A Model-Based Temperature Adjustment Scheme for Wintertime Sea-Ice Production Retrievals from MODIS
Abstract
:1. Introduction
2. Data
2.1. Satellite Data Sets
2.2. Atmospheric Data Sets
3. MODIS Thin-Ice Thickness Retrieval
3.1. General Description
3.2. Addition of a Model-Based Algorithm to Enable MODIS-Assisted Temperature Adjustments
4. Results
4.1. Case Study from January 2020: Effects of MATA Application
4.2. Analysis of the 2019/2020 Winter-Season
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, S.D.; Muench, R.D.; Pease, C.H. Polynyas and leads: An overview of physical processes and environment. J. Geophys. Res. 1990, 95, 9461–9479. [Google Scholar] [CrossRef]
- Preußer, A.; Ohshima, K.I.; Iwamoto, K.; Willmes, S.; Heinemann, G. Retrieval of Wintertime sea-ice Production in Arctic Polynyas Using Thermal Infrared and Passive Microwave Remote Sensing Data. J. Geophys. Res. Ocean. 2019, 124, 5503–5528. [Google Scholar] [CrossRef] [Green Version]
- Willmes, S.; Heinemann, G. Sea-Ice Wintertime Lead Frequencies and Regional Characteristics in the Arctic, 2003–2015. Remote Sens. 2016, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Reiser, F.; Willmes, S.; Heinemann, G. A New Algorithm for Daily sea-ice Lead Identification in the Arctic and Antarctic Winter from Thermal-Infrared Satellite Imagery. Remote Sens. 2020, 12, 1957. [Google Scholar] [CrossRef]
- Steffen, K. Ice conditions of an Arctic polynya: North Water in winter. J. Glaciol. 1986, 32, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Steffen, K.; Maslanik, J.A. Comparison of Nimbus 7 scanning multichannel microwave radiometer radiance and derived sea-ice concentrations with Landsat imagery for the north water area of Baffin Bay. J. Geophys. Res. Ocean. 1988, 93, 10769–10781. [Google Scholar] [CrossRef]
- Yu, Y.; Rothrock, D. Thin ice thickness from satellite thermal imagery. J. Geophys. Res. Ocean. 1996, 101, 25753–25766. [Google Scholar] [CrossRef]
- Yu, Y.; Lindsay, R. Comparison of thin ice thickness distributions derived from RADARSAT Geophysical Processor System and Advanced Very High Resolution Radiometer data sets. J. Geophys. Res. 2003, 108, 3387. [Google Scholar] [CrossRef]
- Tamura, T.; Ohshima, K.I. Mapping of sea-ice production in the Arctic coastal polynyas. J. Geophys. Res. 2011, 116, C07030. [Google Scholar] [CrossRef]
- Iwamoto, K.; Ohshima, K.I.; Tamura, T. Improved mapping of sea-ice production in the Arctic Ocean using AMSR-E thin ice thickness algorithm. J. Geophys. Res. Ocean. 2014, 119, 3574–3594. [Google Scholar] [CrossRef]
- Paul, S.; Willmes, S.; Heinemann, G. Long-term coastal-polynya dynamics in the Southern Weddell Sea from MODIS thermal-infrared imagery. Cryosphere 2015, 9, 2027–2041. [Google Scholar] [CrossRef] [Green Version]
- Preußer, A.; Heinemann, G.; Willmes, S.; Paul, S. Circumpolar polynya regions and ice production in the Arctic: Results from MODIS thermal infrared imagery from 2002/2003 to 2014/2015 with a regional focus on the Laptev Sea. Cryosphere 2016, 10, 3021–3042. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Jakobsson, M.; Mayer, L.; Coakley, B.; Dowdeswell, J.A.; Forbes, S.; Fridman, B.; Hodnesdal, H.; Noormets, R.; Pedersen, R.; Rebesco, M.; et al. The international bathymetric chart of the Arctic Ocean (IBCAO) version 3.0. Geophys. Res. Lett. 2012, 39, 176. [Google Scholar] [CrossRef] [Green Version]
