The Use of Sentinel-3/OLCI for Monitoring the Water Quality and Optical Water Types in the Largest Portuguese Reservoir
Abstract
:1. Introduction
2. Materials
2.1. Area and Period of Study
2.2. Sentinel-3/OLCI Data
2.3. In Situ/Laboratory Data
2.4. Meteorological Data
3. Methodology
3.1. Atmospheric Correction and Empirical Algorithms
- (i)
- The preprocessing of TOA Sentinel-3 imagery, including image reading, subset to Alqueva reservoir area, processing of radiances to reflectances, and extraction of the products. These four steps were performed using the toolbox SNAP (Sentinel Application Platform, http://step.esa.int/main/toolboxes/snap/, accessed on 1 November 2021), version 6.0. The top-of-atmosphere (TOA) reflectances were extracted from the OLCI images. The products SZA (solar zenith angle), SAA (solar azimuth angle), VZA (view zenith angle), and VAA (view azimuth angle) were also extracted, to be used in the atmospheric correction scheme as geometrical conditions.
- (ii)
- The second step is the atmospheric correction of the various effects of the atmosphere, namely, ozone, water vapor, and aerosols. A reliable and adequate atmospheric correction process in the analysis of surface parameters in lakes or ocean is essential, as water usually has low reflectances, so small errors in the atmospheric correction can lead to large errors in surface reflectance estimates. In this work, the atmospheric correction method 6SV was assessed to obtain the surface reflectances, applied to cloud-free images acquired by the OLCI instrument. Python code was used to transform TOA to surface reflectances. Other atmospheric correction methods were verified in the literature, such as the ACOLITE or C2RCC (Case 2 Regional CoastColour) processor. We selected the 6SV method mainly due to three factors: (a) There are high correlations between estimated and measured reflectances in the Alqueva reservoir considering previous studies [30,44,45]. These high correlations mean that when using the 6SV method, despite the associated errors (in absolute value), there is similarity between shape of estimated and measured reflectances, being a crucial factor for a correct definition of OWTs. (b) It is a method that normally does not have null or negative reflectances, in situations of high water transparency (low surface reflectances), while with C2RCC and ACOLITE processors this happens. We tested the C2RCC processor for days with clean water, i.e., low water reflectances, and we obtained negative reflectances, without necessarily having high AOTs. This result for the Alqueva reservoir is in agreement with other studies, where there is an underestimation of the reflectances compared to the surface reflectances measured using the C2RCC processor [20,54]. (c) It is a method of atmospheric correction that has been extensively used in several lakes and with good accuracy compared to measured surface reflectances [21,22,23,30,44,45,55,56].
3.2. Definition of Optical Water Types (OWT)
- ➢
- Days with at least one pixel having null values of view azimuth angle. These images represent days when the reservoir is at the limit of the OLCI image, thus having degradation in image quality and reflectance spectra.
- ➢
- Pixels with MNDWI less than 0.5.
- ➢
- Days when there are less than 200 pixels with MNDWI greater than 0.5.
- ➢
- Days with at least one pixel with negative reflectance in one band between 490 nm and 708.75 nm. Only five days were excluded with this filter, being days with high AOT values.
3.3. Comparison between OWT and Water Quality Parameters
4. Results
4.1. Definition of Optical Classification and Empirical Algorithms
4.1.1. Validation of OLCI Surface Spectral Reflectances
4.1.2. Definition of the Empirical Algorithms and the Four OWTs
4.1.3. Validation of Empirical Algorithms
4.2. Qualitative and Quantitative Analysis of Water Quality
- 58.3% of the pixels in the entire reservoir presented the OWT4 classification. September 2020 had the second highest attribution to OWT4 cluster with 37.1%.
- Water quality estimates in September present the highest values of biomass load (higher Chl-a concentrations), a greater presence of cyanobacteria (much higher PC concentrations than any other month) and Turb, and lower SD. A highlight is the value corresponding to the 90th percentile for an SD of less than 2 m, which denotes a very high turbidity in practically the entire reservoir and in all the days available for analysis.
- Lower frequency (%) of spectra (OWT1) associated with the most transparent water.
