Comparison of Lake Extraction and Classification Methods for the Tibetan Plateau Based on Topographic-Spectral Information
Abstract
:1. Introduction
2. Research Region and Data Sources
2.1. Research Region
2.2. Data Sources
2.2.1. Landsat Image Data
2.2.2. DEM Data
2.2.3. Regional Boundary Range Data
2.2.4. Sampling and Verifying Data
3. Flow Chart of Automatic Lake Extraction Method on the Tibetan Plateau
3.1. Image Preprocessing
3.2. Feature Construction
3.2.1. Spectral Characteristics
3.2.2. Topographic Features
3.3. Feature Optimization
3.4. Supervised Classification
3.4.1. Classifier and Parameter Setting
3.4.2. Sample Selection
3.5. Classification Post-Processing
3.6. Cartographic Accuracy Evaluation
4. Results and Analysis
4.1. Automatic Lake Extraction of the Tibetan Plateau
4.1.1. Feature Selection of Lake Extraction
4.1.2. Lake Extraction
4.2. Comparison of Lake Extraction from Different Machine Learning Methods
4.2.1. Verification Based on Vector Lake Datasets
4.2.2. Key Areas Comparison of Lake Extraction
5. Discussion
5.1. Feature and Sample Selection
5.2. DEM Data Precision
5.3. Snow Cover
5.4. Validation Datasets
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, A.; Yao, T.; Wang, L. Remote sensing study on the changes of typical glaciers and lakes in Qinghai-Xizang Plateau. Glacial Permafr. 2005, 6, 783–792. [Google Scholar]
- Lu, A.; Wang, L.; Yao, T. Study on remote sensing methods for modern changes of lakes in Qinghai-Xizang Plateau. Remote Sens. Technol. Appl. 2006, 3, 173–177. [Google Scholar]
- Liu, B.; Li, L.; Du, Y.; Liang, T.; Duan, S.; Hou, F.; Ren, J. Analysis on the cause and influence of embankment collapse of Zhuonai Lake in Hoh Xili, Qinghai-Tibet Plateau. Glacial Permafr. 2016, 38, 305–311. [Google Scholar]
- Sun, H. The Formation and Evolution of the Qinghai-Xizang Plateau; Shanghai Science and Technology Press: Shanghai, China, 1996. [Google Scholar]
- Lv, L.; Zhang, T.; Yi, G.; Miao, J.; Li, J.; Bie, X.; Huang, X. Response relationship between lake area change and climatic factors in Qinghai-Xizang Plateau since 2000. Lake Sci. 2019, 31, 573–589. [Google Scholar]
- Li, D.; Wu, B.; Chen, B.; Xue, Y.; Zhang, Y. Research progress and prospect of water information extraction based on satellite remote sensing. J. Tsinghua Univ. 2020, 60, 147–161. [Google Scholar]
- Du, Y.; Zhou, C. Automatic extraction method of remote sensing information of water body. J. Remote Sens. 1998, 4, 264–269. [Google Scholar]
- Su, L.; Li, Z.; Gao, F.; Yu, M. A review of water extraction from remote sensing images. Remote Sens. Land Resour. 2021, 33, 9–19. [Google Scholar]
- Zhou, C.; Luo, J.; Yang, X. Geoscience Understanding and Analysis of Remote Sensing Images; Science Publishing House: Beijing, China, 1999. [Google Scholar]
- Wang, J.; Zhang, Y.; Kong, G. Application of spectral relation method in water feature extraction. Mine Surv. 2004, 4, 30–32. [Google Scholar]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Study on extracting water information using modified normalized difference water body index (MNDWI). J. Remote Sens. 2005, 5, 589–595. [Google Scholar]
- Li, L.; Su, H.; Du, Q.; Wu, T. A novel surface water index using local background information for long term and large-scale Landsat images. ISPRS J. Photogramm. Remote Sens. 2021, 172, 59–78. [Google Scholar] [CrossRef]
- Ding, F. Experimental study on water information extraction based on new water index (NWI). Sci. Surv. Mapp. 2009, 34, 155–157. [Google Scholar]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Cui, Q.; Wang, J.; Wang, M. Vector constrained water extraction from object-oriented high-score remote sensing images. Remote Sens. Inf. 2018, 33, 115–121. [Google Scholar]
- Li, M.; Hong, L.; Guo, J.; Zhu, A. Automated extraction of lake water bodies in complex geographical environments by fusing Sentinel-1/2 Data. Water 2022, 14, 30. [Google Scholar] [CrossRef]
