Dynamic Monitoring of Debris-Covered Glacier Surface Velocity and Ice Thickness of Mt.Tomur, Tian Shan, China
Abstract
:1. Introduction
2. Study Region
3. Data and Methods
3.1. In-Situ Measurements
3.1.1. Glacier Surface Velocity Measurements
3.1.2. Glacier Ice-Thickness Measurements
3.2. Remotely Sensed Displacement Measurements
3.2.1. Landsat Data
3.2.2. Extraction Glacier Surface Velocity
3.2.3. Glacier Thickness Estimation
4. Results
4.1. Spatial and Temporal Characteristics of Glacier Movement Velocities
4.2. Ice Thickness
4.3. Validation
5. Discussion
5.1. Effect of Glacier Surface Velocity
5.1.1. Effects of Aspect and Slope on Glacier Surface Velocity
5.1.2. Effects of Debris Cover on Glacier Surface Velocity
5.2. Thickness Evaluation Based on Glacier Velocity
5.3. Effect of the Surge-Type Glacier on Glacier Flow Velocity and Surface Elevation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fansheng, H.; Taibao, Y.; Qin, J.; Congqiang, W.; Aiwen, X. Relationship between the glacier and climate change in the Altun Mountain in recent four decades. Arid Land Geogr. 2017, 40, 581–588. [Google Scholar]
- Sun, M.; Liu, S.; Yao, X.; Guo, W.; Xu, J. Glacier changes in the Qinlian Mountains in the past half century: Based on the revised First and Second Chinese Glacier Inventory. Acta Geogr. Sin. 2015, 70, 1402–1414. [Google Scholar]
- Xing, W.; Li, Z.Q.; Zhang, H.; Zhang, M.; Liang, P.; Mu, J. Spatial-temporal variation of glacier resources in Chinese Tianshan Mountains since 1959. Acta Geogr. Sin. 2017, 72, 1594–1605. [Google Scholar]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Ma, L.; Wu, J.; Abuduwaili, J. Variation in aeolian environments recorded by the particle size distribution of lacustrine sediments in Ebinur Lake, northwest China. SpringerPlus 2016, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Wu, J.; Liu, W.; Abuduwaili, J. Distinguishing between anthropogenic and climatic impacts on lake size: A modeling approach using data from Ebinur Lake in arid northwest China. J. Limnol. 2014, 73, 350–357. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Yu, Z.; Zeng, H.A.; Wang, N. Possible solar forcing of 400-year wet–dry climate cycles in northwestern China. Clim. Chang. 2009, 96, 473–482. [Google Scholar] [CrossRef]
- Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers, 4th ed.; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Dehecq, A.; Gourmelen, N.; Gardner, A.S.; Brun, F.; Goldberg, D.; Nienow, P.W.; Berthier, E.; Vincent, C.; Wagnon, P.; Trouvé, E. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nat. Geosci. 2019, 12, 22–27. [Google Scholar] [CrossRef]
- Paterson, W.S.B. The Physics of Glaciers; Science Press: Beijing, China, 1987. [Google Scholar]
- Shi, Y.; Huang, M.; Yao, T. Glaciers and Their Environments in China; Science Press: Beijing, China, 2000. [Google Scholar]
- Zhou, Z.M.; Li, Z.Q.; Li, H.L.; Jing, Z.F. The flow velocity features and dynamic simulation of the Glacier No. 1 at the headwaters of Urumqi River, Tianshan Mountains. J. Glaciol. Geocryol. 2009, 31, 42–69. [Google Scholar]
