Evaluating the Impact of Soil Enthalpy upon the Thawing Process of the Active Layer in Permafrost Regions of the Qinghai–Tibet Plateau Using CLM5.0
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Data Sources
2.2.1. Observation Data
2.2.2. GLEAM
2.3. Methods
2.3.1. CLM5.0
2.3.2. Soil Enthalpy
2.3.3. Analytical Methods
3. Results
3.1. Validation of the Model
3.1.1. Soil Temperature
3.1.2. Soil Moisture
3.1.3. Soil Enthalpy
3.2. Changes of Soil Temperature, Moisture, and Enthalpy at Different Depths
3.3. Energy Change of Active Layer during Freezing and Thawing
3.4. The Influence of Soil Enthalpy upon the ALT
4. Discussion
4.1. Variation of Near-Surface Energy and Evapotranspiration during Freezing and Thawing
4.2. The Contributions of Heat Conduction and Latent Heat Transfer towards the Change in ALT
5. Conclusions
- (1)
- Soil enthalpy can better reflect the dynamic changes of temperature and moisture during freeze–thaw processes. The soil enthalpy of Tanggula and Beiluhe has obvious seasonal variations, which is smaller in the winter and larger in the summer. The change of soil enthalpy is significantly related to the thawing depth of the active layer, and during the thawing period, TD increases with the increase of H, and its changing process can be expressed as an exponential relationship.
- (2)
- The seasonal variation trend of the energy caused by temperature gradient is the same as that of soil enthalpy, and the variation between actual evaporation and Qt_5cm can also be described by an exponential relationship. The increase of Qt promotes the thickening of the active layer, and the thawing depth increases by 14.16~18.62 cm with the energy increased per 1 MJ/m2.
- (3)
- The seasonal change trend of the energy caused by phase change is opposite to that of soil enthalpy. The increase of Qw inhibits the thickness change of active layer, and the thawing depth decreases by 2.75~7.16 cm with the energy increased per 1 MJ/m2.
- (4)
- The promoting effect of heat conduction on the active layer thickness is greater than the inhibiting effect of latent heat transfer on the active layer thickness, and the contribution of the energy caused by the phase change to the thickness of the active layer accounts for about 20~40% of the energy caused by the temperature gradient.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anisimov, O.A.; Shiklomanov, N.I.; Nelson, F.E. Global Warming and Active-Layer Thickness: Results from Transient General Circulation Models. Glob. Planet. Chang. 1997, 15, 61–77. [Google Scholar] [CrossRef]
- Li, R.; Zhao, L.; Wu, T.; Ding, Y.; Xiao, Y.; Hu, G.; Zou, D.; Li, W.; Yu, W.; Jiao, Y.; et al. The Impact of Surface Energy Exchange on the Thawing Process of Active Layer over the Northern Qinghai–Xizang Plateau, China. Environ. Earth Sci. 2014, 72, 2091–2099. [Google Scholar] [CrossRef]
- Dobiński, W. Permafrost Active Layer. Earth-Sci. Rev. 2020, 208, 103301. [Google Scholar] [CrossRef]
- Ling, F.; Zhang, T. A Numerical Model for Surface Energy Balance and Thermal Regime of the Active Layer and Permafrost Containing Unfrozen Water. Cold Reg. Sci. Technol. 2004, 38, 1–15. [Google Scholar] [CrossRef]