- The month with the highest frequency (%) of pixels assigned to the OWT3 cluster, representative of pixels with high turbidity.
4.3. Spatial Variations of the Optical Water Types and Water Quality
- The northern area of the reservoir represents the area with the highest percentage of pixels assigned to OWT3 cluster or OWT4 during the four years analyzed. It is the area of the reservoir most affected by microalgae blooms (between July and October) and also by runoff phenomena after heavy rainfalls.
- The central area, being much wider than the northern area and further away from the Guadiana river inlet (in the north region), presents better water quality in all analyzed years compared to the north area. Precipitation and runoff affect this area less. However, microalgae blooms also disturb this area, mainly in the period between August and October, being the second area with greater deterioration of water quality in this period. This is verified not only by the analysis of OWT frequencies, but also by the estimates of Chl-a and PC concentrations.
- The southern area, one of the areas farthest from the area with the worst water quality (north area), presents, on average, the best conditions (lowest water turbidity and highest frequency of OWT1 + OWT2 pixels) of the entire reservoir. It also has the lowest impact of runoff effects or microalgae blooms.
- The western area (branch that starts in the south area towards the west/northwest) presented the most discrepant behavior in the 4 years analyzed, with respect to the July–October period, compared to the average of the entire reservoir. It was the area with the lowest frequency of pixels assigned to the OWT4 cluster in 2017, in the months with the presence of microalgae, being in 2018 the second worst (highest frequency of OWT3 + OWT4) area with high frequency identification of OWT3 pixels, in the month with highest rainfall (March 2018).
- The east area, despite being much narrower than the central and south areas, generally presents similarity to these two areas in relation to the frequency of OWT1 and OWT2. This area is also less representative of microalgae in 2018 and 2020, i.e., it presents lower frequency of pixels with OWT4 attribution and lower Chl-a/PC concentrations.
4.4. Extreme Events (Microalgae Blooms and Runoff after Heavy Rainfall)
5. Discussion
5.1. Monitoring Water Quality and Optical Water Types
5.2. Microalgae Blooms and Early Cyanobacteria Detection
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giorgi, F.; Lionello, P. Climate Change Projections for the Mediterranean Region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Cardoso, R.M.; Soares, P.M.M.; Lima, D.C.A.; Miranda, P.M.A. Mean and Extreme Temperatures in a Warming Climate: EURO CORDEX and WRF Regional Climate High-Resolution Projections for Portugal. Clim. Dyn. 2019, 52, 129–157. [Google Scholar] [CrossRef]
- Soares, P.M.M.; Cardoso, R.M.; Lima, D.C.A.; Miranda, P.M.A. Future Precipitation in Portugal: High-Resolution Projections Using WRF Model and EURO-CORDEX Multi-Model Ensembles. Clim. Dyn. 2017, 49, 2503–2530. [Google Scholar] [CrossRef]
- Jeppesen, E.; Brucet, S.; Naselli-Flores, L.; Papastergiadou, E.; Stefanidis, K.; Nõges, T.; Nõges, P.; Attayde, J.L.; Zohary, T.; Coppens, J.; et al. Ecological Impacts of Global Warming and Water Abstraction on Lakes and Reservoirs Due to Changes in Water Level and Related Changes in Salinity. Hydrobiologia 2015, 750, 201–227. [Google Scholar] [CrossRef]
