Driver of the Positive Ionospheric Storm over the South American Sector during 4 November 2021 Geomagnetic Storm
Abstract
:1. Introduction
2. Data and Methodology
3. Results
3.1. Geomagnetic Conditions
3.2. Electron Density Enhancement
3.3. O/N2 Variation
3.4. NmF2 and HmF2 Variations
3.5. CPCP
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Astafyeva, E.; Yasyukevich, Y.; Maksikov, A.; Zhivetiev, I. Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems. Space Weather 2014, 12, 508–525. [Google Scholar] [CrossRef]
- Basu, S.; Basu, S.; Makela, J.; MacKenzie, E.; Doherty, P.; Wright, J.; Rich, F.; Keskinen, M.; Sheehan, R.; Coster, A. Large magnetic storm-induced nighttime ionospheric flows at midlatitudes and their impacts on GPS-based navigation systems. J. Geophys. Res. Space Phys. 2008, 113, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, A.; Basu, S.; Groves, K.; Valladares, C.; Sheehan, R. Effect of magnetic activity on the dynamics of equatorial F region irregularities. J. Geophys. Res. Space Phys. 2002, 107, 201–207. [Google Scholar] [CrossRef]
- Jakowski, N.; Wilken, V.; Schlueter, S.; Stankov, S.; Heise, S. Ionospheric space weather effects monitored by simultaneous ground and space based GNSS signals. J. Atmos. Sol.-Terr. Phys. 2005, 67, 1074–1084. [Google Scholar] [CrossRef]
- Kintner, P.M.; Ledvina, B.M.; De Paula, E. GPS and ionospheric scintillations. Space Weather 2007, 5, 1–26. [Google Scholar] [CrossRef]
- Barclay, L. Propagation of Radiowaves; Iet: London, UK, 2003; Volume 502. [Google Scholar]
- Fagundes, P.R.; Cardoso, F.A.; Fejer, B.G.; Venkatesh, K.; Ribeiro, B.A.G.; Pillat, V.G. Positive and negative GPS-TEC ionospheric storm effects during the extreme space weather event of March 2015 over the Brazilian sector. J. Geophys. Res. Space Phys. 2016, 121, 5613–5625. [Google Scholar] [CrossRef] [Green Version]
- Horvath, I.; Lovell, B.C. Positive and negative ionospheric storms occurring during the 15 May 2005 geomagnetic superstorm. J. Geophys. Res. Space Phys. 2015, 120, 7822–7837. [Google Scholar] [CrossRef]
- Basu, S.; Basu, S.; MacKenzie, E.; Bridgwood, C.; Valladares, C.; Groves, K.; Carrano, C. Specification of the occurrence of equatorial ionospheric scintillations during the main phase of large magnetic storms within solar cycle 23. Radio Sci. 2010, 45, 1–15. [Google Scholar] [CrossRef]
- Davies, K. Ionospheric Radio Propagation; US Department of Commerce, National Bureau of Standards: Washington, DC, USA, 1965; Volume 80.
- Bojilova, R.; Mukhtarov, P. Response of the electron density profiles to geomagnetic disturbances in January 2005. Stud. Geophys. Et Geod. 2019, 63, 436–454. [Google Scholar] [CrossRef]
- Prölss, G.W. Common origin of positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes. J. Geophys. Res. Space Phys. 1993, 98, 5981–5991. [Google Scholar] [CrossRef]
- Rajesh, P.K.; Liu, J.Y.; Balan, N.; Lin, C.H.; Sun, Y.Y.; Pulinets, S.A. Morphology of midlatitude electron density enhancement using total electron content measurements. J. Geophys. Res. Space Phys. 2016, 121, 1503–1517. [Google Scholar] [CrossRef] [Green Version]
- Tsagouri, I.; Belehaki, A.; Moraitis, G.; Mavromichalaki, H. Positive and negative ionospheric disturbances at middle latitudes during geomagnetic storms. Geophys. Res. Lett. 2000, 27, 3579–3582. [Google Scholar] [CrossRef] [Green Version]
- Vijaya Lekshmi, D.; Balan, N.; Tulasi Ram, S.; Liu, J.Y. Statistics of geomagnetic storms and ionospheric storms at low and mid latitudes in two solar cycles. J. Geophys. Res. Space Phys. 2011, 116, 1–13. [Google Scholar] [CrossRef]