- Li, W.; Cardellach, E.; Fabra, E.; Ribó, S.; Rius, A. Measuring Greenland ice sheet melt using spaceborne GNSS reflectometry from TechDemoSat-1. Geophys. Res. Lett. 2020, 47, e2019GL086477. [Google Scholar] [CrossRef]
- Ghiasi, Y.; Duguay, C.R.; Murfitt, J.; van der Sanden, J.J.; Thompson, A.; Drouin, H.; Prévost, C. Application of GNSS interferometric reflectometry for the estimation of lake ice thickness. Remote Sens. 2020, 12, 2721. [Google Scholar] [CrossRef]
- Rius, A.; Cardellach, E.; Fabra, F.; Li, W.; Ribó, S.; HernándezPajares, M. Feasibility of GNSS-R ice sheet altimetry in Greenland using TDS-1. Remote Sens. 2017, 9, 742. [Google Scholar] [CrossRef] [Green Version]
- Ghiasi, S.Y. Application of GNSS Interferometric Reflectometry for Lake Ice Studies. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2020. [Google Scholar]
- Guan, W.; Cao, B.; Pan, B. Research of glacierflowvelocity: Currentsituationandprospects. J. Glaciol. Geocryol. 2020, 42, 1101–1114. [Google Scholar]
- Berthier, E.; Vadon, H.; Baratoux, D.; Arnaud, Y.; Vincent, C.; Feigl, K.L.; Remy, F.; Legresy, B. Surface motion of mountain glaciers derived from satellite optical imagery. Remote Sens. Environ. 2005, 95, 14–28. [Google Scholar] [CrossRef]
- Ruiz, L.; Berthier, E.; Masiokas, M.; Pitte, P.; Villalba, R. First surface velocity maps for glaciers of Monte Tronador, North Patagonian Andes, derived from sequential Pléiades satellite images. J. Glaciol. 2015, 61, 908–922. [Google Scholar] [CrossRef]
- Wu, K.; Liu, S.; Zhu, Y.; Liu, Q.; Jiang, Z. Dynamics of glacier surface velocity and ice thickness for maritime glaciers in the southeastern Tibetan Plateau. J. Hydrol. 2020, 590, 125527. [Google Scholar] [CrossRef]
- Farinotti, D.; Longuevergne, L.; Moholdt, G.; Duethmann, D.; Mölg, T.; Bolch, T.; Vorogushyn, S.; Güntner, A. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nat. Geosci. 2015, 8, 716–722. [Google Scholar] [CrossRef]
- Huai, B.; Li, Z.; Sun, M.; Wang, W.; Jin, S.; Li, K. Change in glacier area and thickness in the Tomur Peak, western Chinese Tien Shan over the past four decades. J. Earth Syst. Sci. 2015, 124, 353–363. [Google Scholar]
- Wang, L.; Li, Z.; Wang, F. Spatial distribution of the debris layer on glaciers of the Tuomuer Peak, western Tian Shan. J. Earth Sci. 2011, 22, 528–538. [Google Scholar] [CrossRef]
- Aizen, V.B.; Aizen, E.M.; Dozier, J.; Melack, J.M.; Sexton, D.D.; Nesterov, V.N. Glacial regime of the highest Tien Shan Mountain, Pobeda-Khan Tengry massif. J. Glaciol. 1997, 43, 503–512. [Google Scholar] [CrossRef] [Green Version]
- Aizen, V.B.; Aizen, E.M.; Melack, J.M. Precipitation, melt and runoff in the northern Tien Shan. J. Hydrol. 1996, 186, 229–251. [Google Scholar] [CrossRef]
- Aizen, V.B.; Kuzmichenok, V.A.; Surazakov, A.B.; Aizen, E.M. Glacier changes in the Tien Shan as determined from topographic and remotely sensed data. Glob. Planet. Chang. 2007, 56, 328–340. [Google Scholar] [CrossRef]
- Ding, G.; Chen, C.; Xie, C.; Jian, W. Study of the ice tongue ablation features of a large glacier in the south slopes of the Mt. Tuomuer in the Tianshan Mountains. J. Glaciol. Geocryol. 2014, 36, 20–29. [Google Scholar]