- Shen, L.; Li, C. Water body extraction from Landsat ETM+ imagery using Adaboost algorithm. In Proceedings of the 18th International Conference on Geoinformatics, Beijing, China, 18–20 June 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Ko, B.C.; Kim, H.H.; Nam, J.Y. Classification of Potential Water Bodies Using Landsat 8 OLI and a Combination of Two Boosted Random Forest Classifiers. Sensors 2015, 15, 13763–13777. [Google Scholar] [CrossRef] [Green Version]
- Barbieux, K.; Charitsi, A.; Merminod, B. Icy lakes extraction and water-ice classification using Landsat 8 OLI multispectral data. Int. J. Remote Sens. 2018, 39, 3646–3678. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Bao, A.; Zhang, J.; Bai, J. Temporal change and attribution of Balikun Lake area in Xinjiang from 1995 to 2020. Study Arid. Area 2021, 38, 1514–1523. [Google Scholar]
- Zhang, G.; Yao, T.; Xie, H.; Zhang, K.; Zhu, F. Lakes’ state and abundance across the Tibetan Plateau. Chin. Sci. Bull. 2014, 59, 3010–3021. [Google Scholar] [CrossRef]
- Huang, L.; Li, Z.; Zhou, J.; Zhang, P. An automatic method for clean glacier and nonseasonal snow area change estimation in High Mountain Asia from 1990 to 2018. Remote Sens. Environ. 2021, 258, 112376. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Wu, J. Long-term dynamic monitoring of ecological quality of urban agglomeration based on GoogleEarthEngine Cloud Computing—A case study of Guangdong-Hong Kong-Macau Greater Bay Area. J. Ecol. 2020, 40, 8461–8473. [Google Scholar]
- Niu, Q.; Liu, L.; Huang, G.; Cheng, Q.; Cheng, Y. Identification of complex planting structure in Hetao Irrigation District based on GEE and machine learning. J. Agric. Eng. 2022, 38, 165–174. [Google Scholar]
- Li, P.; Liu, X.; Huang, Y.; Zhang, H. Extraction of impervious water surface time series in main urban area of Guangzhou City based on GEE platform. J. Geo-Inf. Sci. 2020, 22, 638–648. [Google Scholar]
- Crist, E.P.; Cicone, R.C. A Physically-Based Transformation of Thematic Mapper Data—The TM Tasseled Cap. IEEE Trans. Geosci. Remote Sens. 1984, 22, 256–263. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Tateishi, R. A water index for rapid mapping of shoreline changes of five East African rift valley lakes: An empirical analysis using Landsat TM and ETM+ data. Int. J. Remote Sens. 2006, 27, 3153–3181. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Hird, J.N.; Kariyeva, J.; Mcdermid, G.J. Satellite time series and Google Earth Engine democratize the process of forest—Recovery monitoring over large areas. Remote Sens. 2021, 13, 4745. [Google Scholar] [CrossRef]
- Dong, J.; Li, S.; Zeng, Y.; Yan, K.; Fu, D. Remote Sensing Cloud Computing and Scientific Analysis—Application and Practice; Science Publishing House: Beijing, China, 2020. [Google Scholar]
- Zhou, Z. Machine Learning; Tsinghua University Press: Beijing, China, 2016. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Jerome, H.F. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 5. [Google Scholar]
- Wang, Z. Multi-Source Remote Sensing Monitoring of Environmental Elements of Lakes in Qinghai-Xizang Plateau and Its Response to Climate Change. Master’s Thesis, Shandong Normal University, Jinan, China, 2017. [Google Scholar]
- Bohner, J. General climatic controls and topoclimatic variations in Central and High Asia. Boreas 2006, 35, 279–295. [Google Scholar] [CrossRef]
- Liang, D. Lake Area Change in Qinghai-Xizang Plateau and Its Response to Climate Change from 1975 to 2010. Master’s Thesis, China University of Geosciences, Beijing, China, 2016. [Google Scholar]
- Chen, F.; Zhang, M.; Tian, B.; Li, Z. Extraction of Glacial Lake Outlines in Tibet Plateau Using Landsat 8 Imagery and Google Earth Engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4002–4009. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, 2. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Yao, T.; Xie, H.; Kang, S.; Lei, Y. Increased mass over the Tibetan Plateau: From lakes or glaciers? Geophys. Res. Lett. 2013, 40, 2125–2130. [Google Scholar] [CrossRef]