- Jeppesen, E.; Meerhoff, M.; Davidson, T.A.; Trolle, D.; Søndergaard, M.; Lauridsen, T.L.; Beklioǧlu, M.; Brucet, S.; Volta, P.; González-Bergonzoni, I.; et al. Climate Change Impacts on Lakes: An Integrated Ecological Perspective Based on a Multi-Faceted Approach, with Special Focus on Shallow Lakes. J. Limnol. 2014, 73, 88–111. [Google Scholar] [CrossRef] [Green Version]
- Havens, K.E.; Paerl, H.W. Climate Change at a Crossroad for Control of Harmful Algal Blooms. Environ. Sci. Technol. 2015, 49, 12605–12606. [Google Scholar] [CrossRef]
- Havens, K.; Jeppesen, E. Ecological Responses of Lakes to Climate Change. Water 2018, 10, 917. [Google Scholar] [CrossRef] [Green Version]
- Moss, B. Allied Attack: Climate Change and Eutrophication. Inland Waters 2011, 1, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Erol, A.; Randhir, T.O. Climatic Change Impacts on the Ecohydrology of Mediterranean Watersheds. Clim. Chang. 2012, 114, 319–341. [Google Scholar] [CrossRef]
- Paerl, H.W.; Huisman, J. Climate Change: A Catalyst for Global Expansion of Harmful Cyanobacterial Blooms. Environ. Microbiol. Rep. 2009, 1, 27–37. [Google Scholar] [CrossRef]
- Palma, P.; Fialho, S.; Lima, A.; Catarino, A.; Costa, M.J.; Barbieri, M.V.; Monllor-Alcaraz, L.S.; Postigo, C.; Lopez de Alda, M. Occurrence and risk assessment of pesticides in a Mediterranean Basin with strong agricultural pressure (Guadiana Basin: Southern of Portugal). Sci. Total Environ. 2021, 794, 148703. [Google Scholar] [CrossRef] [PubMed]
- Tomaz, A.; Palma, P.; Fialho, S.; Lima, A.; Alvarenga, P.; Potes, M.; Costa, M.J.; Salgado, R. Risk Assessment of Irrigation-Related Soil Salinization and Sodification in Mediterranean Areas. Water 2020, 12, 3569. [Google Scholar] [CrossRef]
- Palma, P.; Fialho, S.; Lima, A.; Mourinha, C.; Penha, A.; Novais, M.H.; Rosado, A.; Morais, M.; Potes, M.; Costa, M.J.; et al. Land-Cover Patterns and Hydrogeomorphology of Tributaries: Are These Important Stressors for the Water Quality of Reservoirs in the Mediterranean Region? Water 2020, 12, 2665. [Google Scholar] [CrossRef]
- Novais, M.H.; Morales, E.A.; Marchã Penha, A.; Potes, M.; Bouchez, A.; Barthès, A.; Costa, M.J.; Salgado, R.; Santos, J.; Morais, M. Benthic diatom community dynamics in Mediterranean intermittent streams: Effects of water availability and their potential as indicators of dry-phase ecological status. Sci. Total Environ. 2020, 719, 137462. [Google Scholar] [CrossRef] [PubMed]
- Bukata, R.P.; Jerome, J.H.; Kondratyev, K.Y.; Pozdnyakov, D.V. Optical Properties and Remote Sensing of Inland and Coastal Waters; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Dekker, A.G.; Vos, R.J.; Peters, S.W.M. Comparison of Remote Sensing Data, Model Results and in Situ Data for Total Suspended Matter (TSM) in the Southern Frisian Lakes. Sci. Total Environ. 2001, 268, 197–214. [Google Scholar] [CrossRef]
- Gower, J.; King, S.; Borstad, G.; Brown, L. Detection of Intense Plankton Blooms Using the 709 nm Band of the MERIS Imaging Spectrometer. Int. J. Remote Sens. 2005, 26, 2005–2012. [Google Scholar] [CrossRef]
- Simis, S.G.H.; Peters, S.W.M.; Gons, H.J. Remote Sensing of the Cyanobacterial Pigment Phycocyanin in Turbid Inland Water. Limnol. Oceanogr. 2005, 50, 237–245. [Google Scholar] [CrossRef]
- Ruiz-Verdú, A.; Simis, S.G.H.; de Hoyos, C.; Gons, H.J.; Peña-Martínez, R. An Evaluation of Algorithms for the Remote Sensing of Cyanobacterial Biomass. Remote Sens. Environ. 2008, 112, 3996–4008. [Google Scholar] [CrossRef]
