How Does COVID-19 Lockdown Impact Air Quality in India?
Abstract
:1. Introduction
2. Data and Methods
2.1. OMI
2.2. MODIS
2.3. CERES
2.4. Surface Observation
2.5. ERA5
2.6. Method
3. Results
3.1. Changes in Satellite Retrieved Tropospheric NO2 and AOD
3.2. Changes in Gaseous Emissions near the Surface
3.3. Potential Impacts of Meteorological Fields on Air Quality
3.4. Radiation Response to COVID-19 Emission Reductions
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cohen, A.J.; Ross Anderson, H.; Ostro, B.; Pandey, K.D.; Krzyzanowski, M.; Kunzli, N.; Gutschmidt, K.; Pope, A.; Romieu, I.; Samet, J.M.; et al. The global burden of disease due to outdoor air pollution. J. Toxicol. Environ. Health A 2005, 68, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Guo, H.; Hu, J.; Kota, S.; Deng, W.; Ying, Q.; Myllyvirta, L.; Dahiya, S.; Zhang, H. Projected air quality and health benefits from future policy interventions in India. Resour. Conserv. Recycl. 2019, 142, 232–244. [Google Scholar] [CrossRef]
- Hu, Z.; Jin, Q.; Ma, Y.; Pu, B.; Ji, Z.; Wang, Y.; Dong, W. Temporal evolution of aerosols and their extreme events in polluted Asian regions during Terra’s 20-year observations. Remote Sens. Environ. 2021, 263, 112541. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Sahu, S.K.; Kota, S.H. Significance of PM2.5 Air Quality at the Indian Capital. Aerosol Air Qual. Res. 2017, 17, 588–597. [Google Scholar] [CrossRef] [Green Version]
- Yuda, M. Asian Countries Rush to Fight Toxic Air Pollution. 2019. Available online: https://asia.nikkei.com/Economy/Asian-countries-rush-to-fight-toxic-air-pollution (accessed on 24 January 2019).
- Guttikunda, S.K.; Nishadh, K.A.; Jawahar, P. Air pollution knowledge assessments (APnA) for 20 Indian cities. Urban Clim. 2019, 27, 124–141. [Google Scholar] [CrossRef]
- NCAP. National Clean Air Programme. Central Pollution Control Board; Ministry of Environmental Forests and Climate Change, The Government of India: New Delhi, India, 2019.
- Sundaray, S.N.K.; Bhardwaj, S.R. National Clean Air Programme; Indian Ministry of Environment, Forest & Climate Change: New Delhi, India, 2019; pp. 1–122.
- Tiwari, S.; Srivastava, A.K.; Bisht, D.S.; Parmita, P.; Srivastava, M.K.; Attri, S.D. Diurnal and seasonal variations of black carbon and PM2.5 over New Delhi, India: Influence of meteorology. Atmos. Res. 2013, 125, 50–62. [Google Scholar] [CrossRef]
- Mittal, S.K.; Singh, N.; Agarwal, R.; Awasthi, A.; Gupta, P.K. Ambient air quality during wheat and rice crop stubble burning episodes in Patiala. Atmos. Environ. 2009, 43, 238–244. [Google Scholar] [CrossRef]
- Mishra, A.K.; Shibata, T. Synergistic analyses of optical and microphysical properties of agricultural crop residue burning aerosols over the Indo-Gangetic Basin (IGB). Atmos. Environ. 2012, 57, 205–218. [Google Scholar] [CrossRef]
- Bhanarkar, A.D.; Purohit, P.; Rafaj, P.; Amann, M.; Bertok, I.; Cofala, J.; Rao, P.S.; Vardhan, B.H.; Kiesewetter, G.; Sander, R.; et al. Managing future air quality in megacities: Co-benefit assessment for Delhi. Atmos. Environ. 2018, 186, 158–177. [Google Scholar] [CrossRef]
- Conibear, L.; Butt, E.W.; Knote, C.; Arnold, S.R.; Spracklen, D.V. Residential energy use emissions dominate health impacts from exposure to ambient particulate matter in India. Nat. Commun. 2018, 9, 617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garaga, R.; Sahu, S.K.; Kota, S.H. A Review of Air Quality Modeling Studies in India: Local and Regional Scale. Curr. Pollut. Rep. 2018, 4, 59–73. [Google Scholar] [CrossRef]
