Spatio-Temporal Patterns and Driving Forces of Desertification in Otindag Sandy Land, Inner Mongolia, China, in Recent 30 Years
Abstract
:1. Introduction
2. Methodological Framework and Study Area
2.1. Methodological Framework
2.2. Study Area
3. Data and Methods
3.1. Data Preprocessing and Collection
3.2. Research Methods
3.2.1. Desertification Index
3.2.2. Theil-Sen Median Trend Analysis
3.2.3. Mann–Kendall Test
3.2.4. Meteorological Data Interpolation
3.2.5. Correlation Analysis
4. Results
4.1. Temporal Variation, Spatial Distribution and Evolution Trend of Desertification Degree
4.1.1. Spatial and Temporal Distribution Pattern of Desertification Degree
4.1.2. Evolutionary Characteristics of Desertification Degree
4.1.3. Trend Characteristics of Desertification Degree
4.2. Meteorological Driving Factors of Desertification
4.2.1. Spatial and Temporal Distribution of Meteorological Factors
4.2.2. Analysis of Spatio-Temporal Law of Meteorological Factors Driving Action
4.3. Human Activity Driving Factors of Desertification
4.3.1. Analysis on Driving Force of Population and Economic Development to Desertification
4.3.2. Analysis on the Driving Force of Agriculture and Animal Husbandry to Desertification
5. Discussion
5.1. Effects of Climate Change on Desertification
5.2. Effects of Human Activities on the Process of Desertification
5.3. Measures and Suggestions to Prevent or Slow down the Desertification Process
5.4. Uncertainties in the Process of Desertification and the Limitations of This Paper
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- United Nations Convention to Combat Desertification. Intergovernmental Negotiating Committee for a Convention to Combat Desertification, Elaboration of an International Convention to Combat Desertification in Countries Experiencing Serious Drought and/or Desertification, Particularly in Africa; U.N. Doc. A/AC.241/27, 33 L.L.M; United Nations: New York, NY, USA, 1994; p. 328. [Google Scholar]
- United Nations Convention to Combat Desertification. Conference of the Parties: Thirteenth Session Ordos, China, 6–16 September 2017. Available online: http://www2.unccd.int/sites/default/files/inline-files/Ordos%20declaration.pdf (accessed on 7 March 2022).
- Yuan, B.; Ren, S.; Chen, X. Can environmental regulation promote the coordinated development of economy and environment in China’s manufacturing industry? A panel data analysis of 28 sub-sectors. J. Clean. Prod. 2017, 149, 11–24. [Google Scholar]
- Chasek, P.; Akhtar-Schuster, M.; Orr, B.; Luise, A.; Rakoto, R.; Safriel, U. Land degradation neutrality: The science-policy interface from the UNCCD to national implementation. Environ. Sci. Policy 2019, 92, 182–190. [Google Scholar] [CrossRef]
- Abuzaid, A.; Abdelatif, A. Assessment of desertification using modified MEDALUS model in the north Nile Delta, Egypt. Geoderma 2022, 405, 115400. [Google Scholar] [CrossRef]
- National Guangming Daily (NGD). Notice on the Issuance of the “Sand Stop Desert, Total Protection of Green Mountains”. 18 June 2021. Available online: https://baijiahao.baidu.com/s?id=1702851808756173823&wfr=spider&for=pc (accessed on 27 April 2022).