- Zou, D.; Zhao, L.; Sheng, Y.; Chen, J.; Hu, G.; Wu, T.; Wu, J.; Xie, C.; Wu, X.; Pang, Q.; et al. A New Map of Permafrost Distribution on the Tibetan Plateau. Cryosphere 2017, 11, 2527–2542. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Zou, D.; Hu, G.; Du, E.; Pang, Q.; Xiao, Y.; Li, R.; Sheng, Y.; Wu, X.; Sun, Z.; et al. Changing Climate and the Permafrost Environment on the Qinghai–Tibet (Xizang) Plateau. Permafr. Periglac. Process. 2020, 31, 396–405. [Google Scholar] [CrossRef]
- Cheng, G.; Wu, T. Responses of Permafrost to Climate Change and Their Environmental Significance, Qinghai-Tibet Plateau. J. Geophys. Res. 2007, 112, F02S03. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Zhao, L.; Li, R.; Wang, Q.; Xie, C.; Pang, Q. Recent Ground Surface Warming and Its Effects on Permafrost on the Central Qinghai-Tibet Plateau. Int. J. Climatol. 2013, 33, 920–930. [Google Scholar] [CrossRef]
- Song, Y.; Jin, L.; Wang, H. Vegetation Changes along the Qinghai-Tibet Plateau Engineering Corridor Since 2000 Induced by Climate Change and Human Activities. Remote Sens. 2018, 10, 95. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Zhao, L.; Li, R.; Wu, X.; Sheng, Y.; Hu, G.; Zou, D.; Jin, H.; Li, X.; Wu, Q. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau. Chin. Sci. Bull. 2019, 64, 2783–2795. [Google Scholar] [CrossRef]
- Chai, M.; Li, G.; Ma, W.; Cao, Y.; Wu, G.; Mu, Y.; Chen, D.; Zhang, J.; Zhou, Z.; Zhou, Y.; et al. Assessment of Freeze–Thaw Hazards and Water Features along the China–Russia Crude Oil Pipeline in Permafrost Regions. Remote Sens. 2020, 12, 3576. [Google Scholar] [CrossRef]
- Xu, X.; Wu, Q. Active Layer Thickness Variation on the Qinghai-Tibetan Plateau: Historical and Projected Trends. JGR Atmos. 2021, 126, e2021JD034841. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Zhang, H.; Tang, Y.; Duan, W.; Dong, L. Freeze-Thaw Deformation Cycles and Temporal-Spatial Distribution of Permafrost along the Qinghai-Tibet Railway Using Multitrack InSAR Processing. Remote Sens. 2021, 13, 4744. [Google Scholar] [CrossRef]
- Li, H.; Liu, F.; Zhang, S.; Zhang, C.; Zhang, C.; Ma, W.; Luo, J. Drying–Wetting Changes of Surface Soil Moisture and the Influencing Factors in Permafrost Regions of the Qinghai-Tibet Plateau, China. Remote Sens. 2022, 14, 2915. [Google Scholar] [CrossRef]
- Ma, Z.; Wei, H.; Fu, Z. Progress In The Research On The Relationship Between Soil Moisture And Climate Change. Adv. Earth Sci. 1999, 14, 300–303. [Google Scholar]
- Kou, Y.; Zeng, Q.; Xie, W.; Xiao, S. Investigation Of Radiation On Qinghai-Xizang Plateau and Its Neighbouring Districts and the Relation Between Radiation And Permafrost on It. J. Glaciol. Geocryol. 1981, 39, 25–32. [Google Scholar]
- Yao, J.; Zhao, L.; Gu, L.; Qiao, Y.; Jiao, K. The Surface Energy Budget in the Permafrost Region of the Tibetan Plateau. Atmos. Res. 2011, 14, 394–407. [Google Scholar] [CrossRef]
