Whitecap Fraction Parameterization and Understanding with Deep Neural Network
Abstract
:1. Introduction
Reference | Equation | Abbreviation |
---|---|---|
Monahan and O’Muircheartaigh [2] | M80 | |
Salisbury et al. [15] | S13 | |
Albert et al. [19] | A16 |
2. Data and Methods
2.1. Data
2.2. Methods
3. Results
3.1. Evaluation of W Parameterization
3.2. Understanding of W Parameterization
4. Discussion
4.1. Data Selection and Uncertainty
4.2. Comparison with Classic Machine Learning Methods
4.3. Adding Physical Constraints to the Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anguelova, M.D.; Webster, F. Whitecap Coverage from Satellite Measurements: A First Step toward Modeling the Variability of Oceanic Whitecaps. J. Geophys. Res. Atmos. 2006, 111, C03–C017. [Google Scholar] [CrossRef] [Green Version]
- Monahan, E.C.; Muircheartaigh, I. Optimal Power-Law Description of Oceanic Whitecap Coverage Dependence on Wind Speed. J. Phys. Oceanogr. 1980, 10, 2094–2099. [Google Scholar] [CrossRef]
- Bortkovskii, R.S.; Novak, V.A. Statistical Dependencies of Sea State Characteristics on Water Temperature and Wind-Wave Age-ScienceDirect. J. Mar. Syst. 1993, 4, 161–169. [Google Scholar] [CrossRef]
- Bortkovskii, R.S. Water-Temperature Effect on the Spectral Density of Wind Gravity Waves and on Sea-Surface Roughness. Izv. Atmos. Ocean. Phys. 2012, 48, 193–199. [Google Scholar] [CrossRef]
- Sugihara, Y.; Tsumori, H.; Ohga, T.; Yoshioka, H.; Serizawa, S. Variation of Whitecap Coverage with Wave-Field Conditions. J. Mar. Syst. 2007, 66, 47–60. [Google Scholar] [CrossRef]
- Zhao, D.; Toba, Y. Dependence of Whitecap Coverage on Wind and Wind-Wave Properties. J. Oceanogr. 2001, 57, 603–616. [Google Scholar] [CrossRef]
- Brumer, S.E.; Zappa, C.J.; Brooks, I.M.; Tamura, H.; Brown, S.M.; Blomquist, B.W.; Fairall, C.W.; Cifuentes-Lorenzen, A. Whitecap Coverage Dependence on Wind and Wave Statistics as Observed during SO GasEx and HiWinGS. J. Phys. Oceanogr. 2017, 47, 2211–2235. [Google Scholar] [CrossRef]
- Blanchard, D.C. The Electrification of the Atmosphere by Particles from Bubbles in the Sea. Prog. Oceanogr. 1963, 1, 73–202. [Google Scholar] [CrossRef]
- Blanchard, D.C. The Production, Distribution, and Bacterial Enrichment of the Sea-Salt Aerosol. In Air-Sea Exchange of Gases and Particles; Springer: Berlin/Heidelberg, Germany, 1983; pp. 407–454. [Google Scholar]
- Thorpe, S. Bubble Clouds and the Dynamics of the Upper Ocean. Q. J. R. Meteorol. Soc. 1992, 118, 1–22. [Google Scholar] [CrossRef]
- Andreas, E.L.; Mahrt, L.; Vickers, D. An Improved Bulk Air–Sea Surface Flux Algorithm, Including Spray-mediated Transfer. Q. J. R. Meteorol. Soc. 2015, 141, 642–654. [Google Scholar] [CrossRef]
- Monahan, E.C.; Fairall, C.W.; Davidson, K.L.; Boyle, P.J. Observed Inter-Relations between 10m Winds, Ocean Whitecaps and Marine Aerosols. Q. J. R. Meteorol. Soc. 1983, 109, 379–392. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Dong, C.; Su, T.; Sun, B.; Zou, B. Validation of an Improved Statistical Theory for Sea Surface Whitecap Coverage Using Satellite Remote Sensing Data. Sensors 2018, 18, 3306. [Google Scholar] [CrossRef] [Green Version]
- Monahan, E.; Spiel, D.; Davidson, K. A Model of Marine Aerosol Generation via Whitecaps and Wave Disruption. In Oceanic Whitecaps; Springer: Berlin/Heidelberg, Germany, 1986; pp. 167–174. [Google Scholar]
- Salisbury, D.J.; Anguelova, M.D.; Brooks, I.M. On the Variability of Whitecap Fraction Using Satellite-Based Observations. J. Geophys. Res. Ocean. 2013, 118, 6201–6222. [Google Scholar] [CrossRef] [Green Version]
- Anguelova, M.D.; Bettenhausen, M.H.; Johnston, W.F.; Gaiser, P.W. Passive Remote Sensing of Oceanic Whitecaps: Updated Geophysical Model Function. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017. [Google Scholar]
- Anguelova, M.D.; Bettenhausen, M.H. Whitecap Fraction From Satellite Measurements: Algorithm Description. J. Geophys. Res. Ocean. 2019, 124, 1827–1857. [Google Scholar] [CrossRef]
- Goddijn-Murphy, L.; Woolf, D.K.; Callaghan, A.H. Parameterizations and Algorithms for Oceanic Whitecap Coverage. J. Phys. Oceanogr. 2011, 41, 742–756. [Google Scholar] [CrossRef]
- Albert, M.F.; Anguelova, M.D.; Manders, A.; Schaap, M.; de Leeuw, G. Parameterization of Oceanic Whitecap Fraction Based on Satellite Observations. Atmos. Chem. Phys. 2016, 16, 13725–13751. [Google Scholar] [CrossRef] [Green Version]