- Li, S.; He, S.; Xu, Z.; Liu, Y.; Bloh, W. Desertification process and its effects on vegetation carbon sources and sinks vary under different aridity stress in Central Asia during 1990–2020. Catena 2023, 221, 106767. [Google Scholar] [CrossRef]
- Tu, Z.; Li, M.; Sun, T. Results and analysis of the fifth national desertification and desertification monitoring. For. Resour. Manag. 2016, 1, 106–110. (In Chinese) [Google Scholar]
- Nwilo, P.; Olayinka, D.; Okolie, C.; Emmanuel, E.; Orji, M.; Daramola, O. Impacts of land cover changes on desertification in northern Nigeria and implications on the Lake Chad Basin. J. Arid Environ. 2020, 18, 104190. [Google Scholar] [CrossRef]
- Meng, X.; Gao, X.; Li, S.; Li, S.; Lei, J. Monitoring desertification in Mongolia based on Landsat images and Google earth engine from 1990 to 2020. Ecol. Indic. 2021, 129, 107908. [Google Scholar] [CrossRef]
- Sharma, L.; Raj, A.; Somawat, K. Spatio-temporal assessment of environmentally sensitive areas (ESA) in the Thar Desert India, to combat desertification under UNCCD framework. J. Arid Environ. 2021, 194, 104609. [Google Scholar] [CrossRef]
- Tariq, A.; Ullah, A.; Sardans, J.; Zeng, F.; Graciano, C.; Li, X.; Wang, W.; Ahmed, Z.; Ali, S.; Zhang, Z.; et al. Alhagi sparsifolia: An ideal phreatophyte for combating desertification and land degradation. Sci. Total Environ. 2022, 844, 157228. [Google Scholar] [CrossRef]
- Guo, B.; Yang, F.; Fan, Y.; Zang, W. The dominant driving factors of rocky desertification and their variations in typical mountainous karst areas of southwest China in the context of global change. Catena 2023, 220, 106674. [Google Scholar] [CrossRef]
- Klinge, M.; Schneider, F.; Li, Y.; Frechen, M.; Sauer, D. Variations in geomorphological dynamics in the northern Khangai Mountains, Mongolia, since the Late Glacial period. Geomorphology 2022, 401, 108113. [Google Scholar] [CrossRef]
- Hanafi, A.; Jauffret, S. Are long-term vegetation dynamics useful in monitoring and assessing desertification processes in the arid steppe, southern Tunisia. J. Arid. Environ. 2008, 72, 565–572. [Google Scholar] [CrossRef]
- Sun, B.; Li, Z.; Gao, W.; Zhang, Y.Y.; Gao, Z.H.; Song, Z.L.; Qin, P.Y.; Tian, X. Identification and assessment of the factors driving vegetation degradation/regeneration in drylands using synthetic high spatiotemporal remote sensing data: A case study in Zhenglanqi, Inner Mongolia, China. Ecol. Indic. 2019, 107, 105614. [Google Scholar] [CrossRef]
- Gou, F.; Liang, W.; Sun, S.; Jin, Z.; Zhang, W.B.; Yan, J.W. Analysis of the desertification dynamics of sandy lands in Northern China over the period 2000–2017. Geocarto Int. 2019, 36, 1938–1959. [Google Scholar] [CrossRef]
- Ajaj, Q.; Pradhan, B.; Noori, A. Spatial monitoring of desertification extent in western iraq using Landsat images and GIS. Land Degrad. Dev. 2017, 3, 2775. [Google Scholar] [CrossRef]
- Hu, X.; Leung, K.; Li, W.; Cheung, L. Monitoring interannual dynamics of desertification in Minqin County, China, using dense Landsat time series. Int. J. Digit. Earth 2019, 13, 886–898. [Google Scholar] [CrossRef]
- Wang, T.; Yan, C.; Song, X.; Xie, J. Monitoring recent trends in the area of aeolian desertified land using Landsat images in China’s Xinjiang region. ISPRS J. Photogramm. Remote Sens. 2012, 68, 184–190. [Google Scholar] [CrossRef]