- Astafyeva, E.; Zakharenkova, I.; Hozumi, K.; Alken, P.; Coisson, P.; Hairston, M.R.; Coley, W.R. Study of the Equatorial and Low-Latitude Electrodynamic and Ionospheric Disturbances during the 22–23 June 2015 Geomagnetic Storm Using Ground-Based and Spaceborne Techniques. J. Geophys. Res. Space Phys. 2018, 123, 2424–2440. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-S.; Sazykin, S.; Chau, J.L.; Maruyama, N.; Kelley, M.C. Penetration electric fields: Efficiency and characteristic time scale. J. Atmos. Sol.-Terr. Phys. 2007, 69, 1135–1146. [Google Scholar] [CrossRef]
- Kelley, M.; Fejer, B.G.; Gonzales, C. An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field. Geophys. Res. Lett. 1979, 6, 301–304. [Google Scholar] [CrossRef]
- Kikuchi, T.; Hashimoto, K.K. Transmission of the electric fields to the low latitude ionosphere in the magnetosphere-ionosphere current circuit. Geosci. Lett. 2016, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, T.; Hashimoto, K.K.; Nozaki, K. Penetration of magnetospheric electric fields to the equator during a geomagnetic storm. J. Geophys. Res. Space Phys. 2008, 113, 1–10. [Google Scholar] [CrossRef]
- Huang, C.-S.; Foster, J.C.; Kelley, M.C. Long-duration penetration of the interplanetary electric field to the low-latitude ionosphere during the main phase of magnetic storms. J. Geophys. Res. 2005, 110, 309–320. [Google Scholar] [CrossRef]
- Wang, W.; Lei, J.; Burns, A.G.; Solomon, S.C.; Wiltberger, M.; Xu, J.; Zhang, Y.; Paxton, L.; Coster, A. Ionospheric response to the initial phase of geomagnetic storms: Common features. J. Geophys. Res. Space Phys. 2010, 115, SA13B-03. [Google Scholar] [CrossRef]
- Kalita, B.R.; Hazarika, R.; Kakoti, G.; Bhuyan, P.K.; Chakrabarty, D.; Seemala, G.K.; Wang, K.; Sharma, S.; Yokoyama, T.; Supnithi, P.; et al. Conjugate hemisphere ionospheric response to the St. Patrick’s Day storms of 2013 and 2015 in the 100°E longitude sector. J. Geophys. Res. Space Phys. 2016, 121, 11364–11390. [Google Scholar] [CrossRef]
- Lu, G.; Goncharenko, L.; Nicolls, M.J.; Maute, A.; Coster, A.; Paxton, L.J. Ionospheric and thermospheric variations associated with prompt penetration electric fields. J. Geophys. Res. Space Phys. 2012, 117, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, K.; Tulasi Ram, S.; Fagundes, P.R.; Seemala, G.K.; Batista, I.S. Electrodynamic disturbances in the Brazilian equatorial and low-latitude ionosphere on St. Patrick’s Day storm of 17 March 2015. J. Geophys. Res. Space Phys. 2017, 122, 4553–4570. [Google Scholar] [CrossRef]
- Balan, N.; Shiokawa, K.; Otsuka, Y.; Kikuchi, T.; Vijaya Lekshmi, D.; Kawamura, S.; Yamamoto, M.; Bailey, G.J. A physical mechanism of positive ionospheric storms at low latitudes and midlatitudes. J. Geophys. Res. Space Phys. 2010, 115, 304–316. [Google Scholar] [CrossRef]
- Lu, G.; Goncharenko, L.P.; Richmond, A.D.; Roble, R.G.; Aponte, N. A dayside ionospheric positive storm phase driven by neutral winds. J. Geophys. Res. Space Phys. 2008, 113, 1–7. [Google Scholar] [CrossRef]
- Goncharenko, L.; Foster, J.; Coster, A.; Huang, C.; Aponte, N.; Paxton, L. Observations of a positive storm phase on 10 September 2005. J. Atmos. Sol.-Terr. Phys. 2007, 69, 1253–1272. [Google Scholar] [CrossRef]
- Burns, A.G.; Killeen, T.L.; Carignan, G.R.; Roble, R.G. Large enhancements in the O/N2 ratio in the evening sector of the winter hemisphere during geomagnetic storms. J. Geophys. Res. 1995, 100, 14661–14672. [Google Scholar] [CrossRef] [Green Version]
- Younas, W.; Khan, M.; Amory-Mazaudier, C.; Amaechi, P.O.; Fleury, R. Middle and low latitudes hemispheric asymmetries in ∑O/N2 and TEC during intense magnetic storms of solar cycle 24. Adv. Space Res. 2022, 69, 220–235. [Google Scholar] [CrossRef]
- Cai, X.; Burns, A.G.; Wang, W.; Qian, L.; Liu, J.; Solomon, S.C.; Eastes, R.W.; Daniell, R.E.; Martinis, C.R.; McClintock, W.E.; et al. Observation of Postsunset OI 135.6 nm Radiance Enhancement Over South America by the GOLD Mission. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028108. [Google Scholar] [CrossRef]