- Rémy, S.; Anguelova, M.D. Improving the Representation of Whitecap Fraction and Sea Salt Aerosol Emissions in the ECMWF IFS-AER. Remote Sens. 2021, 13, 4856. [Google Scholar] [CrossRef]
- Zhou, S.; Xie, W.; Lu, Y.; Wang, Y.; Zhou, Y.; Hui, N.; Dong, C. ConvLSTM-Based Wave Forecasts in the South and East China Seas. Front. Mar. Sci. 2021, 8, 740. [Google Scholar] [CrossRef]
- Bethel, B.J.; Dong, C.; Zhou, S.; Cao, Y. Bidirectional Modeling of Surface Winds and Significant Wave Heights in the Caribbean Sea. J. Mar. Sci. Eng. 2021, 9, 547. [Google Scholar] [CrossRef]
- Zheng, G.; Li, X.; Zhang, R.-H.; Liu, B. Purely Satellite Data–Driven Deep Learning Forecast of Complicated Tropical Instability Waves. Sci. Adv. 2020, 6, eaba1482. [Google Scholar] [CrossRef]
- Xu, G.; Cheng, C.; Yang, W.; Xie, W.; Kong, L.; Hang, R.; Ma, F.; Dong, C.; Yang, J. Oceanic Eddy Identification Using an AI Scheme. Remote Sens. 2019, 11, 1349. [Google Scholar] [CrossRef] [Green Version]
- Bolton, T.; Zanna, L. Applications of Deep Learning to Ocean Data Inference and Subgrid Parameterization. J. Adv. Model. Earth Syst. 2019, 11, 376–399. [Google Scholar] [CrossRef] [Green Version]
- Zanna, L.; Bolton, T. Data-Driven Equation Discovery of Ocean Mesoscale Closures. Geophys. Res. Lett. 2020, 47, e2020GL088376. [Google Scholar] [CrossRef]
- Han, G.; Cen, H.; Jiang, J.; Gao, X.; Jiang, X.; Zhou, S.; Xie, W.; Ji, J.; Bethel, B.J.; Dong, C. Applying Machine Learning in Devising a Parsimonious Ocean Mixing Parameterization Scheme. Deep Sea Res. Part II Top. Stud. Oceanogr. 2022, 203, 105163. [Google Scholar] [CrossRef]
- Liang, J.-H.; Yuan, J.; Wan, X.; Liu, J.; Liu, B.; Jang, H.; Tyagi, M. Exploring the Use of Machine Learning to Parameterize Vertical Mixing in the Ocean Surface Boundary Layer. Ocean Model. 2022, 176, 102059. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Monthly Averaged Data on Single Levels from 1979 to Present. Copernic. Clim. Change Serv. (C3S) Clim. Data Store (CDS) 2019, 10, 252–266. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010. [Google Scholar]
- Anguelova, M.D.; Bettenhausen, M.H.; Johnston, W.F.; Gaiser, P.W. First Extensive Whitecap Database and Its Use to Study Whitecap Fraction Variability. 2010. Available online: http://ams.confex.com/ams/pdfpapers/174036.pdf (accessed on 17 October 2016).
- Liu, M.; Yang, B.; Jia, N.; Zou, Z. Dependence of Estimating Whitecap Coverage on Currents and Swells. J. Ocean Univ. China 2021, 20, 512–520. [Google Scholar] [CrossRef]
- Zhou, S.; Bethel, B.J.; Sun, W.; Zhao, Y.; Xie, W.; Dong, C. Improving Significant Wave Height Forecasts Using a Joint Empirical Mode Decomposition–Long Short-Term Memory Network. J. Mar. Sci. Eng. 2021, 9, 744. [Google Scholar] [CrossRef]
- Thilges, K.; Plumley, M.; Summers, J.E.; Arbic, B.K.; Buijsman, M. Physics-Informed Neural Networks for Predicting Ocean Spatio-Temporal Fields. J. Acoust. Soc. Am. 2021, 150, A25. [Google Scholar] [CrossRef]
- Amini, D.; Haghighat, E.; Juanes, R. Physics-Informed Neural Network Solution of Thermo-Hydro-Mechanical (THM) Processes in Porous Media. arXiv 2022, arXiv:2203.01514. [Google Scholar]
- Garg, N.; Ng, E.Y.K.; Narasimalu, S. The Effects of Sea Spray and Atmosphere–Wave Coupling on Air–Sea Exchange during a Tropical Cyclone. Atmos. Chem. Phys. 2018, 18, 6001–6021. [Google Scholar] [CrossRef]
M80 | S13 | A16 | NN-W | |
---|---|---|---|---|
RMSE (%) | 0.53 | 0.27 | 0.26 | 0.22 |
MAE (%) | 0.50 | 0.20 | 0.19 | 0.16 |
R | 0.83 | 0.86 | 0.87 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Xu, F.; Shi, R. Whitecap Fraction Parameterization and Understanding with Deep Neural Network. Remote Sens. 2023, 15, 241. https://doi.org/10.3390/rs15010241
Zhou S, Xu F, Shi R. Whitecap Fraction Parameterization and Understanding with Deep Neural Network. Remote Sensing. 2023; 15(1):241. https://doi.org/10.3390/rs15010241
Chicago/Turabian StyleZhou, Shuyi, Fanghua Xu, and Ruizi Shi. 2023. "Whitecap Fraction Parameterization and Understanding with Deep Neural Network" Remote Sensing 15, no. 1: 241. https://doi.org/10.3390/rs15010241
APA StyleZhou, S., Xu, F., & Shi, R. (2023). Whitecap Fraction Parameterization and Understanding with Deep Neural Network. Remote Sensing, 15(1), 241. https://doi.org/10.3390/rs15010241