Hyperspectral Remote Sensing Image Classification Based on Partitioned Random Projection Algorithm
Abstract
:1. Introduction
2. Materials
3. The Proposed Algorithm
3.1. Random Projection
3.2. Partitioned Random Projection
3.3. HSI Classification Based on the PRP Algorithm
3.3.1. Optimization Strategy of the Projection Matrix
3.3.2. HSI Classification Based on Optimization Strategy of the Projection Matrix
3.4. The Complexity of the Proposed Algorithm
3.5. The Flow Chart of the Proposed Algorithm
Algorithm 1 The detailed process of the proposed classification algorithm |
Input: HSI U and samples X. Output: Classification result f. Step 1. Initializing parameters ε, β, L, T, H, M, S. Step 2. Dividing an HSI evenly U = [U1; …; UM]. Step 3. Calculating the lowest projection dimensionality K0PRP by using Equation (5). Step 4. Forming the projection matrix RPRP by using Equation (19). Step 5. Generating a low dimensional sub-HSI Vm by using Equation (6). Step 6. Getting the low dimensional HSI V = [V1; …; VM]. Step 7. Generating the feature mean hyperspectral vector of the low dimensional samples of lth class Ylmean by using Equation (21). Step 8. Calculating the distance zsl by using Equation (22). |
4. Experiments and Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Pan, H.; Chen, Z. Application of UVA hyperspectral remote sensing in winter wheat leaf area index inversion. Chin. J. Agric. Resour. Reg. Plan. 2018, 39, 32–37. [Google Scholar] [CrossRef]
- Xu, Q.; Ma, Y.; Jiang, Q.; Tong, C.; Zhao, Z. Estimation of rice leaf water content based on hyperspectral remote sensing. Remote Sens. Infom. 2018, 33, 136–143. [Google Scholar] [CrossRef]
- Chutia, D.; Bhattacharyya, D.K.; Sarma, K.K.; Kalita, R.; Sudhakar, S. Hyperspectral remote sensing classifications: A perspective survey. Trans. GIS 2016, 20, 463–490. [Google Scholar] [CrossRef]
- Wang, Y.; Reardon, C.P.; Read, N.; Thorpe, S.; Evans, A.; Todd, N.; Krauss Thomas, F. Attachment and antibiotic response of early-stage biofilms studied using resonant hyperspectral imaging. NPJ Biofilms Microbiomes 2020, 6, 57. [Google Scholar] [CrossRef]
- Koprowski, R. Hyperspectral imaging in medicine: Image pre-processing problems and solutions in Matlab. J. Biophotonics 2015, 8, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Wang, Y.; Sun, Q.; Yang, G.; Zhang, C. Hyperspectral inversion of soil organic matter content in cultivated land based on wavelet transform. Comput. Electron. Agric. 2019, 167, 105053–105059. [Google Scholar] [CrossRef]
- Mathieu, M.; Roy, R.; Launeau, P.; Cathelineau, M.; Quirt, D. Alteration mapping on drill cores using a hyspex swir-320m hyperspectral camera: Application to the exploration of an unconformity related uranium deposit (Saskatchewan, Canada). J. Geochem. Explor. 2017, 172, 71–88. [Google Scholar] [CrossRef]
- Su, H.; Sheng, Y.; Du, P.; Chen, C.; Liu, K. Hyperspectral image classification based on volumetric texture and dimensionality reduction. Front. Earth Sci. 2015, 9, 225–236. [Google Scholar] [CrossRef]
- Dong, Y.; Du, B.; Zhang, L.; Zhang, L. Exploring locally adaptive dimensionality reduction for hyperspectral image classification: A maximum margin metric learning aspect. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 1136–1150. [Google Scholar] [CrossRef]
- Yao, D.; Zhao, P.; Pham, T.N.; Cong, G. High-Dimensional Similarity Learning Via Dual-Sparse Random Projection. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18), Stockholm, Sweden, 13–19 July 2018; pp. 3005–3011. [Google Scholar] [CrossRef] [Green Version]