- Sharma, R.; Kumar, R.; Sharma, D.K.; Son, L.H.; Priyadarshini, I.; Pham, B.T.; Tien Bui, D.; Rai, S. Inferring air pollution from air quality index by different geographical areas: Case study in India. Air Qual. Atmos. Health 2019, 12, 1347–1357. [Google Scholar] [CrossRef]
- Guo, H.; Kota, S.H.; Sahu, S.K.; Hu, J.; Ying, Q.; Gao, A.; Zhang, H. Source apportionment of PM2.5 in North India using source-oriented air quality models. Environ. Pollut. 2017, 231, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.K.; Vinoj, V. Surprising Changes in Aerosol Loading over India Amid COVID-19 Lockdown. Aerosol Air Qual. Res. 2020, 21, 426–436. [Google Scholar] [CrossRef]
- Mahato, S.; Pal, S.; Ghosh, K.G. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total Environ. 2020, 730, 139086. [Google Scholar] [CrossRef]
- Zhang, M.; Katiyar, A.; Zhu, S.; Shen, J.; Xia, M.; Ma, J.; Kota, S.H.; Wang, P.; Zhang, H. Impact of reduced anthropogenic emissions during COVID-19 on air quality in India. Atmos. Chem. Phys. 2020, 21, 4025–4037. [Google Scholar] [CrossRef]
- Lal, P.; Kumar, A.; Bharti, S.; Saikia, P.; Adhikari, D.; Khan, M.L. Lockdown to Contain the COVID-19 Pandemic: An Opportunity to Create a Less Polluted Environment in India. Aerosol Air Qual. Res. 2021, 21, 200229. [Google Scholar] [CrossRef]
- Dutta, A.; Jinsart, W. Air Quality, Atmospheric Variables and Spread of COVID-19 in Delhi (India): An Analysis. Aerosol Air Qual. Res. 2021, 21, 200417. [Google Scholar] [CrossRef]
- Datta, A.; Rahman, M.H.; Suresh, R. Did the COVID-19 lockdown in Delhi and Kolkata improve the ambient air quality of the two cities? J. Environ. Qual. 2021, 50, 485–493. [Google Scholar] [CrossRef]
- Muhammad, S.; Long, X.; Salman, M. COVID-19 pandemic and environmental pollution: A blessing in disguise? Sci. Total Environ. 2020, 728, 138820. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Kaushik, A.; Kumar, S.; Mishra, R.K. Comparative study on air quality status in Indian and Chinese cities before and during the COVID-19 lockdown period. Air Qual. Atmos. Health 2020, 13, 1167–1178. [Google Scholar] [CrossRef] [PubMed]
- Dhaka, S.K.; Chetna, V.; Kumar, V.; Panwar, A.P.; Dimri, N.; Singh, P.K.; Patra, Y.; Matsumi, M.; Takigawa, T.; Nakayama, K.; et al. PM2.5 diminution and haze events over Delhi during the COVID-19 lockdown period: An interplay between the baseline pollution and meteorology. Sci. Rep. 2020, 10, 13442. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Mukherjee, S.; Dutta, M.; Ghosh, A.; Ghosh, S.K.; Roy, A. High rise in carbonaceous aerosols under very low anthropogenic emissions over eastern Himalaya, India: Impact of lockdown for COVID-19 outbreak. Atmos. Environ. 2021, 244, 117947. [Google Scholar] [CrossRef] [PubMed]
- Aman, M.A.; Salman, M.S.; Yunus, A.P. COVID-19 and its impact on environment: Improved pollution levels during the lockdown period—A case from Ahmedabad, India. Remote Sens. Appl. Soc. Environ. 2020, 20, 100382. [Google Scholar] [CrossRef] [PubMed]
- Chand, D.; Wood, R.; Anderson, T.L.; Satheesh, S.K.; Charlson, R.J. Satellite-derived direct radiative effect of aerosols dependent on cloud cover. Nat. Geosci. 2009, 2, 181–184. [Google Scholar] [CrossRef]
