 | [56] |
Saga | 33.24 | 130.29 | 10 | 0.47 | [57] |
Hefei | 31.90 | 117.17 | 40 | 0.33 | [58] |
Izaña | 28.30 | −16.48 | 2370 | 0.17 | [59] |
Burgos | 18.53 | 120.65 | 40 | 0.45 | [60] |
Manaus | −3.21 | −60.60 | 50 | 0.49 | [61] |
Ascension | −7.92 | −14.33 | 30 | 0.91 | [62] |
Darwin | −12.43 | 130.89 | 30 | 0.34 | [63] |
Reunion (St Denis) | −20.90 | 55.49 | 90 | 0.25 | [64] |
Wollongong | −34.41 | 150.88 | 30 | 0.25 | [65] |
Lauder | −45.04 | 169.68 | 370 | 0.16 | [66,67] |
Start Wave Number (cm) | End Wave Number (cm) | Number of Channels |
---|---|---|
2173.75 | 2174.75 | 5 |
2177.25 | 2178.50 | 6 |
2184.00 | 2184.75 | 4 |
2190.75 | 2192.75 | 9 |
2197.25 | 2198.25 | 5 |
2201.00 | 2202.50 | 7 |
2204.00 | 2204.75 | 4 |
2207.00 | 2208.50 | 7 |
2209.75 | 2211.50 | 8 |
2213.00 | 2215.00 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vandenbussche, S.; Langerock, B.; Vigouroux, C.; Buschmann, M.; Deutscher, N.M.; Feist, D.G.; García, O.; Hannigan, J.W.; Hase, F.; Kivi, R.; et al. Nitrous Oxide Profiling from Infrared Radiances (NOPIR): Algorithm Description, Application to 10 Years of IASI Observations and Quality Assessment. Remote Sens. 2022, 14, 1810. https://doi.org/10.3390/rs14081810
Vandenbussche S, Langerock B, Vigouroux C, Buschmann M, Deutscher NM, Feist DG, García O, Hannigan JW, Hase F, Kivi R, et al. Nitrous Oxide Profiling from Infrared Radiances (NOPIR): Algorithm Description, Application to 10 Years of IASI Observations and Quality Assessment. Remote Sensing. 2022; 14(8):1810. https://doi.org/10.3390/rs14081810
Chicago/Turabian StyleVandenbussche, Sophie, Bavo Langerock, Corinne Vigouroux, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, Omaira García, James W. Hannigan, Frank Hase, Rigel Kivi, and et al. 2022. "Nitrous Oxide Profiling from Infrared Radiances (NOPIR): Algorithm Description, Application to 10 Years of IASI Observations and Quality Assessment" Remote Sensing 14, no. 8: 1810. https://doi.org/10.3390/rs14081810
APA StyleVandenbussche, S., Langerock, B., Vigouroux, C., Buschmann, M., Deutscher, N. M., Feist, D. G., García, O., Hannigan, J. W., Hase, F., Kivi, R., Kumps, N., Makarova, M., Millet, D. B., Morino, I., Nagahama, T., Notholt, J., Ohyama, H., Ortega, I., Petri, C., ... De Mazière, M. (2022). Nitrous Oxide Profiling from Infrared Radiances (NOPIR): Algorithm Description, Application to 10 Years of IASI Observations and Quality Assessment. Remote Sensing, 14(8), 1810. https://doi.org/10.3390/rs14081810