- Nielsen-Englyst, P.; Høyer, J.L.; Madsen, K.S.; Tonboe, R.; Dybkjær, G.; Alerskans, E. In situ observed relationships between snow and ice surface skin temperatures and 2 m air temperatures in the Arctic. Cryosphere 2019, 13, 1005–1024. [Google Scholar] [CrossRef] [Green Version]
- Nielsen-Englyst, P.; Høyer, J.L.; Madsen, K.S.; Tonboe, R.T.; Dybkjær, G.; Skarpalezos, S. Deriving Arctic 2 m air temperatures over snow and ice from satellite surface temperature measurements. Cryosphere 2021, 15, 3035–3057. [Google Scholar] [CrossRef]
- Ackerman, S.; Frey, R.; Strabala, K.; Liu, Y.; Gumley, L.; Baum, B.; Menzel, P. Discriminating Clear-Sky from Cloud with MODIS Algorithm Theoretical Basis Document (MOD35) Version 6.1; Technical Report; MODIS Cloud Mask Team, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin: Madison, WI, USA, 2010. [Google Scholar]
- Hall, D.; Key, J.; Casey, K.; Riggs, G.; Cavalieri, D. sea-ice surface temperature product from MODIS. Geosci. Remote Sens. IEEE Trans. 2004, 42, 1076–1087. [Google Scholar] [CrossRef]
- Riggs, G.; Hall, D. MODIS sea-ice Products User Guide to Collection 6; National Snow and Ice Data Center, University of Colorado: Boulder, CO, USA, 2015. [Google Scholar]
- Spreen, G.; Kaleschke, L.; Heygster, G. Sea-ice remote sensing using AMSR-E 89 GHz channels. J. Geophys. Res. 2008, 113, C02S03. [Google Scholar] [CrossRef] [Green Version]
- Gutjahr, O.; Heinemann, G.; Preußer, A.; Willmes, S.; Drüe, C. Quantification of ice production in Laptev Sea polynyas and its sensitivity to thin-ice parameterizations in a regional climate model. Cryosphere 2016, 10, 2999–3019. [Google Scholar] [CrossRef] [Green Version]
- Heinemann, G.; Willmes, S.; Schefczyk, L.; Makshtas, A.; Kustov, V.; Makhotina, I. Observations and Simulations of Meteorological Conditions over Arctic Thick sea-ice in Late Winter during the Transarktika 2019 Expedition. Atmosphere 2021, 12, 174. [Google Scholar] [CrossRef]
- Sedlar, J.; Tjernström, M.; Rinke, A.; Orr, A.; Cassano, J.; Fettweis, X.; Heinemann, G.; Seefeldt, M.; Solomon, A.; Matthes, H.; et al. Confronting Arctic Troposphere, Clouds, and Surface Energy Budget Representations in Regional Climate Models With Observations. J. Geophys. Res. Atmos. 2020, 125, e2019JD031783. [Google Scholar] [CrossRef]
- Inoue, J.; Sato, K.; Rinke, A.; Cassano, J.J.; Fettweis, X.; Heinemann, G.; Matthes, H.; Orr, A.; Phillips, T.; Seefeldt, M.; et al. Clouds and Radiation Processes in Regional Climate Models Evaluated Using Observations Over the Ice-free Arctic Ocean. J. Geophys. Res. Atmos. 2021, 126, e2020JD033904. [Google Scholar] [CrossRef]
- Zhang, J.; Rothrock, D.A. Modeling Global sea-ice with a Thickness and Enthalpy Distribution Model in Generalized Curvilinear Coordinates. Mon. Weather Rev. 2003, 131, 845–861. [Google Scholar] [CrossRef] [Green Version]
