A Network of X-Band Meteorological Radars to Support the Motorway System (Campania Region Meteorological Radar Network Project)
Abstract
:1. Introduction
- We explored, for the first time, the potentiality of a low-cost single-polarization X-band radar network to support highway network management, especially in the winter season. To this purpose, we implemented a network, which consists of two X-band weather radar, the first installed in Naples urban area, the other in the town of Trevico (eastern sector of Campania region). The two sites are the result of a preliminary analysis that aims to improve the coverage, in comparison with the Italian radar network, of the internal area of Campania region, crossed by a strategic road (A16 motorway) that connects Tyrrhenian and Adriatic sectors of Italy, and often affected by snow episodes during the winter season;
- A further novelty of our study consists in the estimation of snowfall rate through a proper adaptation of existing X-band algorithms to the study area. The accuracy of the radar snowfall rate estimates was assessed using a laser-optical disdrometer as a ground reference, properly installed at Montevergine Observatory for the purposes of the CARMEN project. In this respect, the results of this work contribute to fill a relevant gap, related to the absence, in the study area and, more in general, in the Italian territory, of a reliable real-time quantitative estimation of snowfall rate and amount;
- From a strictly methodological point of view, as part of the CARMEN project, a new simple procedure was developed to discriminate the precipitation type through proper matching between X-band radar features and air-temperature observations provided by automatic weather stations. The algorithm is able to catch the rapid variation of the zero-degree level caused by the interaction of air mass with the local orographic features and to correctly discriminate the area affected by the snow and mixed or rain precipitation. This activity is crucial to planning the passage of snow ploughs in the sub-region affected by the snow and, therefore, to reduce the probability of traffic congestion caused by the snow accumulation on the road;
- Finally, a Probability of Hail index, based on a previous work [20], was operationally implemented to provide, in real time, the sectors likely to be affected by the hail, and consequently to warn the drivers of congestions or car accidents ahead, improving road safety.
2. Study Area and Available Measurements
2.1. Study Area
2.2. X-Band Radar Network
2.3. Other Meteorological Instruments
3. Methods and Data Analysis
3.1. Radar Composite
3.2. Probability of Hail Index
3.3. Precipitation Type Identification
3.4. Snowfall Rate Estimation
4. Results and Application to Case Studies
4.1. Real-Time System Architecture and Dataflow
4.2. Hailstorm Event on 1 August 2020
4.3. Snowfall Event on 13 February 2021
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nysten, E.; King, R.H. The Use of Weather Radar Data in Road Weather Services: Present and Future Needs. In Weather Radar Networking; Collier, C.G., Chapuis, M., Eds.; Springer: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Bazlova, T.; Bocharnikov, N.; Vinogradov, M.; Solonin, A.; Iakimainen, N. Road Weather Forecasting. In Proceedings of the Poster Presentation of 7th European Conference on Severe Storms, Scandic Marina Congress Center, Helsinki, Finland, 3–7 June 2013. [Google Scholar]
- Jaroszweski, D.; McNamara, T. The influence of rainfall on road accidents in urban areas: A weather radar approach. Travel Behav. Soc. 2014, 1, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Kangas, M.; Heikinheimo, M.; Hippi, M. RoadSurf: A modelling system for predicting road weather and road surface conditions. Meteorol. Appl. 2015, 22, 544–553. [Google Scholar] [CrossRef]