- Mohamed, H.; Djouher, S.; Moulley, C.C.; Francisco, M.-P.; Manuel, S.M. Spectral signs of aeolian activity around a sand-dune belt in northern Algeria. Catena 2019, 182, 104175. [Google Scholar]
- Dong, Y.X.; Liu, Y.H. Study on desertification process in Hunshandake Sandy Land, Inner Mongolia during the past five thousand years. Arid. Land Geogr. 1993, 16, 45–51. (In Chinese) [Google Scholar]
- Yang, X.; Ding, Z.; Fan, X.; Zhou, Z.; Ma, N. Processes and mechanisms of desertification in northern China during the last 30 years, with a special reference to the Hunshandake Sandy Land, eastern Inner Mongolia. Catena 2007, 71, 2–12. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.Q.; Qin, S.G.; Wu, B.; Wu, X.Q.; Zhu, Y.K.; Shao, Y.Y.; Gao, Y.; Jin, Q.T.; Lai, Z.R. Effects of seasonal variability of climatic factors on vegetation coverage across drylands in northern China. Land Degrad. Dev. 2018, 29, 1782–1791. [Google Scholar] [CrossRef]
- Bai, M.; Hao, R.Q. Effects of climate change on ecological environment evolution in Oshandake Sandy Land. J. Desert Res. 2006, 26, 484–488. (In Chinese) [Google Scholar]
- Sun, B.; Wang, Y.; Li, Z.; Gao, W.; Wu, J.; Li, J.; Song, Z.; Gao, Z. Estimating Soil Organic Carbon Density in the Otindag Sandy Land, Inner Mongolia, China, for modelling spatiotemporal variations and evaluating the influences of human activities. Catena 2019, 179, 85–97. [Google Scholar] [CrossRef]
- Wu, J.; Shi, M.; Ding, G. Spatial-temporal pattern of desertification in Zhenglan Banner of Otindag sandy land. Sci. Soil Water Conserv. 2019, 17, 110–119. (In Chinese) [Google Scholar]
- Wu, J.; Li, Z.; Gao, Z.; Wang, B.; Bai, L.; Sun, B.; Li, C.; Ding, X. Degraded land detection by soil particle composition derived from multispectral remote sensing data in the Otindag Sandy Lands of China. Geoderma 2015, 241, 97–106. [Google Scholar] [CrossRef]
- Cong, W.; Li, X.; Pan, X.; Liu, X.; Lu, Q.; Wang, F. A new scientific framework of dryland ecological quality assessment based on 10AO principle. Ecol. Indic. 2022, 136, 108595. [Google Scholar] [CrossRef]
- Wang, X.; Lou, J.; Cai, D.; Jiao, L. Effects of Earth surface processes on the heterogeneity of surface soil elements and the responses of vegetation elements in the Otindag Desert, China. Catena 2019, 183, 104214. [Google Scholar] [CrossRef]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Qi, J.; Marsett, R.; Moran, M. Spatial and temporal dynamics of vegetation in the San Pedro River basin area. Agric. For. Meteorol. 2000, 105, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Mandelbrot, B.B.; Wallis, J.R. Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical de-pendence. Water Resour. Res. 1969, 5, 967–988. [Google Scholar] [CrossRef]
- Stow, D.; Hope, A.; McGuire, D.; Verbyla, D.; Gamon, J.; Huemmric, F.; Housto, S.; Racine, C.; Sturm, M.; Tape, K. Remote sensing of vegetation and land-cover change in Arctic Tundra ecosystems. Remote Sens. Environ. 2004, 89, 281–308. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, S.; Bai, X.; Tan, Q. Factors affecting long-term trends in global NDVI. Forests 2019, 10, 372. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.; Wang, B.; Shi, M.; Meng, Z.; Zhang, C. Variation in Vegetation and Its Driving Force in the Middle Reaches of the Yangtze River in China. Water 2021, 13, 2036. [Google Scholar] [CrossRef]