- Gu, L.; Yao, J.; Hu, Z.; Zhao, L. Comparison of the Surface Energy Budget between Regions of Seasonally Frozen Ground and Permafrost on the Tibetan Plateau. Atmos. Res. 2015, 153, 553–564. [Google Scholar] [CrossRef]
- Yang, K.; Wang, C. Seasonal Persistence of Soil Moisture Anomalies Related to Freeze–Thaw over the Tibetan Plateau and Prediction Signal of Summer Precipitation in Eastern China. Clim. Dyn. 2019, 53, 2411–2424. [Google Scholar] [CrossRef] [Green Version]
- You, Q.; Xue, X.; Peng, F.; Dong, S.; Gao, Y. Surface Water and Heat Exchange Comparison between Alpine Meadow and Bare Land in a Permafrost Region of the Tibetan Plateau. Agric. For. Meteorol. 2017, 232, 48–65. [Google Scholar] [CrossRef]
- Sun, S. Physical and Biochemical Mechanisms and Parameterized Models of Land Surface Processes; China Meterological Press: Beijing, China, 2005; ISBN 978-7-5029-4024-9. [Google Scholar]
- Ma, J.; Li, R.; Liu, H.; Huang, Z.; Wu, T.; Hu, G.; Xiao, Y.; Zhao, L.; Du, Y.; Yang, S. The Surface Energy Budget and Its Impact on the Freeze-Thaw Processes of Active Layer in Permafrost Regions of the Qinghai-Tibetan Plateau. Adv. Atmos. Sci. 2022, 39, 189–200. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, H.; Sun, S. Evaluating the Capabilities of Soil Enthalpy, Soil Moisture and Soil Temperature in Predicting Seasonal Precipitation. Adv. Atmos. Sci. 2018, 35, 445–456. [Google Scholar] [CrossRef]
- Chen, J.; Kumar, P. A Modeling Study of the ENSO Influence on the Terrestrial Energy Profile in North America. J. Clim. 2004, 17, 1657–1670. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, H.; Sun, S. Long-Term Trend of Land Surface Thermal States and Its Spatial Variability in the Eastern Region of the Northern Hemisphere. Front. Earth Sci. 2020, 8, 126. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, X.; Li, W.; Sparrow, M. Calculation of the Energy Budget for Heterogeneous Land Surfaces. Earth Interact. 2003, 7, 1–12. [Google Scholar] [CrossRef]
- Li, Q.; Sun, S.; Dai, Q. The Numerical Scheme Development of a Simplified Frozen Soil Model. Adv. Atmos. Sci. 2009, 26, 940–950. [Google Scholar] [CrossRef]
- Li, Q.; Sun, S.; Xue, Y. Analyses and Development of a Hierarchy of Frozen Soil Models for Cold Region Study. J. Geophys. Res. 2010, 115, D03107. [Google Scholar] [CrossRef]
- Calvo, N.; Durany, J.; Vázquez, C. Enthalpy Balance Methods versus Temperature Models in Ice Sheets. Commun. Nonlinear Sci. Numer. Simul. 2015, 22, 526–544. [Google Scholar] [CrossRef]
- Kleiner, T.; Rückamp, M.; Bondzio, J.H.; Humbert, A. Enthalpy Benchmark Experiments for Numerical Ice Sheet Models. Cryosphere 2015, 9, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Bao, H.; Koike, T.; Yang, K.; Wang, L.; Shrestha, M.; Lawford, P. Development of an Enthalpy-Based Frozen Soil Model and Its Validation in a Cold Region in China: An Enthalpy-Based Frozen Soil Model. J. Geophys. Res. Atmos. 2016, 121, 5259–5280. [Google Scholar] [CrossRef] [Green Version]