- Ansper, A.; Alikas, K. Retrieval of Chlorophyll a from Sentinel-2 MSI Data for the European Union Water Framework Directive Reporting Purposes. Remote Sens. 2019, 11, 64. [Google Scholar] [CrossRef] [Green Version]
- Cazzaniga, I.; Bresciani, M.; Colombo, R.; Della Bella, V.; Padula, R.; Giardino, C. A Comparison of Sentinel-3-OLCI and Sentinel-2-MSI-Derived Chlorophyll-a Maps for Two Large Italian Lakes. Remote Sens. Lett. 2019, 10, 978–987. [Google Scholar] [CrossRef]
- Wang, D.; Ma, R.; Xue, K.; Loiselle, S. The Assessment of Landsat-8 OLI Atmospheric Correction Algorithms for Inland Waters. Remote Sens. 2019, 11, 169. [Google Scholar] [CrossRef] [Green Version]
- Xue, K.; Ma, R.; Shen, M.; Li, Y.; Duan, H.; Cao, Z.; Wang, D.; Xiong, J. Variations of Suspended Particulate Concentration and Composition in Chinese Lakes Observed from Sentinel-3A OLCI Images. Sci. Total Environ. 2020, 721, 137774. [Google Scholar] [CrossRef] [PubMed]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Hà, N.; et al. Seamless Retrievals of Chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in Inland and Coastal Waters: A Machine-Learning Approach. Remote Sens. Environ. 2020, 240, 111604. [Google Scholar] [CrossRef]
- Canziani, G.; Ferrati, R.; Marinelli, C.; Dukatz, F. Artificial Neural Networks and Remote Sensing in the Analysis of the Highly Variable Pampean Shallow Lakes. Math. Biosci. Eng. 2008, 5, 691–711. [Google Scholar] [CrossRef]
- Hafeez, S.; Wong, M.S.; Ho, H.C.; Nazeer, M.; Nichol, J.; Abbas, S.; Tang, D.; Lee, K.H.; Pun, L. Comparison of Machine Learning Algorithms for Retrieval of Water Quality Indicators in Case-Ii Waters: A Case Study of Hong Kong. Remote Sens. 2019, 11, 617. [Google Scholar] [CrossRef] [Green Version]
- Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L.; Gege, P. Inter-Comparison of Methods for Chlorophyll-a Retrieval: Sentinel-2 Time-Series Analysis in Italian Lakes. Remote Sens. 2021, 13, 2381. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Hà, N.; et al. Re-Parameterization of a Quasi Analytical Algorithm and Phycocyanin Estimation in a Tropical Reservoir. Master’s Thesis, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil, 2014. [Google Scholar]
- Ruescas, A.B.; Mateo-García, G.; Camps-Valls, G.; Hieronymi, M. Retrieval of Case 2 Water Quality Parameters with Machine Learning. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 124–127. [Google Scholar] [CrossRef]
- Rodrigues, G.; Potes, M.; Costa, M.J.; Novais, M.H.; Penha, A.M.; Salgado, R.; Morais, M.M. Temporal and Spatial Variations of Secchi Depth and Diffuse Attenuation Coefficient from Sentinel-2 MSI over a Large Reservoir. Remote Sens. 2020, 12, 768. [Google Scholar] [CrossRef] [Green Version]
- Potes, M.; Rodrigues, G.; Marchã Penha, A.; Helena Novais, M.; João Costa, M.; Salgado, R.; Manuela Morais, M. Use of Sentinel 2-MSI for Water Quality Monitoring at Alqueva Reservoir, Portugal. Proc. Int. Assoc. Hydrol. Sci. 2018, 380, 73–79. [Google Scholar] [CrossRef]
- Vantrepotte, V.; Loisel, H.; Dessailly, D.; Mériaux, X. Optical Classification of Contrasted Coastal Waters. Remote Sens. Environ. 2012, 123, 306–323. [Google Scholar] [CrossRef]
- Botha, E.J.; Anstee, J.M.; Sagar, S.; Lehmann, E.; Medeiros, T.A.G. Classification of Australian Waterbodies across a Wide Range of Optical Water Types. Remote Sens. 2020, 12, 3018. [Google Scholar] [CrossRef]