- Frei, T.; Von Grünigen, S.; Willemse, S. Economic benefit of meteorology in the Swiss road transportation sector. Meteorol. Appl. 2014, 21, 294–300. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasekar, V. Polarimetric Doppler Weather Radar: Principles and Applications; Cambridge University Press: Cambridge, UK, 2001; p. 662. [Google Scholar]
- Chandrasekar, V.; Chen, H.; Philips, B. Principles of high-resolution radar network for hazard mitigation and disaster management in an urban environment. J. Meteorol. Soc. Jpn. Ser. II 2018, 96, 119–139. [Google Scholar] [CrossRef] [Green Version]
- WMO. Assess the Current and Potential Capabilities of Weather Radars for the Use in WMO Integrated Global Observing System (WIGOS). In Proceedings of the Joint Meeting of the CIMO Expert Team on Remote Sensing Upper-Air Technology and Techniques and CBS Expert Team on Surface Based Remote Sensing, Geneva, Switzerland, 23–27 November 2009. [Google Scholar]
- Van de Beek, C.Z.; Leijnse, H.; Stricker, J.N.M.; Uijlenhoet, R.; Russchenberg, H.W.J. Performance of high-resolution X-band radar for rainfall measurement in The Netherlands. Hydrol. Earth Syst. Sci. 2010, 14, 205–221. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.; Notarpietro, R.; Branca, M. Storm Identification, Tracking and Forecasting Using High-Resolution Images of Short-Range X-Band Radar. Atmosphere 2015, 6, 579–606. [Google Scholar] [CrossRef] [Green Version]
- Capozzi, V.; Montopoli, M.; Mazzarella, V.; Marra, A.C.; Roberto, N.; Panegrossi, G.; Dietrich, S.; Budillon, G. Multi-Variable Classification Approach for the Detection of Lightning Activity Using a Low-Cost and Portable X Band Radar. Remote Sens. 2018, 10, 1797. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Lim, S.; Chandrasekar, V.; Jang, B.J. Urban hydrological applications of dual-polarization X-band radar: Case study in Korea. J. Hydrol. Eng. 2017, 22, E5016001. [Google Scholar] [CrossRef]
- Yoon, S.S.; Lim, S.H. Analyzing the Application of X-Band Radar for Improving Rainfall Observation and Flood Forecasting in Yeongdong, South Korea. Remote Sens. 2021, 14, 43. [Google Scholar] [CrossRef]
- Allegretti, M.; Bertoldo, S.; Prato, A.; Lucianaz, C.; Rorato, O.; Notarpietro, R.; Gabella, M. X-band mini radar for observing and monitoring rainfall events. Atmos. Clim. Sci. 2012, 2, 290–297. [Google Scholar] [CrossRef]
- Bendix, J.; Fries, A.; Zarate, J.; Trachte, K.; Rollenbeck, R.; Pucha-Cofrep, F.; Paladines, R.; Palacios, I.; Orellana, J.; Onate-Valdivieso, F.; et al. RadarNetSur first weather radar network in tropical high mountains. Bull. Amer. Meteor. Soc. 2016, 98, 1235–1254. [Google Scholar] [CrossRef]
- Antonini, A.; Melani, S.; Corongiu, M.; Romanelli, S.; Mazza, A.; Ortolani, A.; Gozzini, B. On the implementation of a regional X-band weather radar network. Atmosphere 2017, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Cifelli, R.; Chandrasekar, V.; Chen, H.; Johnson, L.E. High resolution radar quantitative precipitation estimation in the San Francisco Bay Area: Rainfall monitoring for the urban environment. J. Meteorol. Soc. Jpn. 2018, 96, 141–155. [Google Scholar] [CrossRef] [Green Version]
- Shakti, P.C.; Nakatani, T.; Misumi, R. The Role of the Spatial Distribution of Radar Rainfall on Hydrological Modeling for an Urbanized River Basin in Japan. Water 2019, 11, 1703. [Google Scholar]
- Bruno, G.; Pignone, F.; Silvestro, F.; Gabellani, S.; Schiavi, F.; Rebora, N.; Falzacappa, M. Performing hydrological monitoring at a national scale by exploiting rain-gauge and radar networks: The Italian case. Atmosphere 2021, 12, 771. [Google Scholar] [CrossRef]
- Capozzi, V.; Picciotti, E.; Mazzarella, V.; Marzano, F.S.; Budillon, G. Fuzzy-logic detection and probability of hail exploiting short-range X-band weather radar. Atmos. Res. 2018, 201, 17–33. [Google Scholar] [CrossRef]
