Cooperative Navigation for Low-Cost UAV Swarm Based on Sigma Point Belief Propagation
Abstract
:1. Introduction
2. Preliminaries and Description of Problem
2.1. Preliminary on Sigma Point Filter
2.2. Belief Propagation for UAV Swarm
3. Sigma Point Belief Propagation
3.1. Navigation State Model and Time Update
3.2. Measurement Model and Measurement Update
3.2.1. Local Measurement Model and Measurement Update
3.2.2. Cooperative Measurement Model and Measurement Update
3.3. Algorithm Description
Algorithm 1 The Detailed Recursion Process of Navigation State Based on SPBP (Example of UAV m) |
1: INPUT: Initial system state , including the initial mean and the initial covariance Measurements of IMU, GNSS, barometer and UWB |
OUTPUT: Navigation results of UAV m, including position, velocity and attitude |
CALCULATE: |
2: for time step = 1 to T do |
3: for UAV in parallel do |
4: Sample sigma points according to Equation (2) |
5: Time update as per Equations (26), (27) and (9)–(11), calculate the message passed by IMU factor to variable node at time k, and obtain the mean and covariance of the state |
6: end parallel |
7: for UAV in parallel do |
8: Calculate the belief , use Equations (3)–(6) and (12)–(14) to complete the measurement update of local measurements, and obtain the mean and covariance of the state |
9: end parallel |
10: for UAV in parallel do |
11: while ( ) do |
12: Propagate the mean and covariance matrix of the position corresponding to message |
13: Receive the mean and covariance matrix of the position sent by adjacent UAV |
14: Augment the state as per Equation (35) and obtain the mean and covariance of the new state |
15: Resample sigma points according to Equation (2) |
16: Complete the cooperative measurement update of UWB observation as per Equations (3)–(6) and (12)–(14), and obtain the mean and covariance of the state quantity corresponding to belief |
17: end while |
18: end parallel |
19: for UAV in parallel do |
20: Extract the navigation states from the final iteration results and , and outputthe navigation results |
21: end parallel |
22: end for |
3.4. Complexity Analysis of SPBP
4. Simulations
4.1. Simulation Configuration
4.2. Simulation Results for Cooperative Navigation
5. Flight Tests
5.1. System Configuration
5.2. Test Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karantanellis, E.; Marinos, V.; Vassilakis, E.; Christaras, B. Object-Based Analysis Using Unmanned Aerial Vehicles (UAVs) for Site-Specific Landslide Assessment. Remote Sens. 2020, 12, 1711. [Google Scholar] [CrossRef]
- Zhou, W.; Li, J.; Liu, Z.; Shen, L. Improving multi-target cooperative tracking guidance for UAV swarms using multi-agent reinforcement learning. Chin. J. Aeronaut. 2021. [Google Scholar] [CrossRef]
- Zhen, Z.; Chen, Y.; Wen, L.; Han, B. An intelligent cooperative mission planning scheme of UAV swarm in uncertain dynamic environment. Aerosp. Sci. Technol. 2020, 100, 105826. [Google Scholar] [CrossRef]
- Wu, T.; Wang, J.; Tian, B. Periodic event-triggered formation control for multi-UAV systems with collision avoidance. Chin. J. Aeronaut. 2021. [Google Scholar] [CrossRef]
- Kang, Y.; Park, B.-J.; Cho, A.; Yoo, C.-S.; Kim, Y.; Choi, S.; Koo, S.-O.; Oh, S. A Precision Landing Test on Motion Platform and Shipboard of a Tilt-Rotor UAV Based on RTK-GNSS. Int. J. Aeronaut. Space Sci. 2018, 19, 994–1005. [Google Scholar] [CrossRef]
- Xiong, J.; Cheong, J.W.; Xiong, Z.; Dempster, A.G.; Tian, S.; Wang, R. Hybrid Cooperative Positioning for Vehicular Networks. IEEE Trans. Veh. Technol. 2020, 69, 714–727. [Google Scholar] [CrossRef]
- Causa, F.; Fasano, G. Improving Navigation in GNSS-Challenging Environments: Multi-UAS Cooperation and Generalized Dilution of Precision. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 1462–1479. [Google Scholar] [CrossRef]
- Shen, J.; Wang, S.; Zhai, Y.; Zhan, X. Cooperative relative navigation for multi-UAV systems by exploiting GNSS and peer-to-peer ranging measurements. IET Radar Sonar Navig. 2021, 15, 21–36. [Google Scholar] [CrossRef]
- Guo, K.; Li, X.; Xie, L. Ultra-Wideband and Odometry-Based Cooperative Relative Localization with Application to Multi-UAV Formation Control. IEEE Trans. Cybern. 2020, 50, 2590–2603. [Google Scholar] [CrossRef]