- Dou, Z.; Gao, K.; Zhang, X.; Wang, H.; Han, L. Band selection of hyperspectral images using attention-based autoencoders. IEEE Geosci. Remote. Sens. Lett. 2020, 18, 147–151. [Google Scholar] [CrossRef]
- Fan, J.; Liao, Y.; Wang, W. Projected principal component analysis in factor models. Ann. Stat. 2016, 44, 219–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, W.; Lin, Y.; Huang, H.; Ding, C. From protein sequence to protein function via multi-label linear discriminate analysis. IEEE-ACM Trans. Comput. Biol. Bioinform. 2017, 14, 503–513. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Jiang, X.; Zhou, Y. Marginalized graph self-representation for unsupervised hyperspectral band selection. IEEE Trans. Geosci. Remote. Sens. 2021, 60, 1–12. [Google Scholar] [CrossRef]
- Saranathan, A.M.; Parente, M. Uniformity-based superpixel segmentation of hyperspectral images. IEEE Trans. Geosci. Remote. Sens. 2016, 54, 1419–1430. [Google Scholar] [CrossRef]
- Mou, L.; Saha, S.; Hua, Y.; Bovolo, F.; Zhu, X.X. Deep reinforcement learning for band selection in hyperspectral image classification. IEEE Trans. Geosci. Remote. Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Tamilarasi, R.; Prabu, S. Automated building and road classifications from hyperspectral imagery through a fully convolutional network and support vector machine. J. Supercomput. 2021, 77, 13243–13261. [Google Scholar] [CrossRef]
- Filipović, M.; Kopriva, I. A comparison of dictionary based approaches to inpainting and denoising with an emphasis to independent component analysis learned dictionaries. Inverse Probl. Imag. 2017, 5, 815–841. [Google Scholar] [CrossRef] [Green Version]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Li, H.; Jiang, G.; Wang, R.; Zhang, J.; Wang, Z.; Zheng, W.S.; Menze, B. Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images. NeuroImage 2018, 183, 650–665. [Google Scholar] [CrossRef] [Green Version]
- Meier, T.B.; Desphande, A.S.; Vergun, S.; Nair, V.A.; Prabhakaran, V. Support vector machine classification and characterization of age-related reorganization of functional brain networks. NeuroImage 2012, 60, 601–613. [Google Scholar] [CrossRef] [Green Version]
- Frankl, P.; Maehara, H. The Johnson-Lindenstrauss lemma and the sphericity of some graphs. J. Comb. Theory 1988, 44, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, S. Experiments with Random Projection. In Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, Francisco, CA, USA, 30 June–3 July 2000; pp. 143–151. [Google Scholar] [CrossRef]
- Dasgupta, S.; Gupta, A. An elementary proof of the Johnson-Lindenstrauss lemma. Random Struct. Algor. 2003, 22, 60–65. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, S. Growing neural gas with random projection method for high-dimensional data stream clustering. Soft Comput. 2020, 24, 9789–9807. [Google Scholar] [CrossRef]
- Vempala, S.S. The Random Projection Method; American Mathematical Society: Providence, RI, USA, 2004. [Google Scholar] [CrossRef]
- Achlioptas, D. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. Syst. Sci. 2003, 66, 671–687. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Wong, P.K.; Wong, K.I.; Vong, C.M.; Zhao, J. Adaptive neural control of vehicle yaw stability with active front steering using an improved random projection neural network. Veh. Syst. Dyn. 2021, 59, 396–414. [Google Scholar] [CrossRef]