- Levelt, P.F.; Hilsenrath, E.; Leppelmeier, G.W.; van den Oord, G.H.J.; Bhartia, P.K.; Tamminen, J.; de Haan, J.F.; Veefkind, J.P. Science objectives of the ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1199–1208. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Kurokawa, J.I.; Woo, J.H.; He, K.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D.G.; Carmichael, G.R.; et al. MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 2017, 17, 935–963. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Wang, Y.; Smeltzer, C.; Qu, H.; Koshak, W.; Boersma, K.F. Comparing OMI-based and EPA AQS in situ NO2 trends: Towards understanding surface NOx emission changes. Atmos. Meas. Tech. 2018, 11, 3955–3967. [Google Scholar] [CrossRef] [Green Version]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Wang, G.; Zhang, R.; Gomez, M.E.; Yang, L.; Levy Zamora, M.; Hu, M.; Lin, Y.; Peng, J.; Guo, S.; Meng, J.; et al. Persistent sulfate formation from London Fog to Chinese haze. Proc. Natl. Acad. Sci. USA 2016, 113, 13630–13635. [Google Scholar] [CrossRef] [Green Version]
- Le, T.; Wang, Y.; Liu, L.; Yang, J.; Yung, Y.L.; Li, G.; Seinfeld, J.H. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science 2020, 369, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Hu, M.; Guo, Q.; Zhang, X.; Schauer, J.J.; Zhang, R. Quantitative evaluation of emission controls on primary and secondary organic aerosol sources during Beijing 2008 Olympics. Atmos. Chem. Phys. 2013, 13, 8303–8314. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Liu, C.; Xie, Z.; Li, Y.; Huang, X.; Wang, S.; Xu, J.; Xie, P. A paradox for air pollution controlling in China revealed by „APEC Blue“ and „Parade Blue“. Sci. Rep. 2016, 6, 34408. [Google Scholar] [CrossRef] [Green Version]
- Lamsal, L.N.; Duncan, B.N.; Yoshida, Y.; Krotkov, N.A.; Pickering, K.E.; Streets, D.G.; Lu, Z. U.S. NO2 trends (2005–2013): EPA Air Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI). Atmos. Environ. 2015, 110, 130–143. [Google Scholar] [CrossRef]
- King, M.D.; Kaufman, Y.J.; Tanre, D.; Nakajima, T. Remote sensing of tropospheric aerosols from space: Past, present, and future. Bull. Am. Meteorol. Soc. 1999, 80, 2229–2259. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J.; Tanré, D.; Remer, L.A.; Vermote, E.; Chu, A.; Holben, B. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. Atmos. 1997, 102, 17051–17067. [Google Scholar] [CrossRef]
- Hsu, N.C.; Tsay, S.C.; King, M.D.; Herman, J.R. Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens. 2004, 42, 557–569. [Google Scholar] [CrossRef]
- Hsu, N.C.; Tsay, S.C.; King, M.D.; Herman, J.R. Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3180–3195. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res. Atmos. 2007, 112, D13. [Google Scholar] [CrossRef] [Green Version]
- Remer, L.A.; Kaufman, Y.; Tanré, D.; Mattoo, S.; Chu, D.; Martins, J.V.; Li, R.-R.; Ichoku, C.; Levy, R.; Kleidman, R. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Levy, R.C.; Mattoo, S.; Remer, L.A.; Munchak, L.A. A surface reflectance scheme for retrieving aerosol optical depth over urban surfaces in MODIS Dark Target retrieval algorithm. Atmos. Meas. Tech. 2016, 9, 3293–3308. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef] [Green Version]
- Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M.J. MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos. 2014, 119, 13,965–913,989. [Google Scholar] [CrossRef]
- Fu, Q.; Liou, K.N. Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci. 1993, 50, 2008–2025. [Google Scholar] [CrossRef] [Green Version]