- Messager, M.L.; Lehner, B.; Grill, G.; Nedeva, I.; Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 2016, 7, 13603. [Google Scholar] [CrossRef]
- Zhang, G.; Luo, W.; Chen, W.; Zheng, G. A robust but variable lake expansion on the Tibetan Plateau. Sci. Bull. 2019, 64, 1306–1309. [Google Scholar] [CrossRef]
- Tan, Q.; Liu, Z.; Hu, J. Extraction of morphological parameters of Poyang Lake using multi-source remote sensing images. J. Beijing Jiaotong Univ. 2006, 30, 26–30. [Google Scholar]
- Bi, H.; Wang, S.; Zeng, J.; Zhao, Y.; Wang, H.; Yin, H. Comparison and analysis of several common water extraction methods based on TM images. Remote Sensing Information 2012, 27, 77–82. [Google Scholar]
- Chen, H.; Wang, J.; Chen, Z.; Yang, L.; Xi, W. Comparison of methods for extracting water body information from TM images in mountainous and plateau areas—Taking part of Shangri La County as an example. Remote Sens. Technol. Appl. 2004, 6, 479–484. [Google Scholar]
- Yan, P.; Zhang, Y.; Zhang, Y. Study on extracting water system information in semi-arid area using enhanced water index (EWI) and GIS noise removal technology. Remote Sens. Inf. 2007, 6, 62–67. [Google Scholar]
- Cao, R.; Li, C.; Liu, L.; Wang, J.; Yan, G. Miyun Reservoir area extraction and change monitoring based on water index. Sci. Surv. Mapp. 2008, 2, 158–160. [Google Scholar]
- Wang, A.; Liu, J.; Wang, C.; Wang, R. Dongping Lake wetland information extraction based on density segmentation and object oriented. J. Shandong Agric. Univ. 2017, 48, 70–74. [Google Scholar]
- Sazib, N.; Mladenova, I.; Bolten, J. Leveraging the Google Earth Engine for drought assessment using global soil moisture data. Remote Sens. 2018, 10, 1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, F.Y.; Sloan, I.H. Lifting the curse of dimensionality. Not. AMS 2005, 52, 1320–1328. [Google Scholar]
- Acharya, T.D.; Subedi, A.; Lee, D.H. Evaluation of Machine Learning Algorithms for Surface Water Extraction in a Landsat 8 Scene of Nepal. Sensors 2019, 19, 2769. [Google Scholar] [CrossRef] [Green Version]
- Bach, F. Breaking the curse of dimensionality with convex neural networks. J. Mach. Learn. Res. 2017, 18, 629–681. [Google Scholar]
- Zhang, X.; Feng, X.; Jiang, H. Feature space optimization of object-oriented classification. J. Remote Sens. 2009, 13, 664–677. [Google Scholar]
- Chen, Y. Analysis and comparison of random forest and gradient lifting decision tree based on integrated learning algorithm. Comput. Knowl. Technol. 2021, 17, 32–34. [Google Scholar]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Huang, X.; Lu, Q.; Zhang, L.; Plaza, A. New Postprocessing Methods for Remote Sensing Image Classification: A Systematic Study. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7140–7159. [Google Scholar] [CrossRef]
- Hu, M.; Zhou, G.; Lv, X.; Zhou, L.; He, X.; Tian, Z. A new automatic extraction method for glaciers on the Tibetan Plateau under clouds, shadows and snow cover. Remote Sens. 2022, 14, 3084. [Google Scholar] [CrossRef]
- Zourarakis, D.P. Remote Sensing Handbook—Volume I: Remotely Sensed Data Characterization, Classification, and Accuracies. Photogramm. Eng. Remote Sens. 2018, 84, 481. [Google Scholar] [CrossRef]
- Tofallis, C. Measuring relative accuracy: A better alternative to mean absolute percentage error. SSRN Electronic Journal. 2013. [Google Scholar] [CrossRef]
- Ji, X.; Chen, Y.; Luo, X.; Li, Y. Study on the identification method of glacier in mountain shadows based on Landsat 8 OLI image. Spectrosc. Spectr. Anal. 2018, 38, 3857–3863. [Google Scholar]
- Zhang, H.; Wang, D.; Gao, Y.; Gong, W. Research on information extraction of shaded water body based on OLI data and decision tree method. Surv. Mapp. Eng. 2017, 26, 45–48. [Google Scholar]
- Sun, J. Surface Water Information Extraction from High Resolution Remote Sensing Images Based on Ensemble Learning. Master’s Thesis, Jilin University, Changchun, China, 2020. [Google Scholar]