- Jin, Q.; Zhang, J.; Shi, M.; Huang, J. Estimating Loess Plateau Average Annual Precipitation with Multiple Linear Regression Kriging and Geographically Weighted Regression Kriging. Water 2016, 8, 266. [Google Scholar] [CrossRef] [Green Version]
- Stefaine, H. Shape improvement of surfaces. J. Comput. 1998, 13, 135–152. [Google Scholar]
- Andréas, H.; Alfonso, V. Spearman rank correlation of the bivariate Student and scale mixtures of normal distributions. J. Multivar. Anal. 2020, 179, 104650. [Google Scholar]
- Xu, D.; Wang, Y.; Wang, Z.; Wang, F. Linking priority areas and land restoration options to support desertification control in northern China. Ecol. Indic. 2022, 137, 108747. [Google Scholar] [CrossRef]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Wang, X.; Song, J.; Xiao, Z.; Wang, J.; Hu, F. Desertification in the Mu Us Sandy Land in China: Response to climate change and human activity from 2000 to 2020. Geography and Sustainability. 2022, 3, 177–189. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Li, J.; Zhang, Z.; Zheng, Y. The impact of climate change on aeolian desertification in northern China: Assessment using aridity index. Catena 2021, 207, 105681. [Google Scholar] [CrossRef]
- Orabi, O.; Zaky, A. Differential dissolution susceptibility of Paleocene foraminiferal assemblage from Farafra Oasis, Egypt. J. Afr. Earth Sci. 2016, 113, 181–193. [Google Scholar] [CrossRef]
- Duan, H.; Wang, T.; Xue, X.; Yan, C. Dynamic monitoring of aeolian desertification based on multiple indicators in Horqin Sandy Land, China. Sci. Total Environ. 2019, 650, 2374–3288. [Google Scholar] [CrossRef] [PubMed]
- Rocio, B.; Carlos, A.; Enrique, G.; Carlos, D.; Khalidou, M. Assessing desertification risk in the semi-arid highlands of central Mexico. J. Arid. Environ. 2015, 120, 4–13. [Google Scholar]
- Shao, Y.; Jiang, Q.; Wang, C.; Wang, M.; Xiao, L.; Qi, Y. Analysis of critical land degradation and development processes and their driving mechanism in the Heihe River Basin. Sci. Total Environ. 2020, 716, 137082. [Google Scholar] [CrossRef] [PubMed]
- Shoba, P.; Ramakrishnn, S. Modeling the contributing factors of desertification and evaluating their relationships to the soil degradation process through geomatic techniques. Solid Earth 2016, 7, 341–354. [Google Scholar] [CrossRef] [Green Version]
- Lamchin, M.; Lee, J.; Lee, W.; Lee, E.; Kim, M.; Lim, C.; Choi, H.; Kim, S. Assessment of land cover change and desertification using remote sensing technology in a local region of Mongolia. Adv. Space Res. 2016, 57, 64–77. [Google Scholar] [CrossRef]
- Feng, K.; Wang, T.; Liu, S.; Yan, C.; Kang, W.; Chen, X.; Guo, Z. Path analysis model to identify and analyse the causes of aeolian desertification in Mu Us Sandy Land, China. Ecol. Indic. 2021, 124, 107386. [Google Scholar] [CrossRef]
- Wang, X.M.; Hua, T.; Lang, L.L.; Ma, W.Y. Spatial differences of aeolian desertification responses to climate in arid Asia. Glob. Planet. Chang. 2017, 148, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Feng, K.; Yan, C.Z.; Xie, J.L.; Qian, D.W. Spatial-temporal evolutionof aeolian desertification process in Ordos city during 1975–2015. J. Desert Res. 2018, 38, 233–242. (In Chinese) [Google Scholar]
- Li, J.; Zhang, C.L.; Li, Q.; Shen, Y.P.; Jia, W.R.; Tian, J.L. Development of sandy desertification and driving forces in HulunBuir sandy land in the past 15 year. J. Beijing Norm. Univ. 2017, 53, 323–328. (In Chinese) [Google Scholar]