- Ding, B.; Yang, K.; Yang, W.; He, X.; Chen, Y.; Lazhu; Guo, X.; Wang, L.; Wu, H.; Yao, T. Development of a Water and Enthalpy Budget-Based Glacier Mass Balance Model (WEB-GM) and Its Preliminary Validation: ENERGY-BASED GLACIER MASS BALANCE MODEL. Water Resour. Res. 2017, 53, 3146–3178. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, J.; Qi, J.; Sun, L.; Yang, K.; Tian, L.; Lin, Y.; Liu, W.; Shrestha, M.; Xue, Y.; et al. Development of a Land Surface Model with Coupled Snow and Frozen Soil Physics. Water Resour. Res. 2017, 53, 5085–5103. [Google Scholar] [CrossRef]
- Amiri, E.A.; Craig, J.R.; Hirmand, M.R. A Trust Region Approach for Numerical Modeling of Non-Isothermal Phase Change. Comput. Geosci. 2019, 23, 911–923. [Google Scholar] [CrossRef]
- Tubini, N.; Gruber, S.; Rigon, R. A Method for Solving Heat Transfer with Phase Change in Ice or Soil That Allows for Large Time Steps While Guaranteeing Energy Conservation. Cryosphere 2021, 15, 2541–2568. [Google Scholar] [CrossRef]
- Schuh, C.; Frampton, A.; Christiansen, H.H. Soil Moisture Redistribution and Its Effect on Inter-Annual Active Layer Temperature and Thickness Variations in a Dry Loess Terrace in Adventdalen, Svalbard. Cryosphere 2017, 11, 635–651. [Google Scholar] [CrossRef] [Green Version]
- Walvoord, M.A.; Kurylyk, B.L. Hydrologic Impacts of Thawing Permafrost—A Review. Vadose Zone J. 2016, 15, vzj2016.01.0010. [Google Scholar] [CrossRef] [Green Version]
- French, H.M. The Periglacial Environment, 4th ed.; J. Wiley: Hoboken, NJ, USA, 2018; ISBN 978-1-119-13282-0. [Google Scholar]
- Kane, D.L.; Hinkel, K.M.; Goering, D.J.; Hinzman, L.D.; Outcalt, S.I. Non-Conductive Heat Transfer Associated with Frozen Soils. Glob. Planet. Chang. 2001, 29, 275–292. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, S. The Impact of Soil Freezing/Thawing Processes on Water and Energy Balances. Adv. Atmos. Sci. 2011, 28, 169–177. [Google Scholar] [CrossRef]
- Luo, L.; Robock, A.; Vinnikov, K.Y.; Schlosser, C.A.; Slater, A.G.; Boone, A.; Etchevers, P.; Habets, F.; Noilhan, J.; Braden, H.; et al. Effects of Frozen Soil on Soil Temperature, Spring Infiltration, and Runoff: Results from the PILPS 2(d) Experiment at Valdai, Russia. J. Hydrometeorol. 2003, 4, 334–351. [Google Scholar] [CrossRef]
- Li, R.; Zhao, L.; Wu, T.; Wang, Q.; Ding, Y.; Yao, J.; Wu, X.; Hu, G.; Xiao, Y.; Du, Y.; et al. Soil Thermal Conductivity and Its Influencing Factors at the Tanggula Permafrost Region on the Qinghai–Tibet Plateau. Agric. For. Meteorol. 2019, 264, 235–246. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhao, L.; Dai, Y.; Li, R.; Pang, Q.; Yao, J. Representing Permafrost Properties in CoLM for the Qinghai–Xizang (Tibetan) Plateau. Cold Reg. Sci. Technol. 2013, 87, 68–77. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Qiu, G. Permafrost Along The Qinghai-Xizang Highway. Acta Geogr. Sin. 1979, 34, 18–32. [Google Scholar]
- Li, R.; Zhao, L.; Ding, Y.; Wu, T.; Xiao, Y.; Du, E.; Liu, G.; Qiao, Y. Temporal and Spatial Variations of the Active Layer along the Qinghai-Tibet Highway in a Permafrost Region. Chin. Sci. Bull. 2012, 57, 4609–4616. [Google Scholar] [CrossRef]
- Qin, Y.; Wu, T.; Wu, X.; Li, R.; Xie, C.; Qiao, Y.; Hu, G.; Zhu, X.; Wang, W.; Shang, W. Assessment of Reanalysis Soil Moisture Products in the Permafrost Regions of the Central of the Qinghai–Tibet Plateau. Hydrol. Process. 2017, 31, 4647–4659. [Google Scholar] [CrossRef]