- Capozzi, V.; Picciotti, E.; Budillon, G.; Marzano, F.S. X-Band Weather Radar Monitoring of Precipitation Fields in Naples Urban Areas: Data Quality, Comparison and Analysis. In Proceedings of the ERAD 2014-8th European Conference on Radar in Meteorology and Hydrology, Garmisch-Partenkirchen, Germany, 1–5 September 2014. [Google Scholar]
- Vulpiani, G.; Montopoli, M.; Passeri, L.; Gioia, A.; Giordano, P.; Marzano, F. On the Use of Dual-Polarized C-Band Radar for Operational Rainfall Retrieval in Mountainous Areas. J. Appl. Meteorol. Climatol. 2012, 51, 405–425. [Google Scholar] [CrossRef]
- Capozzi, V.; Annella, C.; Montopoli, M.; Adirosi, E.; Fusco, G.; Budillon, G. Influence of Wind-Induced Effects on Laser Disdrometer Measurements: Analysis and Compensation Strategies. Remote Sens. 2021, 13, 3028. [Google Scholar] [CrossRef]
- Shepard, D. A Two-Dimensional Interpolation Function for Irregularly-Spaced Data. In Proceedings of the 1968 23rd ACM National Conference, 1 January 1968; pp. 517–524. [Google Scholar]
- Zhang, J.; Howard, K.; Xia, W.; Langston, C.; Wang, S.; Qin, Y. Three-Dimensional Highresolution National Radar Mosaic. In Proceedings of the 11th Conference on Aviation, Range, and Aerospace, Meteorology, Hyannis, MA, USA, 4–8 October 2004. [Google Scholar]
- Fornasiero, A.; Alberoni, P.P.; Amorati, R.; Marsigli, C. Improving the Radar Data Mosaicking Procedure by Means of a Quality Descriptor. In Proceedings of the 4th European Conference on Radar in Meteorology and Hydrology, Barcelona, Spain, 18–22 September 2006; pp. 378–381. [Google Scholar]
- Einfalt, T.; Lobbrecht, A.; Leung, K.; Lempio, G. Preparation and evaluation of a Dutch-German radar composite to enhance precipitation information in border areas. J. Hydrol. Eng. 2013, 18, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, S.; Di Fabio, S.; Lidori, R.; Rossi, F.L.; Marzano, F.S.; Picciotti, E. Mosaicking Weather Radar Retrievals from an Operational Heterogeneous Network at C and X Band for Precipitation Monitoring in Italian Central Apennines. Remote Sens. 2022, 14, 248. [Google Scholar] [CrossRef]
- Aydin, K.; Seliga, T.A.; Balaji, V. Remote sensing of hail with a dual-linear polarization radar. J. Clim. Appl. Meteor. 1986, 25, 1475–1484. [Google Scholar] [CrossRef] [Green Version]
- Straka, J.M.; Zrnić, D.S.; Ryzhkov, A.V. Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteorol. 2000, 39, 1341–1372. [Google Scholar] [CrossRef]
- Marzano, F.S.; Scaranari, D.; Vulpiani, G. Supervised fuzzy-logic classification of hydrometeors using C-band weather radars. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3784–3799. [Google Scholar] [CrossRef]
- Picciotti, E.; Marzano, F.S.; Anagnostou, E.N.; Kalogiros, J.; Fessas, Y.; Volpi, A.; Stella, J. Coupling X-band dual-polarized mini-radars and hydro-meteorological forecast models: The HYDRORAD project. Nat. Hazards Earth Syst. Sci. 2013, 13, 1229–1241. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekar, V.; Keränen, R.; Lim, S.; Moisseev, D. Recent advances in classification of observations from dual polarization weather radars. Atmos. Res. 2013, 119, 97–111. [Google Scholar] [CrossRef]
- Bechini, R.; Chandrasekar, V. A semisupervised robust hydrometeor classification method for dual-polarization radar applications. J. Atmos. Ocean. Technol. 2015, 32, 22–47. [Google Scholar] [CrossRef]
- Vulpiani, G.; Baldini, L.; Roberto, N. Characterization of Mediterranean hail-bearing storms using an operational polarimetric X-band radar. Atmos. Meas. Tech. 2015, 8, 4681–4698. [Google Scholar] [CrossRef] [Green Version]
- Holleman, I. Hail Detection Using Single-Polarization Radar. Ministerie van Verkeer en Waterstaat, Koninklijk Nederlands Meteorologisch Instituut. 2001. Available online: https://www.knmi.nl/kennis-en-datacentrum/publicatie/hail-detection-using-single-polarization-radar (accessed on 15 January 2022).