- Efatmaneshnik, M.; Alam, N.; Kealy, A.; Dempster, A.G. A Fast Multidimensional Scaling Filter for Vehicular Cooperative Positioning. J. Navig. 2012, 65, 223–243. [Google Scholar] [CrossRef]
- Lee, J.K.; Grejner-Brzezinska, D.A.; Toth, C. Network-based Collaborative Navigation in GPS-Denied Environment. J. Navig. 2012, 65, 445–457. [Google Scholar] [CrossRef] [Green Version]
- Srirangarajan, S.; Tewfik, A.H.; Luo, Z.Q. Distributed sensor network localization using SOCP relaxation. IEEE Trans. Wirel. Commun. 2008, 7, 4886–4895. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; So, H.C.; Chan, F.K.W.; Chan, Y.T.; Ho, K.C. A new constrained weighted least squares algorithm for TDOA-based localization. Signal Process. 2013, 93, 2872–2878. [Google Scholar] [CrossRef]
- Lui, K.W.K.; Ma, W.K.; So, H.C.; Chan, F.K. Semi-Definite Programming Algorithms for Sensor Network Node Localization With Uncertainties in Anchor Positions and/or Propagation Speed. IEEE Trans. Signal Process. 2009, 57, 752–763. [Google Scholar] [CrossRef] [Green Version]
- López-Estrada, F.-R.; Rotondo, D.; Valencia-Palomo, G. A Review of Convex Approaches for Control, Observation and Safety of Linear Parameter Varying and Takagi-Sugeno Systems. Processes 2019, 7, 814. [Google Scholar] [CrossRef] [Green Version]
- Vaghefi, R.M.; Buehrer, R.M. Cooperative Localization in NLOS Environments Using Semidefinite Programming. IEEE Commun. Lett. 2015, 19, 1382–1385. [Google Scholar] [CrossRef]
- Wymeersch, H.; Lien, J.; Win, M.Z. Cooperative Localization in Wireless Networks. Proc. IEEE 2009, 97, 427–450. [Google Scholar] [CrossRef]
- Naseri, H.; Koivunen, V. A Bayesian Algorithm for Distributed Network Localization Using Distance and Direction Data. IEEE Trans. Signal Inf. Process. Over Netw. 2019, 5, 290–304. [Google Scholar] [CrossRef]
- Li, B.; Wu, N.; Wang, H.; Tseng, P.-H.; Kuang, J. Gaussian message passing-based cooperative localization on factor graph in wireless networks. Signal Process. 2015, 111, 1–12. [Google Scholar] [CrossRef]
- Yuan, W.; Wu, N.; Wang, H.; Li, B.; Kuang, J. Joint synchronization and localization based on Gaussian belief propagation in sensor networks. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 6646–6651. [Google Scholar] [CrossRef]
- Caceres, M.A.; Penna, F.; Wymeersch, H.; Garello, R. Hybrid Cooperative Positioning Based on Distributed Belief Propagation. IEEE J. Sel. Areas Commun. 2011, 29, 1948–1958. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Yang, Z.; Hu, H. Sequential Particle-Based Sum-Product Algorithm for Distributed Inference in Wireless Sensor Networks. IEEE Trans. Veh. Technol. 2013, 62, 341–348. [Google Scholar] [CrossRef]
- Xiong, J.; Xiong, Z.; Cheong, J.W.; Xu, J.; Yu, Y.; Dempster, A.G. Cooperative positioning for low-cost close formation flight based on relative estimation and belief propagation. Aerosp. Sci. Technol. 2020, 106, 106068. [Google Scholar] [CrossRef]
- Meyer, F.; Hlinka, O.; Hlawatsch, F. Sigma Point Belief Propagation. IEEE Signal Process. Lett. 2013, 21, 145–149. [Google Scholar] [CrossRef] [Green Version]
- Malleswaran, M.; Vaidehi, V.; Irwin, S.; Robin, B. IMM-UKF-TFS Model-based Approach for Intelligent Navigation. J. Navig. 2013, 66, 859–877. [Google Scholar] [CrossRef]
- Julier, S.; Uhlmann, J.; Durrant-Whyte, H.F. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Control 2001, 45, 477–482. [Google Scholar] [CrossRef] [Green Version]
- Rhudy, M.; Gu, Y.; Gross, J.; Napolitano, M.R. Evaluation of Matrix Square Root Operations for UKF within a UAV GPS/INS Sensor Fusion Application. Int. J. Navig. Obs. 2011, 2011, 416828. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Lee, J.G.; Park, C.G. Adaptive Two-Stage Extended Kalman Filter for a Fault-Tolerant INS-GPS Loosely Coupled System. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 125–137. [Google Scholar] [CrossRef]
- Georges, H.M.; Xiao, Z. Wang, D. Hybrid Cooperative Vehicle Positioning Using Distributed Randomized Sigma Point Belief Propagation on Non-Gaussian Noise Distribution. IEEE Sens. J. 2016, 16, 7803–7813. [Google Scholar] [CrossRef]
- Wang, R.; Xiong, Z.; Liu, J.; Xu, J.; Shi, L. Chi-square and SPRT combined fault detection for multisensor navigation. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 1352–1365. [Google Scholar] [CrossRef]