- Spyrakos, E.; O’Donnell, R.; Hunter, P.D.; Miller, C.; Scott, M.; Simis, S.G.H.; Neil, C.; Barbosa, C.C.F.; Binding, C.E.; Bradt, S.; et al. Optical Types of Inland and Coastal Waters. Limnol. Oceanogr. 2018, 63, 846–870. [Google Scholar] [CrossRef] [Green Version]
- Xue, K.; Ma, R.; Wang, D.; Shen, M. Optical Classification of the Remote Sensing Reflectance and Its Application in Deriving the Specific Phytoplankton Absorption in Optically Complex Lakes. Remote Sens. 2019, 11, 184. [Google Scholar] [CrossRef] [Green Version]
- Ward, J.H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Shi, K.; Li, Y.; Zhang, Y.; Li, L.; Lv, H.; Song, K. Classification of Inland Waters Based on Bio-Optical Properties. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 543–561. [Google Scholar] [CrossRef]
- Palacios, S.L.; Peterson, T.D.; Kudela, R.M. Optical Characterization of Water Masses within the Columbia River Plume. J. Geophys. Res. Ocean. 2012, 117, C11020. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Li, J.; Shen, Q.; Zhang, B.; Wu, C.; Wu, Y.; Wang, G.; Wang, S.; Lu, Z. Algorithms and Schemes for Chlorophyll a Estimation by Remote Sensing and Optical Classification for Turbid Lake Taihu, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 350–364. [Google Scholar] [CrossRef]
- Shen, Q.; Li, J.; Zhang, F.; Sun, X.; Li, J.; Li, W.; Zhang, B. Classification of Several Optically Complex Waters in China Using in Situ Remote Sensing Reflectance. Remote Sens. 2015, 7, 14731–14756. [Google Scholar] [CrossRef] [Green Version]
- Bi, S.; Li, Y.; Xu, J.; Liu, G.; Song, K.; Mu, M.; Lyu, H.; Miao, S.; Xu, J. Optical Classification of Inland Waters Based on an Improved Fuzzy C-Means Method. Opt. Express 2019, 27, 34838. [Google Scholar] [CrossRef]
- Eleveld, M.A.; Ruescas, A.B.; Hommersom, A.; Moore, T.S.; Peters, S.W.M.; Brockmann, C. An Optical Classification Tool for Global Lake Waters. Remote Sens. 2017, 9, 420. [Google Scholar] [CrossRef] [Green Version]
- Moore, T.S.; Dowell, M.D.; Bradt, S.; Ruiz Verdu, A. An Optical Water Type Framework for Selecting and Blending Retrievals from Bio-Optical Algorithms in Lakes and Coastal Waters. Remote Sens. Environ. 2014, 143, 97–111. [Google Scholar] [CrossRef] [Green Version]
- Potes, M.; Costa, M.J.; da Silva, J.C.B.; Silva, A.M.; Morais, M. Remote Sensing of Water Quality Parameters over Alqueva Reservoir in the South of Portugal. Int. J. Remote Sens. 2011, 32, 3373–3388. [Google Scholar] [CrossRef]
- Potes, M.; Costa, M.J.; Salgado, R. Satellite Remote Sensing of Water Turbidity in Alqueva Reservoir and Implications on Lake Modelling. Hydrol. Earth Syst. Sci. 2012, 16, 1623–1633. [Google Scholar] [CrossRef] [Green Version]
- Lamquin, N.; Clerc, S.; Bourg, L.; Donlon, C. OLCI A/B Tandem Phase Analysis, Part 1: Level 1 Homogenisation and Harmonisation. Remote Sens. 2020, 12, 1804. [Google Scholar] [CrossRef]
- Lorenzen, C.J. Determination of Chlorophyll and Pheo-Pigments: Spectrophotometric Equations. Limnol. Oceanogr. 1967, 12, 343–346. [Google Scholar] [CrossRef]
- NP 4327/1996; Qualidade da Água. Doseamento da Clorofila a e Dos Feopigmentos Por Espectrofotometria de Absorção Molecular. Instituto Português da Qualidade: Monte de Caparica, Portugal, 1997.
- ISO 10260:1992; Water Quality: Measurement of Biochemical Parameters: Spectrometric Determination of the Chlorophyll-A Concentration. International Organization for Standardization: Geneva, Switzerland, 1992.