- Lavergne, T.; Sørensen, A.M.; Kern, S.; Tonboe, R.; Notz, D.; Aaboe, S.; Bell, L.; Dybkjær, G.; Eastwood, S.; Gabarro, C.; et al. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere 2019, 13, 49–78. [Google Scholar] [CrossRef] [Green Version]
- Donlon, C.J.; Martin, M.; Stark, J.; Roberts-Jones, J.; Fiedler, E.; Wimmer, W. The Operational Sea Surface Temperature and sea-ice Analysis (OSTIA) system. Remote Sens. Environ. 2012, 116, 140–158. [Google Scholar] [CrossRef]
- Renfrew, I.A.; Barrell, C.; Elvidge, A.D.; Brooke, J.K.; Duscha, C.; King, J.C.; Kristiansen, J.; Cope, T.L.; Moore, G.W.K.; Pickart, R.S.; et al. An evaluation of surface meteorology and fluxes over the Iceland and Greenland Seas in ERA5 reanalysis: The impact of sea-ice distribution. Q. J. R. Meteorol. Soc. 2021, 147, 691–712. [Google Scholar] [CrossRef]
- Batrak, Y.; Müller, M. On the warm bias in atmospheric reanalyses induced by the missing snow over Arctic sea-ice. Nat. Commun. 2019, 10, 4170. [Google Scholar] [CrossRef]
- Adams, S.; Willmes, S.; Schroeder, D.; Heinemann, G.; Bauer, M.; Krumpen, T. Improvement and sensitivity analysis of thermal thin-ice retrievals. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3306–3318. [Google Scholar] [CrossRef] [Green Version]
- WMO; OMM; BMO. WMO Sea-Ice Nomenclature; Edition 1970–2014 259; WMO/OMM/BMO: Geneva, Switzerland, 2014. [Google Scholar]
- Launiainen, J.; Vihma, T. Derivation of turbulent surface fluxes—An iterative flux-profile method allowing arbitrary observing heights. Environ. Softw. 1990, 5, 113–124. [Google Scholar] [CrossRef]
- Preußer, A.; Heinemann, G.; Willmes, S.; Paul, S. Multi-Decadal Variability of Polynya Characteristics and Ice Production in the North Water Polynya by Means of Passive Microwave and Thermal Infrared Satellite Imagery. Remote Sens. 2015, 7, 15844–15867. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; Willmes, S.; Gutjahr, O.; Preußer, A.; Heinemann, G. Spatial Feature Reconstruction of Cloud-Covered Areas in Daily MODIS Composites. Remote Sens. 2015, 7, 5042–5056. [Google Scholar] [CrossRef] [Green Version]
- Willmes, S.; Krumpen, T.; Adams, S.; Rabenstein, L.; Haas, C.; Hoelemann, J.; Hendricks, S.; Heinemann, G. Cross-validation of polynya monitoring methods from multisensor satellite and airborne data: A case study for the Laptev Sea. Can. J. Remote Sens. 2010, 36, S196–S210. [Google Scholar] [CrossRef]
- Massom, R.A.; Harris, P.; Michael, K.J.; Potter, M. The distribution and formative processes of latent-heat polynyas in East Antarctica. Ann. Glaciol. 1998, 27, 420–426. [Google Scholar] [CrossRef] [Green Version]
- Adams, S.; Willmes, S.; Heinemann, G.; Rozman, P.; Timmermann, R.; Schröder, D. Evaluation of simulated sea-ice concentrations from sea-ice/ ocean models using satellite data and polynya classification methods. Polar Res. 2011, 30, 7124. [Google Scholar] [CrossRef]
- Jin, X.; Barber, D.; Papakyriakou, T. A new clear-sky downward longwave radiative flux parameterization for Arctic areas based on rawinsonde data. J. Geophys. Res. 2006, 111, D24104. [Google Scholar] [CrossRef] [Green Version]