- Doelling, D.R.; Loeb, N.G.; Keyes, D.F.; Nordeen, M.L.; Morstad, D.; Nguyen, C.; Wielicki, B.A.; Young, D.F.; Sun, M. Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Ocean. Technol. 2013, 30, 1072–1090. [Google Scholar] [CrossRef]
- Doelling, D.R.; Sun, M.; Nguyen, L.T.; Nordeen, M.L.; Haney, C.O.; Keyes, D.F.; Mlynczak, P.E. Advances in Geostationary-Derived Longwave Fluxes for the CERES Synoptic (SYN1deg) Product. J. Atmos. Ocean. Technol. 2016, 33, 503–521. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Jin, Q.; Wei, J.; Pu, B.; Yang, Z.L.; Parajuli, S.P. High summertime aerosol loadings over the Arabian Sea and their transport pathways. J. Geophys. Res.-Atmos. 2018, 123, 10568–10590. [Google Scholar] [CrossRef]
- Hu, Z.; Zhao, C.; Huang, J.; Leung, L.R.; Qian, Y.; Yu, H.; Huang, L.; Kalashnikova, O.V. Trans-Pacific transport and evolution of aerosols: Evaluation of quasi-global WRF-Chem simulation with multiple observations. Geosci. Model Dev. 2016, 9, 1725–1746. [Google Scholar] [CrossRef] [Green Version]
- David, L.M.; Nair, P.R. Tropospheric column O3 and NO2 over the indian region observed by ozone monitoring instrument (OMI): Seasonal changes and long-term trends. Atmos. Environ. 2013, 65, 25–39. [Google Scholar] [CrossRef]
- Jin, Q.; Crippa, P.; Pryor, S. Spatial characteristics and temporal evolution of the relationship between PM2. 5 and aerosol optical depth over the eastern USA during 2003–2017. Atmos. Environ. 2020, 239, 117718. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, L.; Li, H.; Wang, H.; Wang, P.; Chen, L.; Yue, X.; Liao, H. Fast Climate Responses to Aerosol Emission Reductions During the COVID-19 Pandemic. Geophys. Res. Lett. 2020, 47, e2020GL089788. [Google Scholar] [CrossRef]
Date | Confirmed Cases | Deaths | The Government’s Policy |
---|---|---|---|
30 January 2020 | 1 | \ | \ |
24 March 2020 | 519 | 9 | Nationwide lockdown from 25 March to 14 April 2020 |
14 April 2020 | 10,815 | 353 | Nationwide lockdown Extended to 3 May 2020 |
4 May 2020 | 42,533 | 1373 | Nationwide lockdown extended to 31 May 2020 |
31 May 2020 | 181,827 | 5185 | Nationwide lockdown extended to 30 June 2020 |
30 June 2020 | 585,792 | 17,410 | Nationwide unlock |
Radiation (W m−2) | Top of Atmosphere | Atmosphere | Surface | ||||||
---|---|---|---|---|---|---|---|---|---|
SW | LW | NET | SW | LW | NET | SW | LW | NET | |
North | –2.3 | –0.7 | –3.0 | –8.2 | +1.0 | –7.2 | +5.9 | –1.7 | +4.2 |
Central | –0.7 | –0.7 | –1.4 | –3.0 | +0.4 | –2.6 | +2.3 | –1.1 | +1.2 |
South | –3.2 | –0.6 | –3.8 | –11.8 | +0.1 | –11.7 | +8.6 | –0.7 | +7.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Jin, Q.; Ma, Y.; Ji, Z.; Zhu, X.; Dong, W. How Does COVID-19 Lockdown Impact Air Quality in India? Remote Sens. 2022, 14, 1869. https://doi.org/10.3390/rs14081869
Hu Z, Jin Q, Ma Y, Ji Z, Zhu X, Dong W. How Does COVID-19 Lockdown Impact Air Quality in India? Remote Sensing. 2022; 14(8):1869. https://doi.org/10.3390/rs14081869
Chicago/Turabian StyleHu, Zhiyuan, Qinjian Jin, Yuanyuan Ma, Zhenming Ji, Xian Zhu, and Wenjie Dong. 2022. "How Does COVID-19 Lockdown Impact Air Quality in India?" Remote Sensing 14, no. 8: 1869. https://doi.org/10.3390/rs14081869
APA StyleHu, Z., Jin, Q., Ma, Y., Ji, Z., Zhu, X., & Dong, W. (2022). How Does COVID-19 Lockdown Impact Air Quality in India? Remote Sensing, 14(8), 1869. https://doi.org/10.3390/rs14081869