- Skripniková, K.; Řezáčová, D. Radar-based hail detection. Atmos. Res. 2014, 144, 175–185. [Google Scholar] [CrossRef]
- Geotis, S.G. Some radar measurements of hailstorms. J. Appl. Meteorol. 1963, 2, 270–275. [Google Scholar] [CrossRef] [Green Version]
- Waldvogel, A.; Federer, B.; Grimm, P. Criteria for the detection of hail cells. J. Appl. Meteorol. Climatol. 1979, 18, 1521–1525. [Google Scholar] [CrossRef] [Green Version]
- Auer, A.H. Hail recognition through the combined use of radar reflectivity and cloud-top temperatures. Mon. Weather Rev. 1994, 122, 2218–2221. [Google Scholar] [CrossRef] [Green Version]
- Witt, A.; Eilts, M.D.; Stumpf, G.J.; Johnson, J.T.; Mitchell, E.D.; Thomas, K.W. An enhanced hail detection algorithm for the WSR-88D. Weather Forecast 1998, 13, 286–303. [Google Scholar] [CrossRef] [Green Version]
- Kunz, M.; Kugel, P.I. Detection of hail signatures from single-polarization C-band radar reflectivity. Atmos. Res. 2015, 153, 565–577. [Google Scholar] [CrossRef]
- Puskeiler, M.; Kunz, M.; Schmidberger, M. Hail statistics for Germany derived from single-polarization radar data. Atmos. Res. 2016, 178, 459–470. [Google Scholar] [CrossRef]
- Amburn, S.A.; Wolf, P.L. VIL density as a hail indicator. Weather Forecast. 1997, 12, 473–478. [Google Scholar] [CrossRef] [Green Version]
- Greene, D.R.; Clark, R.A. Vertically Integrated Liquid Water—A New Analysis Tool. Mon. Weather Rev. 1972, 100, 548–552. [Google Scholar] [CrossRef] [Green Version]
- Brimelow, J.C.; Reuter, G.W.; Bellon, A.; Hudak, D. A radar-based methodology for preparing a severe thunderstorm climatology in central Alberta. Atmos. Ocean 2004, 42, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Delobbe, L.; Holleman, I. Uncertainties in radar echo top heights used for hail detection. Meterol. Appl. 2006, 13, 361–374. [Google Scholar] [CrossRef]
- Liu, H.; Chandrasekar, V. Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Ocean. Technol. 2000, 17, 140–164. [Google Scholar] [CrossRef]
- Lim, S.; Chandrasekar, V.; Bringi, V.N. Hydrometeor classification system using dual-polarization radar measurements: Model improvements and in situ verification. IEEE Trans. Geosci. Remote Sens. 2005, 43, 792–801. [Google Scholar] [CrossRef]
- Marzano, F.; Scaranari, D.; Montopoli, M.; Vulpiani, G. Supervised classification and estimation of hydrometeors from C-band dual-polarized radars: A Bayesian approach. IEEE Trans. Geosci. Remote Sens. 2008, 46, 85–98. [Google Scholar] [CrossRef]
- Olsen, A. Snow or Rain?—A Matter of Wet-Bulb Temperature. Master’s Thesis, Uppsala University, Uppsala, Sweden, 2003. [Google Scholar]
- Cazzuli, O.; Cremonini, R.; Grimaldelli, R.; Craveri, L. Monitoring Snowfall Events in Lombardia, Italy, by Specialized Observers Network and Advanced Remote Sensing Systems. In Proceedings of the International Snow Science Workshop Grenoble, Chamonix Mont-Blanc, France, 7–11 October 2013. [Google Scholar]
- Cremonini, R.; Bechini, R.; Campana, V.; Tomassone, L. Combined Use of Weather Radar and Limited Area Model for Wintertime Precipitation Type Discrimination. In Precipitation: Advances in Measurement, Estimation and Prediction; Michaelides, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Baumgardt, D. Wintertime Cloud Microphysics Review; NWS Central Region: La Crosse, WI, USA, 1999. [Google Scholar]