- Lu, H.; Han, H.; Xu, J. Analysis of the flow features in the ablation zone of the Koxkar Glacier on south slopes of the Tianshan Mountains. J. Glaciol. Geocryol. 2014, 36, 248–258. [Google Scholar]
- Pieczonka, T.; Bolch, T.; Kröhnert, M.; Peters, J.; Liu, S. Glacier branch lines and glacier ice thickness estimation for debris-covered glaciers in the Central Tien Shan. J. Glaciol. 2018, 64, 835–849. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.Y.; Li, Z.Q.; Wang, W.B.; Li, H.L.; Zhou, P.; Jin, S. Changes of six selected glaciers in the Tomor region, Tian Shan, Central Asia, over the past w50 years, using high-resolution remote sensing images and field surveying. Quat. Int. 2013, 311, 123–131. [Google Scholar]
- Cai, X.; Xu, C.; Li, Z. Glacier changes and its effect on water resources in the upper reaches of Aksu River, Tien Shan, China, from 1989 to 2016. Arab. J. Geosci. 2022, 15, 565. [Google Scholar] [CrossRef]
- Liu, S.Y.; Yao, X.J.; Guo, W.Q.; Xu, J.; Shangguan, D.; Wei, J.; Bao, W.; Wu, L. The contemporary glaciers in China based on the Second Chinese Glacier Inventory. Acta Geogr. Sin. 2015, 70, 3–16. [Google Scholar]
- Gao, J.; Liu, Y. Applications of remote sensing, GIS and GPS in glaciology: A review. Prog. Phys. Geogr. 2001, 25, 520–540. [Google Scholar] [CrossRef]
- Vaughan, D.G.; Anderson, P.S.; King, J.C.; Mann, G.W.; Mobbs, S.D.; Ladkin, R.S. Imaging of firn isochrones across an Antarctic ice rise and implications for patterns of snow accumulation rate. J. Glaciol. 2004, 50, 413–418. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.; Li, H.; Wang, W.; Zhou, P.; Wang, L. Characteristics of a partially debris-covered glacier and its response to atmospheric warming in Mt. Tomor, Tien Shan, China. Glob. Planet. Chang. 2017, 159, 11–24. [Google Scholar] [CrossRef]
- Tamura, Y. A proposal of simultaneous monitoring responses of tall buildings in an urban area during strong winds and earthquakes using GPS-Construction of a new disaster prevention system. Res. Archit. 2000, 139, 1–7. [Google Scholar]
- Sun, B.; Zhang, P.; Jiao, K.; Deng, X.; Wen, J. Determination of ice thickness, subice topography and ice vol-ume at Glacier No. 1 in Tien Shan, China by ground penetrating radar. Chin. J. Polar Sci. 2003, 14, 90–98. [Google Scholar]
- Dehecq, A.; Gourmelen, N.; Trouvé, E. Deriving large-scale glacier velocities from a complete satellite archive: Application to the Pamir–Karakoram–Himalaya. Remote Sens. Environ. 2015, 162, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Brun, F.; Berthier, E.; Wagnon, P.; Kaab, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances, 2000–2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leprince, S.; Ayoub, F.; Klinger, Y.; Avouac, J.P. Co-registration of optically sensed images and correlation (COSI-Corr): An operational methodology for ground deformation measurements. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007. [Google Scholar]
- Scherler, D.; Bookhagen, B.; Strecker, M.R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 2011, 4, 156–159. [Google Scholar] [CrossRef]
- Shukla, A.; Garg, P.K. Spatio-temporal trends in the surface ice velocities of the central Himalayan glaciers, India. Glob. Planet. Chang. 2020, 190, 103187. [Google Scholar] [CrossRef]