- Wang, Y.Q.; Yin, S.; Guo, E.L.; Peng, X.Q.; Guo, L.F.; Li, Y.W. Desertification dynamic analysis based on landsat-8 OLI image: Take XilinGol League as an example. J. Inn. Mong. Agric. Univ. 2018, 39, 58–63. (In Chinese) [Google Scholar]
- Brain, S. The great Stalin plan for the transformation of nature. Environ. Hist. 2010, 15, 670–700. [Google Scholar] [CrossRef]
- Dahl, J. Progress and development of the prairie states forestry project. J. For. 1940, 38, 301–306. [Google Scholar]
- Liu, Q.; Zhang, Q.; Yan, Y.; Zhang, X.; Niu, J.; Svening, J. Ecological restoration is the dominant driver of the recent reversal of desertification in the Mu Us Desert (China). J. Clean. Prod. 2020, 268, 122241. [Google Scholar] [CrossRef]
- Tack, J.; Quanmen, F.; Kelsy, K.; Naugle, D. Doing more with less: Removing trees in a prairie system improves value of grasslands for obligate bird species. J. Environ. Manag. 2017, 198, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Yue, L. The environmental transformation from late last glacial to Holocene of Otindag sandy land. Quat. Int. 2012, 279, 551–552. [Google Scholar]
- Liu, H.; Zhou, C.; Cheng, W.; Long, E.; Li, R. Monitoring sandy desertification of Otindag Sandy Land based on multi-date remote sensing images. Acta Ecol. Sin. 2008, 28, 627–635. [Google Scholar]
- Gong, Z.; Li, S.; Sun, J.; Xue, L. Environmental changes in Hunshandake (Otindag) sandy land revealed by optical dating and multi-proxy study of dune sands. J. Asian Earth Sci. 2013, 76, 30–36. [Google Scholar] [CrossRef]
- Wang, C.; Li, F. Establishing grassland ecological balance and realizing sustainable development of animal husbandry. Inn. Mong. Grassl. Ind. 2000, 3, 60–63. (In Chinese) [Google Scholar]
- Zhao, Y.Y.; Wu, H.Y.; Ding, G.D.; Gao, G.L.; Tu, W.Z. A review on the aeolian desertification in the Otindag Sandy Land. J. Desert Res. 2020, 40, 101–111. (In Chinese) [Google Scholar]
- You, Y.; Zhou, N.; Wang, Y.D. Comparative study of desertification control policies and regulations in representative countries of the Belt and Road Initiative. Glob. Ecol. Conserv. 2021, 27, e01577. [Google Scholar] [CrossRef]
- Li, N.H.Y.; Yu, W.B.; Hu, X.L.; Lan, D.M.; Li, H.L.; Liu, J.X. Effect of fencing on community characteristics of degenerated grassland in Hunshandake Sand. J. Arid. Land Resour. Environ. 2009, 23, 157–160. (In Chinese) [Google Scholar]
- Su, H.; Liu, W.; Xu, H.; Wang, Z.S.; Zhang, H.F.; Hu, H.X.; Li, Y.G. Long-term livestock exclusion facilitates native woody plant encroachment in a sandy semiarid rangeland. Ecol. Evol. 2015, 5, 2445–2456. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.L.; Wang, T. Regionalization for Aeolian Desertification Control and Countermeasures in the Otindag Sandy Land Region, China. J. Desert Res. 2010, 30, 999–1005. (In Chinese) [Google Scholar]
- You, H.Y. Orienting rocky desertification towards sustainable land use: An advanced remote sensing tool to guide the conservation policy. Land Use Policy 2017, 61, 171–184. [Google Scholar] [CrossRef]
- Eskandari, D.; Gholami, H.; Telfer, M.; Comino, J.; Collins, A.; Jansen, J. Desertification of Iran in the early twenty-first century: Assessment using climate and vegetation indices. Sci. Rep. 2021, 11, 20548. [Google Scholar] [CrossRef]