- Tetzlaff, A.; Lüpkes, C.; Hartmann, J. Aircraft-based observations of atmospheric boundary-layer modification over Arctic leads. Q. J. R. Meteorol. Soc. 2015, 141, 2839–2856. [Google Scholar] [CrossRef]
- Dethleff, D.; Loewe, P.; Kleine, E. The Laptev Sea flaw lead—Detailed investigation on ice formation and export during 1991/1992 winter season. Cold Reg. Sci. Technol. 1998, 27, 225–243. [Google Scholar] [CrossRef]
- Itkin, P.; Krumpen, T. Winter sea-ice export from the Laptev Sea preconditions the local summer sea-ice cover and fast ice decay. Cryosphere 2017, 11, 2383–2391. [Google Scholar] [CrossRef] [Green Version]
- Krumpen, T.; Belter, H.J.; Boetius, A.; Damm, E.; Haas, C.; Hendricks, S.; Nicolaus, M.; Nöthig, E.M.; Paul, S.; Peeken, I.; et al. Arctic warming interrupts the Transpolar Drift and affects long-range transport of sea-ice and ice-rafted matter. Sci. Rep. 2019, 9, 5459. [Google Scholar] [CrossRef] [Green Version]
- Willmes, S.; Adams, S.; Schröder, D.; Heinemann, G. Spatio-temporal variability of polynya dynamics and ice production in the Laptev Sea between the winters of 1979/80 and 2007/08. Polar Res. 2011, 30, 16. [Google Scholar] [CrossRef]
- Lawrence, Z.D.; Perlwitz, J.; Butler, A.H.; Manney, G.L.; Newman, P.A.; Lee, S.H.; Nash, E.R. The Remarkably Strong Arctic Stratospheric Polar Vortex of Winter 2020: Links to Record-Breaking Arctic Oscillation and Ozone Loss. J. Geophys. Res. Atmos. 2020, 125, e2020JD033271. [Google Scholar] [CrossRef]
- Rinke, A.; Cassano, J.J.; Cassano, E.N.; Jaiser, R.; Handorf, D. Meteorological conditions during the MOSAiC expedition: Normal or anomalous? Elem. Sci. Anthr. 2021, 9, 00023. [Google Scholar] [CrossRef]
- Krumpen, T.; Birrien, F.; Kauker, F.; Rackow, T.; von Albedyll, L.; Angelopoulos, M.; Belter, H.J.; Bessonov, V.; Damm, E.; Dethloff, K.; et al. The MOSAiC ice floe: Sediment-laden survivor from the Siberian shelf. Cryosphere 2020, 14, 2173–2187. [Google Scholar] [CrossRef]
- Krumpen, T.; von Albedyll, L.; Goessling, H.F.; Hendricks, S.; Juhls, B.; Spreen, G.; Willmes, S.; Belter, H.J.; Dethloff, K.; Haas, C.; et al. MOSAiC drift expedition from October 2019 to July 2020: Sea-ice conditions from space and comparison with previous years. Cryosphere 2021, 15, 3897–3920. [Google Scholar] [CrossRef]
- Kohnemann, S.H.; Heinemann, G. A climatology of wintertime low-level jets in Nares Strait. Polar Res. 2021, 40, 3622. [Google Scholar] [CrossRef]
- Yu, Y.; Xiao, W.; Zhang, Z.; Cheng, X.; Hui, F.; Zhao, J. Evaluation of 2-m Air Temperature and Surface Temperature from ERA5 and ERA-I Using Buoy Observations in the Arctic during 2010–2020. Remote Sens. 2021, 13, 2813. [Google Scholar] [CrossRef]
- Ohshima, K.I.; Tamaru, N.; Kashiwase, H.; Nihashi, S.; Nakata, K.; Iwamoto, K. Estimation of sea-ice Production in the Bering Sea From AMSR-E and AMSR2 Data, With Special Emphasis on the Anadyr Polynya. J. Geophys. Res. Ocean. 2020, 125, e2019JC016023. [Google Scholar] [CrossRef]
- Paul, S.; Huntemann, M. Improved machine-learning-based open-water–sea-ice–cloud discrimination over wintertime Antarctic sea-ice using MODIS thermal-infrared imagery. Cryosphere 2021, 15, 1551–1565. [Google Scholar] [CrossRef]