- Capozzi, V.; Montopoli, M.; Bracci, A.; Adirosi, E.; Baldini, L.; Vulpiani, G.; Budillon, G. Retrieval of snow precipitation rate from polarimetric X-band radar measurements in Southern Italy Apennine mountains. Atmos. Res. 2020, 236, 104796. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Zrnic, D.S. Polarimetric method for ice water content determination. J. Appl. Meteor. 1998, 37, 125–134. [Google Scholar] [CrossRef]
- Bechini, R.; Baldini, L.; Chandrasekar, V. Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies. J. Appl. Meteor. Climatol. 2013, 52, 1147–1169. [Google Scholar] [CrossRef]
- Bukovčić, P.; Ryzhkov, A.; Zrnić, D.; Zhang, G. Polarimetric radar relations for quantification of snow based on disdrometer data. J. Appl. Meteor. Climatol. 2018, 57, 103–120. [Google Scholar] [CrossRef]
- Allabakash, S.; Lim, S.; Jang, B.J. Melting layer detection and characterization based on range height indicator-quasi vertical profiles. Remote Sens. 2019, 11, 2848. [Google Scholar] [CrossRef] [Green Version]
- Bracci, A.; Baldini, L.; Roberto, N.; Adirosi, E.; Montopoli, M.; Scarchilli, C.; Grigioni, P.; Ciardini, V.; Levizzani, V.; Porcù, F. Quantitative Precipitation Estimation over Antarctica Using Different Ze-SR Relationships Based on Snowfall Classification Combining Ground Observations. Remote Sens. 2022, 14, 82. [Google Scholar] [CrossRef]
- Boucher, R.J.; Wieler, J.G. Radar determination of snowfall rate and accumulation. J. Clim. Appl. Meteor. 1985, 24, 68–73. [Google Scholar] [CrossRef] [Green Version]
- Fujiyoshi, Y.; Endoh, T.; Yamada, T.; Tsuboki, K.; Tachibana, Y.; Wakahama, G. Determination of a Z–R relationship for snowfall using a radar and sensitive snow gauges. J. Appl. Meteor. 1990, 29, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Matrosov, S.Y.; Campbell, C.; Kingsmill, D.; Sukovich, E. Assessing snowfall rates from X-band Radar reflectivity measurements. J. Atmos. Ocean. Technol. 2009, 26, 2324–2339. [Google Scholar] [CrossRef] [Green Version]
- Falconi, M.T.; von Lerber, A.; Ori, D.; Marzano, F.S.; Moisseev, D. Snowfall retrieval at X, Ka and W bands: Consistency of backscattering and microphysical properties using BAECC ground-based measurements. Atmos. Meas. Tech. 2018, 11, 3059–3079. [Google Scholar] [CrossRef] [Green Version]
- Zawadzki, I.; Szyrmer, W.; Bell, C.; Fabry, F. Modeling of the melting layer. part III: The density effect. J. Atmos. Sci. 2005, 62, 3705–3723. [Google Scholar] [CrossRef]
- Brandes, E.A.; Ikeda, K.; Zhang, G.; Schönhuber, M.; Rasmussen, R.M. A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteorol. Climatol. 2007, 46, 634–650. [Google Scholar] [CrossRef]
- Eumetrain. Available online: http://eumetrain.org/eport.html (accessed on 22 January 2022).
- Prima Tivvù. Available online: http://www.primativvu.it/chicchi-di-grandine-come-palle-da-ping-pong-si-contano-i-danni-nelle-campagne-tra-irpinia-e-sannio/ (accessed on 10 January 2022).