- Ma, X.; Zhu, J.; Yan, W.; Zhao, C. Projections of desertification trends in Central Asia under global warming scenarios. Sci. Total Environ. 2021, 781, 146777. [Google Scholar] [CrossRef]
- Bezerra, F.; Aguiar, A.; Alvala, R.; Giarolla, A.; Bezerra, K.; Lima, P.; Nascimento, F.; Arai, E. Analysis of areas undergoing desertification, using EVI2 multi-temporal data based on MODIS imagery as indicator. Ecol. Indic. 2020, 118, 106752. [Google Scholar] [CrossRef]
- Alizade, Y.; Ghale, G.; Tayanc, M.; Unal, A. Dried bottom of Urmia Lake as a new source of dust in the northwestern Iran: Understanding the impacts on local and regional air quality. Atmos. Environ. 2021, 262, 118635. [Google Scholar] [CrossRef]
1986 | 1990 | 1995 | 2000 | 2004 | 2007 | 2011 | 2016 | Mean | |
---|---|---|---|---|---|---|---|---|---|
0.58 | 0.56 | 0.63 | 0.64 | 0.60 | 0.75 | 0.61 | 0.64 | 0.63 |
Year | ND | MD | MOD | SD | SED |
---|---|---|---|---|---|
1986 | 4261.79 | 12137 | 11,063.94 | 12,225.89 | 10,155.69 |
1990 | 4689.29 | 13,422.91 | 11,854.86 | 11,261.87 | 8615.37 |
1995 | 3431.33 | 8004.65 | 12,600.81 | 15,981.46 | 9826.06 |
2000 | 3001.56 | 6817.57 | 12,085.73 | 16,278.2 | 11,661.25 |
2004 | 4225.37 | 12,058.69 | 9288.56 | 12,085.4 | 12,048.86 |
2007 | 2385.3 | 2940.62 | 5212.97 | 20,390.64 | 18,914.78 |
2011 | 4183.16 | 10,465.8 | 10,643.24 | 10,686.85 | 13,865.26 |
2016 | 3466.83 | 7214.08 | 11,714.96 | 16,632.61 | 10,815.82 |
Types | Area (km²) | Percentage (%) |
---|---|---|
Extremely significant decrease | 1267.26 | 2.72 |
Significant decrease | 1724.09 | 3.69 |
Nonsignificant decrease | 10,952.14 | 23.47 |
Nonsignificant increase | 23,236.52 | 49.80 |
Significant increase | 5629.07 | 12.06 |
Extremely significant increase | 3851.14 | 8.25 |
Types | Area (km²) | Percentage (%) | |
---|---|---|---|
Annual precipitation | Significant negative correlation | 5163.57 | 11.12 |
Non-significant negative correlation | 28,382.13 | 61.10 | |
Non-significant positive correlation | 11,900.52 | 25.62 | |
Significant negative correlation | 1006.56 | 2.17 | |
Annual mean temperature | Non-significant negative correlation | 5933.43 | 12.81 |
Non-significant positive correlation | 35,963.37 | 77.67 | |
Significant positive correlation | 4406.76 | 9.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, Y.; Shi, M.; Wu, J.; Yang, N.; Zhang, C.; Yi, X. Spatio-Temporal Patterns and Driving Forces of Desertification in Otindag Sandy Land, Inner Mongolia, China, in Recent 30 Years. Remote Sens. 2023, 15, 279. https://doi.org/10.3390/rs15010279
Yi Y, Shi M, Wu J, Yang N, Zhang C, Yi X. Spatio-Temporal Patterns and Driving Forces of Desertification in Otindag Sandy Land, Inner Mongolia, China, in Recent 30 Years. Remote Sensing. 2023; 15(1):279. https://doi.org/10.3390/rs15010279
Chicago/Turabian StyleYi, Yang, Mingchang Shi, Jie Wu, Na Yang, Chen Zhang, and Xiaoding Yi. 2023. "Spatio-Temporal Patterns and Driving Forces of Desertification in Otindag Sandy Land, Inner Mongolia, China, in Recent 30 Years" Remote Sensing 15, no. 1: 279. https://doi.org/10.3390/rs15010279
APA StyleYi, Y., Shi, M., Wu, J., Yang, N., Zhang, C., & Yi, X. (2023). Spatio-Temporal Patterns and Driving Forces of Desertification in Otindag Sandy Land, Inner Mongolia, China, in Recent 30 Years. Remote Sensing, 15(1), 279. https://doi.org/10.3390/rs15010279