- Yin, G.; Niu, F.; Lin, Z.; Luo, J.; Liu, M. Effects of Local Factors and Climate on Permafrost Conditions and Distribution in Beiluhe Basin, Qinghai-Tibet Plateau, China. Sci. Total Environ. 2017, 581–582, 472–485. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Niu, F.; Xu, Z.; Xu, J.; Wang, P. Thermal Regime of a Thermokarst Lake and Its Influence on Permafrost, Beiluhe Basin, Qinghai-Tibet Plateau. Permafr. Periglac. Process. 2010, 21, 315–324. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global Land-Surface Evaporation Estimated from Satellite-Based Observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef] [Green Version]
- Martens, B.; Miralles, D.G.; Lievens, H.; van der Schalie, R.; de Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-Based Land Evaporation and Root-Zone Soil Moisture. Geosci. Model. Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, D.M.; Fisher, R.A.; Koven, C.D.; Oleson, K.W.; Swenson, S.C.; Bonan, G.; Collier, N.; Ghimire, B.; van Kampenhout, L.; Kennedy, D.; et al. The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. J. Adv. Model. Earth Syst. 2019, 11, 4245–4287. [Google Scholar] [CrossRef] [Green Version]
- Henderson-Sellers, A.; Yang, Z.-L.; Dickinson, R.E. The Project for Intercomparison of Land-Surface Parameterization Schemes. Bull. Am. Meteorol. Soc. 1993, 74, 1335–1350. [Google Scholar] [CrossRef]
- Pitman, A.J.; Henderson-Sellers, A.; Desborough, C.E.; Yang, Z.-L.; Abramopoulos, F.; Boone, A.; Dickinson, R.E.; Gedney, N.; Koster, R.; Kowalczyk, E.; et al. Key Results and Implications from Phase 1(c) of the Project for Intercomparison of Land-Surface Parametrization Schemes. Clim. Dyn. 1999, 15, 673–684. [Google Scholar] [CrossRef] [Green Version]
- Decker, M.; Zeng, X. Impact of Modified Richards Equation on Global Soil Moisture Simulation in the Community Land Model (CLM3.5): Impact of modified richards equation. J. Adv. Model. Earth Syst. 2009, 1, 5. [Google Scholar] [CrossRef]
- Yang, K.; Wang, C.; Li, S. Improved Simulation of Frozen-Thawing Process in Land Surface Model (CLM4.5). J. Geophys. Res. Atmos. 2018, 123. [Google Scholar] [CrossRef]
- Yang, S.; Li, R.; Wu, T.; Wu, X.; Zhao, L.; Hu, G.; Zhu, X.; Du, Y.; Xiao, Y.; Zhang, Y.; et al. Evaluation of Soil Thermal Conductivity Schemes Incorporated into CLM5.0 in Permafrost Regions on the Tibetan Plateau. Geoderma 2021, 401, 115330. [Google Scholar] [CrossRef]
- Yang, K.; Wang, C. Water Storage Effect of Soil Freeze-Thaw Process and Its Impacts on Soil Hydro-Thermal Regime Variations. Agric. For. Meteorol. 2019, 265, 280–294. [Google Scholar] [CrossRef]
- Deng, M.; Meng, X.; Lyv, Y.; Zhao, L.; Li, Z.; Hu, Z.; Jing, H. Comparison of Soil Water and Heat Transfer Modeling Over the Tibetan Plateau Using Two Community Land Surface Model (CLM) Versions. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002189. [Google Scholar] [CrossRef]