- Luo, F.; Wang, S.; Gong, Y.; Jing, X.; Zhang, L. Geographical Information Enhanced Cooperative Localization in Vehicular Ad-Hoc Networks. IEEE Signal Process. Lett. 2018, 25, 556–560. [Google Scholar] [CrossRef]
- Xiong, J.; Cheong, J.W.; Xiong, Z.; Dempster, A.G.; Tian, S.; Wang, R. Integrity for Multi-Sensor Cooperative Positioning. IEEE Trans. Intell. Transp. Syst. 2021, 22, 792–807. [Google Scholar] [CrossRef]
- Yu, K.; Wen, K.; Li, Y.; Zhang, S.; Zhang, K. A Novel NLOS Mitigation Algorithm for UWB Localization in Harsh Indoor Environments. IEEE Trans. Veh. Technol. 2019, 68, 686–699. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Y.; Li, Z.; Meng, X.; Hancock, C.M. A Tightly-Coupled GPS/INS/UWB Cooperative Positioning Sensors System Supported by V2I Communication. Sensors 2016, 16, 944. [Google Scholar] [CrossRef] [PubMed]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C: The Art of Scientific Computing; Cambridge University Press: New York, NY, USA, 1992. [Google Scholar]
- Xiong, J.; Cheong, J.W.; Xiong, Z.; Dempster, A.G.; List, M.; Woske, F.; Rievers, B. Carrier-Phase-Based Multi-Vehicle Cooperative Positioning Using V2V Sensors. IEEE Trans. Veh. Technol. 2020, 69, 9528–9541. [Google Scholar] [CrossRef]
- Alam, N.; Balaei, A.T.; Dempster, A. A DSRC Doppler-Based Cooperative Positioning Enhancement for Vehicular Networks with GPS Availability. IEEE Trans. Veh. Technol. 2011, 60, 4462–4470. [Google Scholar] [CrossRef]
- Fan, Y.; Qi, X.; Li, B.; Liu, L. Fast clustering-based multidimensional scaling for mobile networks localization. IET Commun. 2020, 14, 135–143. [Google Scholar] [CrossRef]
- Nguyen, T.M.; Zaini, A.H.; Guo, K.; Lihua, X. An Ultra-Wideband-based Multi-UAV Localization System in GPS-denied Environments. In Proceedings of the International Micro Air Vehicle Conference and Competition 2016 (IMAV 2016), Beijing, China, 18 October 2016. [Google Scholar]
- Li, S.; Lv, J.; Tian, S. Posterior Cramer-Rao lower bound for wireless sensor localisation networks. Electron. Lett. 2018, 54, 1296–1298. [Google Scholar] [CrossRef]
- Yin, F.; Fritsche, C.; Gustafsson, F.; Zoubir, A.M. TOA-Based Robust Wireless Geolocation and Cramér-Rao Lower Bound Analysis in Harsh LOS/NLOS Environments. IEEE Trans. Signal Process. 2013, 61, 2243–2255. [Google Scholar] [CrossRef] [Green Version]
Sensor | Parameter | Value |
---|---|---|
Gyro | Random walk drive noise | 3°/h |
White noise error | 3°/h | |
Output frequency | 50 Hz | |
Accelerometer | Random walk drive noise | 10−4 g |
Output frequency | 50 Hz | |
Barometer | Gaussian noise standard dev. | 0.5 m |
Output frequency | 5 Hz | |
GNSS | Position noise standard dev. | 5 m |
Pseudo range noise standard dev. | 5 m | |
Initial equivalent clock error | 60 m | |
Equivalent clock drift noise | 10 m | |
Output frequency | 5 Hz | |
UWB | Gaussian noise standard dev. | 0.15 m |
Output frequency | 5 Hz |
Method Type | RMSE in the Positioning Error (Units: m) | Average Processing Time (Units: s) | |||
---|---|---|---|---|---|
UAV3 | UAV4 | UAV5 | Total | ||
H-SPAWN(Particles = 3000) | 0.581 | 0.696 | 0.324 | 0.556 | 0.3745 |
H-SPAWN(Particles = 1000) | 0.764 | 0.875 | 0.478 | 0.725 | 0.0885 |
SPBP | 0.612 | 0.487 | 0.459 | 0.524 | 0.0175 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Xiong, Z.; Song, F.; Xiong, J.; Wang, R. Cooperative Navigation for Low-Cost UAV Swarm Based on Sigma Point Belief Propagation. Remote Sens. 2022, 14, 1976. https://doi.org/10.3390/rs14091976
Chen M, Xiong Z, Song F, Xiong J, Wang R. Cooperative Navigation for Low-Cost UAV Swarm Based on Sigma Point Belief Propagation. Remote Sensing. 2022; 14(9):1976. https://doi.org/10.3390/rs14091976
Chicago/Turabian StyleChen, Mingxing, Zhi Xiong, Fengyi Song, Jun Xiong, and Rong Wang. 2022. "Cooperative Navigation for Low-Cost UAV Swarm Based on Sigma Point Belief Propagation" Remote Sensing 14, no. 9: 1976. https://doi.org/10.3390/rs14091976
APA StyleChen, M., Xiong, Z., Song, F., Xiong, J., & Wang, R. (2022). Cooperative Navigation for Low-Cost UAV Swarm Based on Sigma Point Belief Propagation. Remote Sensing, 14(9), 1976. https://doi.org/10.3390/rs14091976