- APHA. Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association: Washington, DC, USA, 1995. [Google Scholar]
- Horváth, H.; Kovács, A.W.; Riddick, C.; Présing, M. Extraction Methods for Phycocyanin Determination in Freshwater Filamentous Cyanobacteria and Their Application in a Shallow Lake. Eur. J. Phycol. 2013, 48, 278–286. [Google Scholar] [CrossRef] [Green Version]
- Lauceri, R.; Bresciani, M.; Lami, A.; Morabito, G. Chlorophyll A Interference in Phycocyanin and Allophycocyanin Spectrophotometric Quantification. J. Limnol. 2018, 77, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Purificação, C.; Potes, M.; Rodrigues, G.; Salgado, R.; Costa, M.J. Lake and Land Breezes at a Mediterranean Artificial Lake: Observations in Alqueva Reservoir, Portugal. Atmosphere 2021, 12, 535. [Google Scholar] [CrossRef]
- Soomets, T.; Uudeberg, K.; Jakovels, D.; Brauns, A.; Zagars, M.; Kutser, T. Validation and Comparison of Water Quality Products in Baltic Lakes Using Sentinel-2 Msi and Sentinel-3 OLCI Data. Sensors 2020, 20, 742. [Google Scholar] [CrossRef] [Green Version]
- Martins, V.S.; Barbosa, C.C.F.; de Carvalho, L.A.S.; Jorge, D.S.F.; Lobo, F.d.L.; de Moraes Novo, E.M.L. Assessment of Atmospheric Correction Methods for Sentinel-2 MSI Images Applied to Amazon Floodplain Lakes. Remote Sens. 2017, 9, 322. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Duan, H.; Cao, Z.; Xue, K.; Loiselle, S.; Yesou, H. Determination of the Downwelling Diffuse Attenuation Coefficient of Lakewater with the Sentinel-3A OLCI. Remote Sens. 2017, 9, 1246. [Google Scholar] [CrossRef] [Green Version]
- ASD. FieldSpec® HandHeld 2 Spectroradiometer User’s Manual; ASD Inc.: Boulder, CO, USA, 2010; Volume 1, pp. 1–93. [Google Scholar]
- Potes, M.; Costa, M.J.; Salgado, R.; Bortoli, D.; Serafim, A.; Le Moigne, P. Spectral measurements of underwater downwelling radiance of inland water bodies. Tellus A 2013, 65, 20774. [Google Scholar] [CrossRef] [Green Version]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Huang, Z. Extensions to the K-Means Algorithm for Clustering Large Data Sets with Categorical Values. Data Min. Knowl. Discov. 1998, 2, 283–304. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Flores-Anderson, A.I.; Griffin, R.; Dix, M.; Romero-Oliva, C.S.; Ochaeta, G.; Skinner-Alvarado, J.; Ramirez Moran, M.V.; Hernandez, B.; Cherrington, E.; Page, B.; et al. Hyperspectral Satellite Remote Sensing of Water Quality in Lake Atitlán, Guatemala. Front. Environ. Sci. 2020, 8, 7. [Google Scholar] [CrossRef]
- Craig, S.E.; Lohrenz, S.E.; Lee, Z.; Mahoney, K.L.; Kirkpatrick, G.J.; Schofield, O.M.; Steward, R.G. Use of Hyperspectral Remote Sensing Reflectance for Detection and Assessment of the Harmful Alga, Karenia brevis. Appl. Opt. 2006, 45, 5414–5425. [Google Scholar] [CrossRef]
- Potes, M.; Salgado, R.; Costa, M.J.; Morais, M.; Bortoli, D.; Kostadinov, I.; Mammarella, I. Lake-Atmosphere Interactions at Alqueva Reservoir: A Case Study in the Summer of 2014. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2017, 69, 1272787. [Google Scholar] [CrossRef] [Green Version]
- Palma, P.; Penha, A.M.; Novais, M.H.; Fialho, S.; Lima, A.; Mourinha, C.; Alvarenga, P.; Rosado, A.; Iakunin, M.; Rodrigues, G.; et al. Water-Sediment Physicochemical Dynamics in a Large Reservoir in the Mediterranean Region under Multiple Stressors. Water 2021, 13, 707. [Google Scholar] [CrossRef]