- Li, N.; Cuo, L.; Zhang, Y. On the Freeze–Thaw Cycles of Shallow Soil and Connections with Environmental Factors over the Tibetan Plateau. Clim. Dyn. 2021, 57, 3183–3206. [Google Scholar] [CrossRef]
- Dall’Amico, M.; Endrizzi, S.; Gruber, S.; Rigon, R. A Robust and Energy-Conserving Model of Freezing Variably-Saturated Soil. Cryosphere 2011, 5, 469–484. [Google Scholar] [CrossRef] [Green Version]
- Shangguan, W.; Dai, Y.; Liu, B.; Zhu, A.; Duan, Q.; Wu, L.; Ji, D.; Ye, A.; Yuan, H.; Zhang, Q.; et al. A China Data Set of Soil Properties for Land Surface Modeling. J. Adv. Model. Earth Syst. 2013, 5, 212–224. [Google Scholar] [CrossRef]
- Zhu, Z.; Shi, C.; Zhang, T.; Wang, J. Applicability analysis of four soil moisture reanalysis datasets in China. Plateau Meteorol. 2018, 37, 240–252. [Google Scholar]
- Yang, K.; Zhang, J. Evaluation of Reanalysis Datasets against Observational Soil Temperature Data over China. Clim. Dyn. 2018, 50, 317–337. [Google Scholar] [CrossRef]
- Guo, D.; Yang, M.; Wang, H. Characteristics of Land Surface Heat and Water Exchange under Different Soil Freeze/Thaw Conditions over the Central Tibetan Plateau. Hydrol. Process. 2011, 25, 2531–2541. [Google Scholar] [CrossRef]
- Zhang, Y.; Peña-Arancibia, J.L.; McVicar, T.R.; Chiew, F.H.S.; Vaze, J.; Liu, C.; Lu, X.; Zheng, H.; Wang, Y.; Liu, Y.Y.; et al. Multi-Decadal Trends in Global Terrestrial Evapotranspiration and Its Components. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Wang, Y.; Liu, X.; Zhao, H.; Wang, G.; Shao, R. Estimating the Evaporation in the Fenghuo Mountains Permafrost Region of the Tibetan Plateau. CATENA 2020, 194, 104754. [Google Scholar] [CrossRef]
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A.; et al. The Future of Evapotranspiration: Global Requirements for Ecosystem Functioning, Carbon and Climate Feedbacks, Agricultural Management, and Water Resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Dickinson, R.E. A Review of Global Terrestrial Evapotranspiration: Observation, Modeling, Climatology, and Climatic Variability: Global Terrestrial Evapotranspiration. Rev. Geophys. 2012, 50, RG2005. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; de Jeu, R.; et al. Recent Decline in the Global Land Evapotranspiration Trend Due to Limited Moisture Supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Xue, Y.; Liu, Y. Impact of Frozen Soil Processes on Soil Thermal Characteristics at Seasonal to Decadal Scales over the Tibetan Plateau and North China. Hydrol. Earth Syst. Sci. 2021, 25, 2089–2107. [Google Scholar] [CrossRef]
- Clayton, L.K.; Schaefer, K.; Battaglia, M.J.; Bourgeau-Chavez, L.; Chen, J.; Chen, R.H.; Chen, A.; Bakian-Dogaheh, K.; Grelik, S.; Jafarov, E.; et al. Active Layer Thickness as a Function of Soil Water Content. Environ. Res. Lett. 2021, 16, 055028. [Google Scholar] [CrossRef]
- Wu, X.; Shi, W.; Fang, H.; Li, W.; Zhao, Y.; Zhao, L. Distribution of soils and landform relationships in the permafrost regions of Qinghai-Xizang (Tibetan) Plateau. Chin. Sci. Bull. 2015, 60, 2216–2226. [Google Scholar] [CrossRef]