- Scherler, D.; Leprince, S.; Strecker, M.R. Glacier-surface velocities in alpine terrain from optical satellite imagery—Accuracy improvement and quality assessment. Remote Sens. Environ. 2008, 112, 3806–3819. [Google Scholar] [CrossRef]
- Quincey, D.J.; Glasser, N.F.; Cook, S.J.; Luckman, A. Heterogeneity in Karakoram glacier surges. J. Geophys. Res. Earth Surf. 2015, 120, 1288–1300. [Google Scholar] [CrossRef] [Green Version]
- Heid, T.; Kääb, A. Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds. Cryosphere 2012, 6, 467–478. [Google Scholar] [CrossRef] [Green Version]
- Sattar, A.; Goswami, A.; Kulkarni, A.V.; Das, P. Glacier-surface velocity derived ice volume and retreat assessment in the dhauliganga basin, central himalaya–A remote sensing and modeling based approach. Front. Earth Sci. 2019, 7, 105. [Google Scholar] [CrossRef]
- Paul, F.; Linsbauer, A. Modeling of glacier bed topography from glacier outlines, central branch lines, and a DEM. Int. J. Geogr. Inf. Sci. 2012, 26, 1173–1190. [Google Scholar] [CrossRef]
- Gantayat, P.; Kulkarni, A.V.; Srinivasan, J. Estimation of ice thickness using surface velocities and slope: Case study at Gangotri Glacier, India. J. Glaciol. 2014, 60, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Benn, D.I.; Evans, D.J. Glaciers and glaciation. London: Hodder Arnold Publication. Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 1998, 10, 668–673. [Google Scholar]
- Huss, M.; Farinotti, D. Distributed ice thickness and volume of all glaciers around the globe. J. Geophys. Res. 2012, 117, F04010. [Google Scholar] [CrossRef]
- Su, Z.; Ding, L.; Liu, C. Glacier thickness and its reserves calculation on Tianshan Mountains. Xinjiang Geogr. 1984, 7, 37–44. [Google Scholar]
- Shen, Y.P.; Liu, S.Y.; Ding, Y.J.; Wang, S. Glacier mass balance change in Tailanhe River watersheds on the south slope of the Tianshan Mountains and its impact on water resources. J. Glaciol. Geocryol. 2003, 25, 124–129. [Google Scholar]
- Nagai, H.; Fujita, K.; Nuimura, T.; Sakai, A. Southwest-facing slopes control the formation of debris-covered glaciers in the Bhutan Himalaya. Cryosphere 2013, 7, 1303–1314. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, L.; Benn, D.I. Calculating ice melt beneath a debris layer using meteorological data. J. Glaciol. 2006, 52, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Farinotti, D.; Huss, M.; Fürst, J.J.; Landmann, J.; Machguth, H.; Maussion, F.; Pandit, A. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 2019, 12, 168–173. [Google Scholar] [CrossRef] [Green Version]
- Guillet, G.; King, O.; Lv, M.; Ghuffar, S.; Benn, D.; Quincey, D.; Bolch, T. A regionally resolved inventory of High Mountain Asia surge-type glaciers, derived from a multi-factor remote sensing approach. Cryosphere 2022, 16, 603–623. [Google Scholar] [CrossRef]
- Mingyang, L.; Huadong, G.; Shiyong, Y.; Guanyu, L.; Di, J.; Haolei, Z.; Ziyan, Z. A Dataset of Surge-Type Glaciers in the High Mountain Asia Based on Elevation Change and Satellite Imagery. 2021. Available online: https://www.scidb.cn/en/detail?dataSetId=caa0dbd38d03457ab9c9646f3a9e7683 (accessed on 1 January 2022).