- Cui, Q.; Wang, M.; Huang, Y. Extraction of water information in Shanghai based on random forest model and six kinds of water index. Bull. Surv. Mapp. 2022, 2, 106–109. [Google Scholar]
- Rajesh, K.; Jawahar, C.V.; Sengupta, S.; Sinha, S. Performance analysis of textural features for characterization and classification of SAR images. Int. J. Remote Sens. 2001, 22, 1555–1569. [Google Scholar] [CrossRef]
- Du, J.; Huang, Y.; Feng, X.; Wang, Z. Research on water extraction and classification from SPOT satellite images. J. Remote Sens. 2001, 3, 214–219. [Google Scholar]
2021 | 2016 | ||
---|---|---|---|
Sample Categories | Number of Samples | Sample Categories | Number of Samples |
Lake | 684 | Lake | 455 |
River and wetland | 200 | River and wetland | 471 |
Snow and ice cover | 317 | Snow and ice cover | 400 |
Other | 367 | Other | 369 |
Characteristic Types | Source | Name |
---|---|---|
Spectral characteristics | Raw bands of sensor | B1-B7, B9 |
Tasseled cap transformation of composite image | Brightness, Greenness, Wetness | |
Combination of sensor raw bands | NDWI, MNDWI, EWI, NWI, RNDWI, NDWI3, AWEInsh, RNSS | |
Topographic characteristics | SRTMGL1_003 | Elevation, Hillshade, Slope, Aspect |
Year | Classification Algorithm | Spectral Features | Topographic Features |
---|---|---|---|
2021 | Cart | B1, B7, NDWI, Wetness | Slope |
RF | B1, B4, B5, B6, EWI, RNDWI, Wetness | Slope, Elevation | |
GBDT | B4, B5, B7, NDWI, RNSS, Greenness | Elevation, Slope, Aspect, Hillshade | |
2016 | Cart | B1, MNDWI, EWI | Hillshade, Elevation, Slope |
RF | B1, B3, B4, B5, B6, B7, B9, Greenness, Wetness, Brightness, NWI, NDWI, AWEInsh, MNDWI, EWI | Hillshade, Elevation, Slope | |
GBDT | B1, B9, NWI, EWI, MNDWI, RNSS | Elevation, Slope, Aspect, Hillshade |
Year | Classification Algorithm | Overall Accuracy | Kappa Coefficient | User’s Accuracy | Producer’s Accuracy |
---|---|---|---|---|---|
2021 | GBDT | 97.02% | 0.958 | 98.18% | 87.10% |
RF | 96.81% | 0.954 | 96.23% | 82.26% | |
Cart | 94.68% | 0.924 | 94.00% | 75.81% | |
2016 | GBDT | 89.57% | 0.861 | 85.71% | 83.21% |
RF | 88.78% | 0.850 | 89.74% | 76.64% | |
Cart | 81.30% | 0.751 | 70.90% | 69.34% |
Year | Classification Algorithm | Overall Accuracy | Kappa Coefficient | User’s Accuracy | Producer’s Accuracy |
---|---|---|---|---|---|
2021 | GBDT | 99.88% | 0.933 | 89.18% | 98.24% |
RF | 99.86% | 0.929 | 89.01% | 97.27% | |
Cart | 99.84% | 0.919 | 86.52% | 95.89% | |
2016 | GBDT | 99.81% | 0.887 | 83.55% | 94.67% |
RF | 99.67% | 0.815 | 72.36% | 93.70% | |
Cart | 99.43% | 0.650 | 61.58% | 69.54% |
Year | Project | Total Lake Area (km2) | Error Proportion |
---|---|---|---|
2021 | Validation dataset | 61333.31 | / |
Extraction of GBDT | 65949.28 | 7.53% | |
Extraction of RF | 67029.99 | 9.29% | |
Extraction of Cart | 69640.28 | 13.54% | |
2016 | Validation dataset | 49330.02 | / |
Extraction of GBDT | 55892.53 | 13.30% | |
Extraction of RF | 63876.03 | 29.49% | |
Extraction of Cart | 55708.78 | 12.93% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhou, G.; Lv, X.; Zhou, L.; Hu, M.; He, X.; Tian, Z. Comparison of Lake Extraction and Classification Methods for the Tibetan Plateau Based on Topographic-Spectral Information. Remote Sens. 2023, 15, 267. https://doi.org/10.3390/rs15010267
Wang X, Zhou G, Lv X, Zhou L, Hu M, He X, Tian Z. Comparison of Lake Extraction and Classification Methods for the Tibetan Plateau Based on Topographic-Spectral Information. Remote Sensing. 2023; 15(1):267. https://doi.org/10.3390/rs15010267
Chicago/Turabian StyleWang, Xiaoliang, Guangsheng Zhou, Xiaomin Lv, Li Zhou, Mingcheng Hu, Xiaohui He, and Zhihui Tian. 2023. "Comparison of Lake Extraction and Classification Methods for the Tibetan Plateau Based on Topographic-Spectral Information" Remote Sensing 15, no. 1: 267. https://doi.org/10.3390/rs15010267
APA StyleWang, X., Zhou, G., Lv, X., Zhou, L., Hu, M., He, X., & Tian, Z. (2023). Comparison of Lake Extraction and Classification Methods for the Tibetan Plateau Based on Topographic-Spectral Information. Remote Sensing, 15(1), 267. https://doi.org/10.3390/rs15010267