- Wang, G.; Liu, G.; Li, C.; Yang, Y. The Variability of Soil Thermal and Hydrological Dynamics with Vegetation Cover in a Permafrost Region. Agric. For. Meteorol. 2012, 162–163, 44–57. [Google Scholar] [CrossRef]
- Wen, Z.; Niu, F.; Yu, Q.; Wang, D.; Feng, W.; Zheng, J. The Role of Rainfall in the Thermal-Moisture Dynamics of the Active Layer at Beiluhe of Qinghai-Tibetan Plateau. Env. Earth Sci. 2014, 71, 1195–1204. [Google Scholar] [CrossRef]
- Douglas, T.A.; Turetsky, M.R.; Koven, C.D. Increased Rainfall Stimulates Permafrost Thaw across a Variety of Interior Alaskan Boreal Ecosystems. NPJ Clim. Atmos. Sci. 2020, 3, 28. [Google Scholar] [CrossRef]
- Zhou, X.; Buchli, T.; Kinzelbach, W.; Stauffer, F.; Springman, S.M. Analysis of Thermal Behaviour in the Active Layer of Degrading Mountain Permafrost: Thermal Behaviour in the Active Layer of Degrading Mountain Permafrost. Permafr. Periglac. Process. 2015, 26, 39–56. [Google Scholar] [CrossRef]
Site | Land Cover Type | Time Period | Observation Projects | Monitoring Depth (cm) | |
---|---|---|---|---|---|
Soil Temperature | Soil Moisture | ||||
TGL | Grassy alpine meadow | 1 January 2006–31 December 2007 | Soil temperature, Soil moisture, The near-surface air temperature, Wind speed, Pressure, Precipitation rate, Specific humidity, Downward shortwave radiation, Upward longwave radiation | 2, 5, 10, 20, 50, 70, 90, 105, 140, 175, 210, 245, 280,300 | 5, 10, 20, 35, 70, 105, 140, 175, 210, 245, 280, 300 |
BLH | Alpine swamp meadow | 1 January 2009–31 December 2010 | 2, 5, 10, 20, 50, 70, 90, 120, 150, 180, 200, 210, 220, 240 | 5, 30, 50, 60, 90, 120, 150, 180, 220, 240 |
Soil Depth (cm) | TGL | Soil Depth (cm) | BLH | ||||
---|---|---|---|---|---|---|---|
BIAS | RMSE (°C) | Corr | BIAS | RMSE (°C) | Corr | ||
5 | −0.8722 | 1.8777 | 0.9778 | 5 | −1.6866 | 2.6385 | 0.9754 |
10 | −0.8251 | 1.7261 | 0.9802 | 10 | −1.5289 | 2.4123 | 0.9806 |
20 | −0.8159 | 1.6033 | 0.9817 | 20 | −1.5105 | 2.2589 | 0.9843 |
35 | −0.9819 | 1.6631 | 0.9796 | 50 | −1.5255 | 2.0915 | 0.9759 |
70 | −1.1519 | 1.8381 | 0.9690 | 70 | −1.5337 | 1.7909 | 0.9693 |
105 | −1.3475 | 1.9720 | 0.9753 | 90 | −1.3453 | 1.6551 | 0.9562 |
140 | −1.4231 | 2.3269 | 0.9572 | 120 | −1.1638 | 1.5693 | 0.9274 |
175 | −1.5233 | 2.5026 | 0.9361 | 150 | −1.1088 | 1.4794 | 0.9174 |
210 | −1.5816 | 2.6334 | 0.9022 | 180 | −1.0542 | 1.4757 | 0.9042 |
245 | −1.6224 | 2.6088 | 0.8814 | 200 | −1.0328 | 1.5204 | 0.8792 |
280 | −1.6643 | 2.4766 | 0.8860 | 220 | −1.0163 | 1.5365 | 0.8562 |
300 | −1.6766 | 2.4315 | 0.8830 | 240 | −0.9877 | 1.5676 | 0.8229 |
Soil Depth (cm) | TGL | Soil Depth (cm) | BLH | ||||
---|---|---|---|---|---|---|---|
BIAS | RMSE (m3/m3) | Corr | BIAS | RMSE (m3/m3) | Corr | ||
5 | 0.0034 | 0.0350 | 0.8815 | 5 | −0.0486 | 0.0743 | 0.8176 |
10 | 0.0489 | 0.0530 | 0.9346 | 10 | 0.0342 | 0.0819 | 0.8938 |
20 | 0.1017 | 0.1063 | 0.9212 | 20 | 0.0734 | 0.1206 | 0.9001 |
35 | 0.0355 | 0.0612 | 0.8847 | 50 | 0.0891 | 0.1468 | 0.8545 |
70 | 0.0207 | 0.0457 | 0.8591 | 70 | 0.0803 | 0.1248 | 0.8507 |
105 | 0.0405 | 0.0830 | 0.7657 | 90 | 0.0080 | 0.0634 | 0.7632 |
140 | 0.0706 | 0.1021 | 0.8140 | 120 | 0.2052 | 0.2160 | 0.9046 |