- Irpina News. Available online: https://www.irpinianews.it/grandinate-e-maltempo-anche-montemiletto-chiede-lo-stato-di-calamita-naturale/ (accessed on 10 January 2022).
- Koistinen, J.; Michelson, D.B.; Hohti, H.; Peura, M. Operational Measurement of Precipitation in Cold Climates. In Weather Radar. Physics of Earth and Space Environments; Meischner, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Yuan, H.; Zeng, Q.; He, J. Weather Radar Image Superresolution Using a Nonlocal Residual Network. J. Math. 2021, 2021, 4483907. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Operating frequency | 9.4 GHz |
Peak power | 10 kW |
Pulse repetition frequency | 800 Hz |
Sensitivity | 10 dBZ @25 km |
Antenna type | Pencil beam (diameter 70 cm) |
Antenna gain | 35/40 dB |
Antenna speed | 20°/s |
Maximum available range | 108 km |
Azimut resolution | 1° |
Range resolution | 450 m |
Station Name | Latitude | Longitude | Height asl |
---|---|---|---|
Pagani | 40.743426°N | 14.615167°E | 35 |
Battipaglia | 40.600588°N | 14.946136°E | 36 |
Salerno | 40.675131°N | 14.794200°E | 37 |
Nola | 40.924629°N | 14.529256°E | 42 |
Benevento | 41.131285°N | 14.774721°E | 153 |
Mercato San Severino | 40.786924°N | 14.761146°E | 154 |
Teano | 41.250783°N | 14.069845°E | 165 |
Campagna | 40.666176°N | 15.106880°E | 285 |
Avellino | 40.913988°N | 14.783368°E | 375 |
Fontanarosa | 41.010709°N | 15.020945°E | 508 |
Mercogliano | 40.919561°N | 14.737605°E | 512 |
Monteforte Irpino | 40.898491°N | 14.709000°E | 577 |
Casalbore | 41.233134°N | 15.006235°E | 590 |
Roccamonfina | 41.276972°N | 13.968222°E | 590 |
Ottati | 40.465745°N | 15.311179°E | 660 |
San Marco dei Cavoti | 41.309098°N | 14.879130°E | 685 |
Frassineto | 40.760859°N | 14.833564°E | 686 |
Ospedaletto d’Alpinolo | 40.939655°N | 14.745607°E | 700 |
Letino | 41.453916°N | 14.253027°E | 1050 |
Montevergine | 40.936502°N | 14.729150°E | 1280 |
Monte Partenio | 40.938833°N | 14.725243°E | 1515 |
Method | Pros | Cons |
---|---|---|
CAPPI method (Geotis, 1963) | This method is very simple to implement and it is successful in cases of severe hailstorms. | It is not able to distinguish between heavy rain precipitation and relatively light hail precipitation. |
Maximum-reflectivity method (Holleman, 2001) | It detects high reflectivity values present at higher levels than the CAPPI level. | No improvement with respect to the straightforward CAPPI method. |
Method of Auer (Auer, 1994) | The cloud top temperature provides additional information on the vertical extension of the thunderstorm cells. | It requires more external data which complicate the operational implementation. |
Difference of height method (DOH) (Waldvogel et al., 1979) | It has a very simple implementation although useful information about the vertical temperature profile is added. | It is more suitable for the identification of summer hail events than winter ones due to its seasonality dependence. Radar beam size and the finite number of elevation scans may determine errors in the height assigned to the measured reflectivity values. |
Severe Hail Index method (SHI) (Witt et al., 1998) | It detects large hail (diameter > 13 mm) very well. | It requires more external data. |