- Zhe, X.; Chen, S.; Yan, H. Directional statistics-based deep metric learning for image classification and retrieval. Pattern Recogn. 2018, 93, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Yellamraju, T.; Boutin, M. Clusterability and clustering of images and other “real” high-dimensional data. IEEE Trans. Image Process. 2018, 27, 1927–1938. [Google Scholar] [CrossRef]
- Fan, Y.; Xuan, L.; Li, Q.; Tao, L. Exploring the diversity in cluster ensemble generation: Random sampling and random projection. Expert Syst. Appl. 2014, 41, 4844–4866. [Google Scholar] [CrossRef]
- Hou, B.; Na, L.; Shuang, W.; Zhang, X. SAR image segmentation based on random projection and signature frame. Geosci. Remote Sens. Symp. 2014, 1, 3726–3729. [Google Scholar] [CrossRef]
- Fowler, J.E.; Qian, D.; Wei, Z.; Younan, N.H. Classification performance of random-projection-based dimensionality reduction of hyperspectral imagery. Geosci. Remote Sens. Symp. 2009, 5, 76–79. [Google Scholar] [CrossRef]
- Alshamiri, A.K.; Singh, A.; Surampudi, B.R. Combining ELM with Random Projections for Low and High Dimensional Data Classification and Clustering. In Proceedings of the Fifth International Conference on Fuzzy and Neuro Computing (FANCCO-2015), Copenhagen, Denmark, 17–19 December 2015; Springer: Cham, Switzerland, 2015; pp. 89–107. [Google Scholar]
- Fern, X.Z.; Brodley, C.E. Random Projection for High Dimensional Data Clustering: A Cluster Ensemble Approach. In Proceedings of the 20th International Conference on Machine Learning, Washington, DC, USA, 21–24 August 2003; pp. 186–193. [Google Scholar]
- Zhao, R.; Mao, K. Semi-random projection for dimensionality reduction and extreme learning machine in high-dimensional space. IEEE Comput. Intell. Mag. 2015, 10, 30–41. [Google Scholar] [CrossRef]
- Deegalla, S.; Bostrom, H. Reducing High-Dimensional Data by Principal Component Analysis vs. Random Projection for Nearest Neighbor Classification. In Proceedings of the 5th International Conference on Machine Learning & Applications (ICMLA’06), Orlando, FL, USA, 14–16 December 2006; pp. 245–250. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.H.; Jia, S.H.; Li, Y. Hyperspectral remote sensing image classification based on tighter random projection with minimal intra-class variance algorithm. Pattern Recogn. 2021, 111, 107635. [Google Scholar] [CrossRef]
- Rathore, P.; Bezdek, J.C.; Erfani, S.M.; Rajasegarar, S.; Palaniswami, M. Ensemble fuzzy clustering using cumulative aggregation on random projections. IEEE Trans. Fuzzy Syst. 2018, 26, 1510–1524. [Google Scholar] [CrossRef]
- Anderlucci, L.; Fortunato, F.; Montanari, A. High-dimensional clustering via Random Projections. J. Classif. 2021, 38, 191–216. [Google Scholar] [CrossRef]
- Menon, A.K. Random Projections and Applications to Dimensionality Reduction. Bechelor’s Thesis, The University of Sydney, Darlington, Australia, March 2007. [Google Scholar]
- Sarvia, F.; Xausa, E.; Petris, S.D.; Cantamessa, G.; Borgogno-Mondino, E. A possible role of copernicus sentinel-2 data to support common agricultural policy controls in agriculture. Agronomy 2021, 11, 110. [Google Scholar] [CrossRef]
- Zhan, Y.; Muhammad, S.; Hao, P.; Niu, Z. The effect of EVI time series density on crop classification accuracy. Optik 2018, 157, 1065–1072. [Google Scholar] [CrossRef]
- Zhong, Y.; Hu, X.; Luo, C.; Wang, X.; Zhao, J.; Zhang, L. WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF. Remote Sens. Environ. 2020, 250, 112012. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, X.; Xu, Y.; Wang, S.; Jia, T.; Hu, X.; Zhao, J.; Wei, L.; Zhang, L. Mini-UAV-borne hyperspectral remote sensing: From observation and processing to applications. IEEE Geosci. Remote Sens. Mag. 2018, 6, 46–62. [Google Scholar] [CrossRef]