- Zhou, S.; Yao, X.; Zhang, D.; Zhang, Y.; Liu, S.; Min, Y. Remote Sensing Monitoring of Advancing and Surging Glaciers in the Tien Shan, 1990–2019. Remote Sens. 2021, 13, 1973. [Google Scholar] [CrossRef]
Image ID | Date of Acquisition | Band | Resolution |
---|---|---|---|
LE07_L1TP_147031_20001031_20200917_01_T1 | 31 October 2000 | 8 | 15 |
LE07_L1TP_147031_20011002_20200917_01_T1 | 2 November 2001 | 8 | 15 |
LE07_L1TP_147031_20021005_20200916_01_T1 | 5 October 2002 | 8 | 15 |
LE07_L1TP_147031_20031109_20200915_01_T1 | 9 November 2003 | 8 | 15 |
LE07_L1TP_147031_20041010_20200915_01_T1 | 10 October 2004 | 8 | 15 |
LE07_L1TP_147031_20051130_20200914_01_T1 | 30 November 2005 | 8 | 15 |
LT07_L1TP_147031_20061008_20161118_01_T1 | 8 October 2006 | 8 | 15 |
LE07_L1TP_147031_20071104_20170101_01_T1 | 4 November 2007 | 8 | 15 |
LE07_L1TP_147031_20081021_20161224_01_T1 | 21 October 2008 | 8 | 15 |
LE07_L1TP_147031_20091024_20161217_01_T1 | 24 October 2009 | 8 | 15 |
LT05_L1TP_147031_20101019_20161012_01_T1 | 19 October 2010 | 8 | 15 |
LT05_L1TP_147031_20111022_20161006_01_T1 | 22 October 2011 | 8 | 15 |
LE07_L1TP_147031_20121117_20161127_01_T1 | 17 November 2012 | 8 | 15 |
LC08_L1TP_147031_20130925_20170502_01_T1 | 25 September 2013 | 8 | 15 |
LC08_L1TP_147031_20141014_20170418_01_T1 | 14 October 2014 | 8 | 15 |
LC08_L1TP_147031_20151001_20170403_01_T1 | 1 October 2015 | 8 | 15 |
LC08_L1TP_147031_20161003_20170319_01_T1 | 3 October 2016 | 8 | 15 |
LC08_L1TP_147031_20170920_20170930_01_T1 | 20 September 2017 | 8 | 15 |
LC08_L1TP_147031_20181025_20181031_01_T1 | 25 October 2018 | 8 | 15 |
LC08_L1TP_147031_20191113_20191202_01_T1 | 13 November 2019 | 8 | 15 |
LC08_L1TP_147031_20201014_20201104_01_T1 | 14 October 2020 | 8 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, C.; Wang, F.; Wang, L.; Xu, C.; Yue, X.; Yang, S.; Wang, P.; Bi, Y.; Wei, H. Dynamic Monitoring of Debris-Covered Glacier Surface Velocity and Ice Thickness of Mt.Tomur, Tian Shan, China. Remote Sens. 2023, 15, 150. https://doi.org/10.3390/rs15010150
Bai C, Wang F, Wang L, Xu C, Yue X, Yang S, Wang P, Bi Y, Wei H. Dynamic Monitoring of Debris-Covered Glacier Surface Velocity and Ice Thickness of Mt.Tomur, Tian Shan, China. Remote Sensing. 2023; 15(1):150. https://doi.org/10.3390/rs15010150
Chicago/Turabian StyleBai, Changbin, Feiteng Wang, Lin Wang, Chunhai Xu, Xiaoying Yue, Shujing Yang, Puyu Wang, Yanqun Bi, and Haining Wei. 2023. "Dynamic Monitoring of Debris-Covered Glacier Surface Velocity and Ice Thickness of Mt.Tomur, Tian Shan, China" Remote Sensing 15, no. 1: 150. https://doi.org/10.3390/rs15010150
APA StyleBai, C., Wang, F., Wang, L., Xu, C., Yue, X., Yang, S., Wang, P., Bi, Y., & Wei, H. (2023). Dynamic Monitoring of Debris-Covered Glacier Surface Velocity and Ice Thickness of Mt.Tomur, Tian Shan, China. Remote Sensing, 15(1), 150. https://doi.org/10.3390/rs15010150