Vertically Integrated Liquid water (VIL) (Greene and Clark, 1972) | It is useful for both severe storm and hydrological applications. | It is strictly dependent on air masses and it is unable to distinguish tall storms with relatively low reflectivity from short storms with high reflectivity. |
Vertically Integrated Liquid water density (VLD) (Amburn and Wolf, 1997) | It normalizes the VIL using the height/depth (echo top) of a thunderstorm and it eliminates the air mass dependency of the VIL. Moreover, it is less sensitive than the DOH method to the thunderstorm vertical extension. | It only indicates hail aloft and it may cause inconsistencies between radar estimates and ground truth. |
Hail fuzzy-logic oriented detection (HFOD) (Capozzi et al., 2018) | It is an optimal combination of DOH and VLD techniques, based on the powerful and flexible framework of fuzzy logic | It requires external temperature data and, therefore, its use in an operative framework may be not straightforward. |
Precipitation Type Category | Criterion |
---|---|
Rain | H < H2°C |
Mixed | H2°C ≤ H ≤ H1°C |
Snow | H ≥ H0°C − 100 |
Radar Estimator | j-Index | Label | aj | bj |
---|---|---|---|---|
Boucher and Wieler (1985) | 1 | B&W1-85 | 0.0480 | 0.6061 |
2 | B&W2-85 | 0.0380 | 0.6061 | |
Fujiyoshi et al. (1990) | 3 | FUJI1-90 | 0.0039 | 0.9174 |
4 | FUJI2-90 | 7.6274 × 10−4 | 1.1364 | |
Matrosov et al. (2009) | 5 | MATR1-09 | 0.0731 | 0.7692 |
6 | MATR2-09 | 0.0412 | 0.6452 | |
Falconi et al. (2018) | 7 | FALC(LR)-18 | 0.0413 | 0.7752 |
8 | FALC(MR)-18 | 0.0205 | 1.0417 | |
9 | FALC(HR)-18 | 0.0078 | 1.2500 |
B&W1-85 | B&W2-85 | FUJI1-90 | FUJI2-90 | MATR1-09 | MATR2-09 | FALC (LR)-18 | FALC (MR)-18 | FALC(HR)-18 | |
---|---|---|---|---|---|---|---|---|---|
CC | 0.68 | 0.68 | 0.66 | 0.63 | 0.67 | 0.68 | 0.67 | 0.64 | 0.62 |
EAVG | −3.01 | −3.50 | −3.63 | −3.62 | 5.74 | −2.72 | 1.18 | 17.34 | 37.09 |
ESTD | 5.48 | 5.53 | 5.54 | 5.60 | 7.10 | 5.45 | 5.64 | 24.24 | 60.68 |
RMSE | 6.80 | 6.89 | 7.00 | 7.12 | 9.31 | 6.76 | 6.84 | 29.78 | 70.79 |
NSE | 2.10 | 1.94 | 2.16 | 2.39 | 7.00 | 2.24 | 4.28 | 19.52 | 43.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capozzi, V.; Mazzarella, V.; Vivo, C.D.; Annella, C.; Greco, A.; Fusco, G.; Budillon, G. A Network of X-Band Meteorological Radars to Support the Motorway System (Campania Region Meteorological Radar Network Project). Remote Sens. 2022, 14, 2221. https://doi.org/10.3390/rs14092221
Capozzi V, Mazzarella V, Vivo CD, Annella C, Greco A, Fusco G, Budillon G. A Network of X-Band Meteorological Radars to Support the Motorway System (Campania Region Meteorological Radar Network Project). Remote Sensing. 2022; 14(9):2221. https://doi.org/10.3390/rs14092221
Chicago/Turabian StyleCapozzi, Vincenzo, Vincenzo Mazzarella, Carmela De Vivo, Clizia Annella, Alberto Greco, Giannetta Fusco, and Giorgio Budillon. 2022. "A Network of X-Band Meteorological Radars to Support the Motorway System (Campania Region Meteorological Radar Network Project)" Remote Sensing 14, no. 9: 2221. https://doi.org/10.3390/rs14092221
APA StyleCapozzi, V., Mazzarella, V., Vivo, C. D., Annella, C., Greco, A., Fusco, G., & Budillon, G. (2022). A Network of X-Band Meteorological Radars to Support the Motorway System (Campania Region Meteorological Radar Network Project). Remote Sensing, 14(9), 2221. https://doi.org/10.3390/rs14092221