175 | 0.0477 | 0.0950 | −0.6821 | 150 | 0.2219 | 0.2350 | 0.8872 |
210 | 0.0544 | 0.0848 | 0.7499 | 180 | 0.2650 | 0.2749 | −0.8456 |
245 | 0.1515 | 0.1704 | 0.6459 | 200 | 0.2929 | 0.3153 | −0.1106 |
280 | 0.1616 | 0.1808 | −0.5705 | 220 | 0.3252 | 0.3974 | 0.0377 |
300 | 0.1749 | 0.1963 | 0.4962 | 240 | 0.1622 | 0.1671 | 0.8598 |
Soil Depth (cm) | TGL | Soil Depth (cm) | BLH | ||||
---|---|---|---|---|---|---|---|
BIAS | RMSE (MJ/m3) | Corr | BIAS | RMSE (MJ/m3) | Corr | ||
5 | 0.2001 | 11.9733 | 0.5734 | 5 | −1.5809 | 3.9644 | 0.9013 |
10 | 2.3078 | 11.2027 | 0.6391 | 10 | 2.0562 | 4.6045 | 0.9202 |
20 | 3.4077 | 5.7588 | 0.7717 | 20 | 3.1722 | 5.4036 | 0.9430 |
35 | 1.4851 | 4.5304 | 0.7133 | 50 | 3.2479 | 4.7180 | 0.9037 |
70 | 0.7506 | 3.6396 | 0.6416 | 70 | 0.8996 | 2.2412 | 0.7921 |
105 | −0.7281 | 1.8612 | 0.6652 | 90 | −0.5741 | 1.8217 | 0.6637 |
140 | −1.1749 | 1.6008 | 0.7679 | 120 | 1.4109 | 2.7366 | 0.5952 |
175 | −1.9666 | 2.3464 | 0.3819 | 150 | 0.8407 | 2.8487 | 0.4523 |
210 | −2.4094 | 2.5454 | 0.5438 | 180 | −0.3096 | 1.1761 | 0.4889 |
245 | −2.2636 | 2.3779 | 0.4628 | 200 | −0.6809 | 0.7675 | 0.9044 |
280 | −2.3919 | 2.4647 | 0.4146 | 220 | −1.1704 | 1.1812 | 0.5883 |
300 | −2.5789 | 2.6397 | 0.1496 | 240 | −0.9993 | 1.0171 | 0.1117 |
Site | Year | a | b | R2 |
---|---|---|---|---|
TGL | 2006 | 74.1082 | 1.0534 | 0.9230 |
2007 | 98.1059 | 1.0503 | 0.9678 | |
BLH | 2009 | 130.4137 | 1.0507 | 0.9827 |
2010 | 79.1856 | 1.0543 | 0.9072 |
Site | a | b | R2 |
---|---|---|---|
TGL | 0.3896 | 1.0691 | 0.7375 |
BLH | 0.4038 | 1.0751 | 0.7275 |
Site | Year | The Absolute Value of Qw/Qt |
---|---|---|
TGL | 2006 | 38.48% |
2007 | 20.25% | |
BLH | 2009 | 18.66% |
2010 | 19.42% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Li, R.; Wu, T.; Zhao, L.; Wu, X.; Hu, G.; Yao, J.; Ma, J.; Liu, W.; Jiao, Y.; et al. Evaluating the Impact of Soil Enthalpy upon the Thawing Process of the Active Layer in Permafrost Regions of the Qinghai–Tibet Plateau Using CLM5.0. Remote Sens. 2023, 15, 249. https://doi.org/10.3390/rs15010249
Wang S, Li R, Wu T, Zhao L, Wu X, Hu G, Yao J, Ma J, Liu W, Jiao Y, et al. Evaluating the Impact of Soil Enthalpy upon the Thawing Process of the Active Layer in Permafrost Regions of the Qinghai–Tibet Plateau Using CLM5.0. Remote Sensing. 2023; 15(1):249. https://doi.org/10.3390/rs15010249
Chicago/Turabian StyleWang, Shenning, Ren Li, Tonghua Wu, Lin Zhao, Xiaodong Wu, Guojie Hu, Jimin Yao, Junjie Ma, Wenhao Liu, Yongliang Jiao, and et al. 2023. "Evaluating the Impact of Soil Enthalpy upon the Thawing Process of the Active Layer in Permafrost Regions of the Qinghai–Tibet Plateau Using CLM5.0" Remote Sensing 15, no. 1: 249. https://doi.org/10.3390/rs15010249
APA StyleWang, S., Li, R., Wu, T., Zhao, L., Wu, X., Hu, G., Yao, J., Ma, J., Liu, W., Jiao, Y., Xiao, Y., Yang, S., Shi, J., & Qiao, Y. (2023). Evaluating the Impact of Soil Enthalpy upon the Thawing Process of the Active Layer in Permafrost Regions of the Qinghai–Tibet Plateau Using CLM5.0. Remote Sensing, 15(1), 249. https://doi.org/10.3390/rs15010249