Pavia Centre | Salinas | Chikusei | LongKou | |
---|---|---|---|---|
URL for data source | http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes (accessed on 12 July 2021) | http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes (accessed on 12 July 2021) | https://naotoyokoya.com/Download.html (accessed on 11 April 2016) | http://rsidea.whu.edu.cn/resource_WHUHi_sharing.htm (accessed on 1 October 2020) |
Year | 2003 | 1998 | 2014 | 2018 |
Sensor | ROSIS | AVIRIS | Headwall Hyperspec-VNIR-C | Nano-Hyperspec |
Spatial resolution | 1.3 m | 3.7 m | 2.5 m | 0.463 m |
Number of bands | 102 | 204 | 128 | 270 |
T | H | M | KPRP | KTRP | KRP | |
---|---|---|---|---|---|---|
Pavia Centre image | 10 | 10 | 36,598 | 33 | 100 | 349 |
Salinas image | 10 | 10 | 2295 | 66 | 86 | 299 |
Chikusei image | 10 | 10 | 3145 | 33 | 79 | 275 |
LongKou image | 10 | 10 | 102,271 | 21 | 106 | 367 |
The Proposed Algorithm | TRP-MIV | PRP-MGSR | CAFCM | |
---|---|---|---|---|
Kappa coefficient | 0.83 (0.02) | 0.81 (0.05) | 0.79 (0.02) | 0.38 (0.11) |
OA/% | 89.65 (1.03) | 88.02 (2.94) | 87.34 (1.25) | 53.72 (11.68) |
AA/% | 78.99 (1.94) | 75.43 (5.88) | 73.22 (3.02) | 38.03 (5.65) |
APR/% | 79.80 (1.70) | 74.49 (5.81) | 72.72 (2.60) | 34.11 (6.01) |
Running time/s | 1.16 (0.09) | 2.93 (0.29) | 10,209.72 (1538.24) | 5798.18 (855.03) |
The Proposed Algorithm | TRP-MIV | PRP-MGSR | CAFCM | |
---|---|---|---|---|
Kappa coefficient | 0.91 (0.00) | 0.87 (0.01) | 0.88 (0.00) | 0.59 (0.14) |
OA/% | 91.98 (0.23) | 89.00 (0.71) | 90.20 (0.38) | 63.77 (11.47) |
AA/% | 85.97 (0.92) | 84.24 (1.25) | 80.14 (1.70) | 48.95 (11.68) |
APR/% | 79.89 (0.66) | 75.57 (1.20) | 75.28 (1.33) | 45.32 (17.93) |
Running time/s | 0.37 (0.10) | 3.93 (0.11) | 100.08 (8.65) | 1623.16 (226.78) |
The Proposed Algorithm | TRP-MIV | PRP-MGSR | CAFCM | |
---|---|---|---|---|
Kappa coefficient | 0.97 (0.01) | 0.92 (0.05) | 0.90 (0.01) | 0.35 (0.10) |
OA/% | 97.74 (0.38) | 94.15 (3.36) | 92.93 (0.74) | 48.52 (7.77) |
AA/% | 96.66 (1.06) | 87.89 (8.85) | 91.63 (0.81) | 36.58 (9.75) |
APR/% | 94.57 (0.56) | 87.29 (7.67) | 85.00 (1.93) | 33.62 (6.54) |
Running time/s | 0.21 (0.76) | 1.59 (0.16) | 52.20 (11.34) | 289.21 (34.70) |
The Proposed Algorithm | TRP-MIV | PRP-MGSR | CAFCM | |
---|---|---|---|---|
Kappa coefficient | 0.82 (0.01) | 0.62 (0.01) | 0.62 (0.03) | 0.47 (0.01) |
OA/% | 86.24 (0.51) | 68.90 (0.81) | 69.73 (2.93) | 56.84 (1.03) |
AA/% | 77.94 (1.57) | 56.59 (2.12) | 55.51 (3.51) | 33.69 (2.56) |
APR/% | 74.23 (1.50) | 52.05 (1.65) | 52.78 (2.36) | 39.04 (3.21) |
Running time/s | 2.42 (0.24) | 7.76 (0.40) | 7215.75 (835.60) | 16,698.02 (1512.06) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, S.; Zhao, Q.; Li, Y. Hyperspectral Remote Sensing Image Classification Based on Partitioned Random Projection Algorithm. Remote Sens. 2022, 14, 2194. https://doi.org/10.3390/rs14092194
Jia S, Zhao Q, Li Y. Hyperspectral Remote Sensing Image Classification Based on Partitioned Random Projection Algorithm. Remote Sensing. 2022; 14(9):2194. https://doi.org/10.3390/rs14092194
Chicago/Turabian StyleJia, Shuhan, Quanhua Zhao, and Yu Li. 2022. "Hyperspectral Remote Sensing Image Classification Based on Partitioned Random Projection Algorithm" Remote Sensing 14, no. 9: 2194. https://doi.org/10.3390/rs14092194
APA StyleJia, S., Zhao, Q., & Li, Y. (2022). Hyperspectral Remote Sensing Image Classification Based on Partitioned Random Projection Algorithm. Remote Sensing, 14(9), 2194. https://doi.org/10.3390/rs14092194