Data | Objective | Period |
---|---|---|
Sentinel-3/OLCI (Satellite data) | Estimate water quality and OWTs | 2017–2020 (Period of study) |
Surface reflectances (Satellite data and measurements) | Validation of OLCI surface reflectances | May 2016–September 2020 |
SD (Measurements) | Empirical algorithm | May 2016–October 2021 |
Chl-a/Turb (Laboratory data) | Empirical algorithms | July 2017–October 2021 |
PC (Laboratory data) | Empirical algorithm | February 2018–October 2021 |
Source | Parameters | |
---|---|---|
Input type | Sentinel-3/OLCI | TOA reflectance |
Geometrical conditions | Sentinel-3/OLCI | Solar zenith angle, solar azimuth angle (◦) |
View zenith angle, view azimuth angle (◦) | ||
Month, day | ||
Atmospheric conditions (user) | Aeronet | Water vapor (g/cm2) |
Ozone Monitoring (OMI) | Ozone (cm-atm) | |
Aerosol model (type) | - | Continental |
Aerosol model (concentration) | Aeronet | Aerosol optical thickness at 550 nm |
Spectral bands | Sentinel-3/OLCI | Spectral function responses |
North | Center | South | West | East | |
---|---|---|---|---|---|
2017 | 70 | 228 | 275 | 26 | 81 |
2018 | 70 | 227 | 282 | 27 | 85 |
2019 | 66 | 207 | 267 | 25 | 77 |
2020 | 47 | 172 | 237 | 20 | 62 |
N = 27 | Correl. | Bias | MAE | MAPE (%) |
---|---|---|---|---|
B4 | 0.92 | 0.006 | 0.006 | 39 |
B5 | 0.92 | 0.006 | 0.006 | 31 |
B6 | 0.96 | 0.004 | 0.005 | 18 |
B7 | 0.95 | 0.004 | 0.004 | 26 |
B8 | 0.94 | 0.003 | 0.003 | 31 |
B9 | 0.92 | 0.003 | 0.003 | 33 |
B10 | 0.92 | 0.003 | 0.003 | 29 |
B11 | 0.93 | 0.002 | 0.003 | 47 |
OWT Type(s) | Summary |
---|---|
OWT1 | Characteristic of more transparent water spectra with lower Chl-a concentrations, and no presence of PC |
OWT1 + OWT2 | Characteristic of high water transparency |
OWT2 | OWT2 typically with lower water transparency and higher Chl-a concentrations than OWT1 |
OWT3 + OWT4 | Water with low/moderate water transparency |
OWT3 | Low to moderate water transparency, but not necessarily associated with microalgae blooms |
OWT4 | High or very high Chl-a concentrations; microalgae blooms and risk of cyanobacterial presence |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, G.; Potes, M.; Penha, A.M.; Costa, M.J.; Morais, M.M. The Use of Sentinel-3/OLCI for Monitoring the Water Quality and Optical Water Types in the Largest Portuguese Reservoir. Remote Sens. 2022, 14, 2172. https://doi.org/10.3390/rs14092172
Rodrigues G, Potes M, Penha AM, Costa MJ, Morais MM. The Use of Sentinel-3/OLCI for Monitoring the Water Quality and Optical Water Types in the Largest Portuguese Reservoir. Remote Sensing. 2022; 14(9):2172. https://doi.org/10.3390/rs14092172
Chicago/Turabian StyleRodrigues, Gonçalo, Miguel Potes, Alexandra Marchã Penha, Maria João Costa, and Maria Manuela Morais. 2022. "The Use of Sentinel-3/OLCI for Monitoring the Water Quality and Optical Water Types in the Largest Portuguese Reservoir" Remote Sensing 14, no. 9: 2172. https://doi.org/10.3390/rs14092172
APA StyleRodrigues, G., Potes, M., Penha, A. M., Costa, M. J., & Morais, M. M. (2022). The Use of Sentinel-3/OLCI for Monitoring the Water Quality and Optical Water Types in the Largest Portuguese Reservoir. Remote Sensing, 14(9), 2172. https://doi.org/10.3390/rs14092172