- Cai, X.; Burns, A.G.; Wang, W.; Qian, L.; Solomon, S.C.; Eastes, R.W.; McClintock, W.E.; Laskar, F.I. Investigation of a Neutral “Tongue” Observed by GOLD during the Geomagnetic Storm on 11 May 2019. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028817. [Google Scholar] [CrossRef]
- Cai, X.; Wang, W.; Burns, A.; Qian, L.; Eastes, R.W. The Effects of IMF by on the Middle Thermosphere during a Geomagnetically “Quiet” Period at Solar Minimum. J. Geophys. Res. Space Phys. 2022, 127, e2021JA029816. [Google Scholar] [CrossRef]
- Greenwald, R.; Baker, K.; Dudeney, J.; Pinnock, M.; Jones, T.; Thomas, E.; Villain, J.-P.; Cerisier, J.-C.; Senior, C.; Hanuise, C. Darn/superdarn. Space Sci. Rev. 1995, 71, 761–796. [Google Scholar] [CrossRef]
- Nishitani, N.; Ruohoniemi, J.M.; Lester, M.; Baker, J.B.H.; Koustov, A.V.; Shepherd, S.G.; Chisham, G.; Hori, T.; Thomas, E.G.; Makarevich, R.A. Review of the accomplishments of mid-latitude Super Dual Auroral Radar Network (SuperDARN) HF radars. Prog. Earth Planet. Sci. 2019, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Immel, T.J.; England, S.L.; Mende, S.B.; Heelis, R.A.; Englert, C.R.; Edelstein, J.; Frey, H.U.; Korpela, E.J.; Taylor, E.R.; Craig, W.W.; et al. The Ionospheric Connection Explorer Mission: Mission Goals and Design. Space Sci. Rev. 2018, 214, 13. [Google Scholar] [CrossRef] [PubMed]
- Heelis, R.A.; Stoneback, R.A.; Perdue, M.D.; Depew, M.D.; Morgan, W.A.; Mankey, M.W.; Lippincott, C.R.; Harmon, L.L.; Holt, B.J. Ion Velocity Measurements for the Ionospheric Connections Explorer. Space Sci. Rev. 2017, 212, 615–629. [Google Scholar] [CrossRef] [PubMed]
- Vankadara, R.K.; Panda, S.K.; Amory-Mazaudier, C.; Fleury, R.; Devanaboyina, V.R.; Pant, T.K.; Jamjareegulgarn, P.; Haq, M.A.; Okoh, D.; Seemala, G.K. Signatures of Equatorial Plasma Bubbles and Ionospheric Scintillations from Magnetometer and GNSS Observations in the Indian Longitudes during the Space Weather Events of Early September 2017. Remote Sens. 2022, 14, 652. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.J.; Codrescu, M.V.; Moffett, R.J.; Quegan, S. Response of the thermosphere and ionosphere to geomagnetic storms. J. Geophys. Res. 1994, 99, 3893–3914. [Google Scholar] [CrossRef]
- Liu, J.; Wang, W.; Burns, A.; Yue, X.; Zhang, S.; Zhang, Y.; Huang, C. Profiles of ionospheric storm-enhanced density during the 17 March 2015 great storm. J. Geophys. Res. Space Phys. 2016, 121, 727–744. [Google Scholar] [CrossRef]
- Wan, X.; Zhong, J.; Zhang, S.R.; Xiong, C.; Wang, H.; Liu, Y.; Huang, F.; Li, Q.; Kuai, J.; Chen, J.; et al. Disturbance Neutral Winds Effects on the Ionospheric Strip-Like Bulge at Lower-Middle Latitudes. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030541. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, C.; Tang, S.; Peng, W.; Cheng, X.; Zheng, D. Driver of the Positive Ionospheric Storm over the South American Sector during 4 November 2021 Geomagnetic Storm. Remote Sens. 2023, 15, 111. https://doi.org/10.3390/rs15010111
Zhai C, Tang S, Peng W, Cheng X, Zheng D. Driver of the Positive Ionospheric Storm over the South American Sector during 4 November 2021 Geomagnetic Storm. Remote Sensing. 2023; 15(1):111. https://doi.org/10.3390/rs15010111
Chicago/Turabian StyleZhai, Changzhi, Shenquan Tang, Wenjie Peng, Xiaoyun Cheng, and Dunyong Zheng. 2023. "Driver of the Positive Ionospheric Storm over the South American Sector during 4 November 2021 Geomagnetic Storm" Remote Sensing 15, no. 1: 111. https://doi.org/10.3390/rs15010111
APA StyleZhai, C., Tang, S., Peng, W., Cheng, X., & Zheng, D. (2023). Driver of the Positive Ionospheric Storm over the South American Sector during 4 November 2021 Geomagnetic Storm. Remote Sensing, 15(1), 111. https://doi.org/10.3390/rs15010111