- Crameri, F.; Shephard, G.E.; Heron, P.J. The misuse of colour in science communication. Nat. Commun. 2020, 11, 5444. [Google Scholar] [CrossRef]
CCLM | ECMWF ERA5 | |
---|---|---|
Reference | Modified from [22,23] | [14] |
Grid Resolution | 5 km or 15 km | 31 km |
Model type | Regional climate model (Arctic) | Global reanalysis |
Sea-ice reference | AMSR-E, AMSR2 SIC | SSM/I, SSMIS SIC |
(U Bremen; ASI-v5.4 [21]), | (OSI-SAF; OSI-401/409 [27] as | |
MODIS SIC [4] | part of OSTIA [28]) | |
Utilized variables | , , , , | , , , , |
, | , , |
Domain | km | Month | SIC ≤ 0.7 & < −1.7 °C | SIC ≤ 0.7 & < −1.7 °C | <−1.7 °C | |||
---|---|---|---|---|---|---|---|---|
(Surrounding Six Pixels) | ||||||||
slope | r2 | slope | r2 | slope | r2 | |||
Arctic | 15 | January 2020 | 0.45 | 0.94 | 0.39 | 0.89 | 0.53 | 0.83 |
Arctic | 15 | April 2020 | 0.48 | 0.93 | 0.49 | 0.95 | 0.61 | 0.89 |
Arctic | 15 | March 2014 | 0.45 | 0.94 | 0.45 | 0.94 | 0.58 | 0.84 |
Laptev Sea | 5 | January 2020 | 0.40 | 0.93 | 0.38 | 0.94 | 0.57 | 0.82 |
Laptev Sea | 5 | April 2020 | 0.41 | 0.90 | 0.39 | 0.91 | 0.65 | 0.86 |
Barents Sea | 5 | March 2014 | 0.43 | 0.85 | 0.42 | 0.84 | 0.66 | 0.83 |
ERA5 | CCLM | ERA Interim [2] | |||||
---|---|---|---|---|---|---|---|
no MATA | MATA | MATA | no MATA | MATA | MATA | 2002/2003 to | |
2019/2020 | 2019/2020 | 2019/2020 | 2019/2020 | 2019/2020 | 2019/2020 | 2017/2018 | |
(DJFMA) | (DJFMA) | (DJFM) | (DJFMA) | (DJFMA) | (DJFM) | (DJFM) | |
Canadian Arctic | 107 | 48 (−55%) | 34 | 224 | 64 (−71%) | 47 | 129 ± 36 |
Chukchi Sea | 134 | 106 (−21%) | 106 | 289 | 124 (−57%) | 121 | 85 ± 34 |
East Siberian Sea | 115 | 54 (−53%) | 46 | 322 | 80 (−75%) | 67 | 51 ± 25 |
Franz-Josef-Land | 81 | 57 (−30%) | 57 | 139 | 64 (−54%) | 63 | 86 ± 33 |
Kara Sea | 187 | 110 (−41%) | 96 | 322 | 130 (−60%) | 112 | 181 ± 94 |
Laptev Sea | 132 | 68 (−48%) | 63 | 261 | 82 (−69%) | 75 | 70 ± 28 |
Northeast Water | 20 | 11 (−45%) | 11 | 51 | 18 (−65%) | 17 | 16 ± 6 |
North Water | 126 | 74 (−41%) | 69 | 297 | 113 (−62%) | 105 | 196 ± 58 |
Storfjorden | 21 | 13 (−38%) | 13 | 22 | 17 (−23%) | 16 | 18 ± 6 |
Severnaya Zemlya | 13 | 8 (−38%) | 8 | 34 | 10 (−71%) | 10 | 18 ± 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Preußer, A.; Heinemann, G.; Schefczyk, L.; Willmes, S. A Model-Based Temperature Adjustment Scheme for Wintertime Sea-Ice Production Retrievals from MODIS. Remote Sens. 2022, 14, 2036. https://doi.org/10.3390/rs14092036
Preußer A, Heinemann G, Schefczyk L, Willmes S. A Model-Based Temperature Adjustment Scheme for Wintertime Sea-Ice Production Retrievals from MODIS. Remote Sensing. 2022; 14(9):2036. https://doi.org/10.3390/rs14092036
Chicago/Turabian StylePreußer, Andreas, Günther Heinemann, Lukas Schefczyk, and Sascha Willmes. 2022. "A Model-Based Temperature Adjustment Scheme for Wintertime Sea-Ice Production Retrievals from MODIS" Remote Sensing 14, no. 9: 2036. https://doi.org/10.3390/rs14092036
APA StylePreußer, A., Heinemann, G., Schefczyk, L., & Willmes, S. (2022). A Model-Based Temperature Adjustment Scheme for Wintertime Sea-Ice Production Retrievals from MODIS. Remote Sensing, 14(9), 2036. https://doi.org/10.3390/rs14092036