A Step-Wise Workflow for SAR Remote Sensing of Perennial Heaving Mound/Crater on the Yamal Peninsula, Western Siberia
Abstract
:1. Introduction
2. Description of the Perennial Heaving Mound
3. Workflow of Heaving Mound/Crater Study
3.1. PHM Detection and Data Used
3.2. PHM Validation
3.3. PHM Deformation Estimation by DInSAR Technique
4. Conclusions
- Intensive mound heaving and relevant change of its slopes assuming the bending of the scattering surface towards the satellite;
- Formation of frost cracks, which simultaneously increase backscattering depolarization due to the chaotic location of microrelief features and form local slopes facing the radar.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kizyakov, A.; Khomutov, A.; Zimin, M.; Khairullin, R.; Babkina, E.; Dvornikov, Y.; Leibman, M. Microrelief Associated with Gas Emission Craters: Remote-Sensing and Field-Based Study. Remote Sen. 2018, 10, 677. [Google Scholar] [CrossRef] [Green Version]
- Bogoyavlensky, V.; Bogoyavlensky, I.; Nikonov, R.; Kargina, T.; Chuvilin, E.; Bukhanov, B.; Umnikov, A. New Catastrophic Gas Blowout and Giant Crater on the Yamal Peninsula in 2020: Results of the Expedition and Data Processing. Geosciences 2021, 11, 71. [Google Scholar] [CrossRef]
- Zolkos, S.; Fiske, G.; Windholz, T.; Duran, G.; Yang, Z.; Olenchenko, V.; Faguet, A.; Natali, S.M. Detecting and Mapping Gas Emission Craters on the Yamal and Gydan Peninsulas, Western Siberia. Geosciences 2021, 11, 21. [Google Scholar] [CrossRef]
- Chuvilin, E.M.; Sokolova, N.S.; Bukhanov, B.A.; Davletshina, D.A.; Spasennykh, M.Y. Formation of Gas-Emission Craters in Northern West Siberia: Shallow Controls. Geosciences 2021, 11, 393. [Google Scholar] [CrossRef]
- Kizyakov, A.; Leibman, M.; Zimin, M.; Sonyushkin, A.; Dvornikov, Y.; Khomutov, A.; Dhont, D.; Cauquil, E.; Pushkarev, V.; Stanilovskaya, Y. Gas Emission Craters and Mound-Predecessors in the North of West Siberia, Similarities and Differences. Remote Sen. 2020, 12, 2182. [Google Scholar] [CrossRef]
- Bondur, V.G.; Chimitdorzhiev, T.N.; Kirbizhekova, I.I.; Dmitriev, A.V. Radar Detection of Anomalous Dynamics of Perennial Heaving Mounds from the Example of the Yamal Mound/Crater in 2020. Dokl. Earth Sc. 2022, 506, 654–660. [Google Scholar] [CrossRef]
- Wang, L.; Marzahn, P.; Bernier, M.; Ludwig, R. Sentinel-1 InSAR Measurements of Deformation over Discontinuous Permafrost Terrain, Northern Quebec, Canada. Remote Sens. Environ. 2020, 248, 111965. [Google Scholar] [CrossRef]
- Abe, T.; Iwahana, G.; Efremov, P.V.; Desyatkin, A.R.; Kawamura, T.; Fedorov, A.; Zhegusov, Y.; Yanagiya, K.; Tadono, T. Surface Displacement Revealed by L-Band InSAR Analysis in the Mayya Area, Central Yakutia, Underlain by Continuous Permafrost. Earth Planets Space 2020, 72, 138. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.L. Radar Interferometry and Its Application to Changes in the Earth’s Surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, A.; Karimzadeh, S.; Jalal, S.J.; Kamran, K.V.; Shahabi, H.; Homayouni, S.; Al-Ansari, N. A Multi-Sensor Comparative Analysis on the Suitability of Generated DEM from Sentinel-1 SAR Interferometry Using Statistical and Hydrological Models. Sensors 2020, 20, 7214. [Google Scholar] [CrossRef] [PubMed]
- Devaraj, S.; Yarrakula, K. Evaluation of Sentinel 1–Derived and Open-Access Digital Elevation Model Products in Mountainous Areas of Western Ghats, India. Arab J Geosci 2020, 13, 1103. [Google Scholar] [CrossRef]
- Braun, A. Retrieval of Digital Elevation Models from Sentinel-1 Radar Data—Open Applications, Techniques, and Limitations. Open Geosci. 2021, 13, 532–569. [Google Scholar] [CrossRef]
- Tan, J.; Chen, M.; Xie, X.; Zhang, C.; Mao, B.; Lei, G.; Wang, B.; Meng, X.; Guan, X.; Zhang, Y. Riparian Zone DEM Generation from Time-Series Sentinel-1 and Corresponding Water Level: A Novel Waterline Method. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–10. [Google Scholar] [CrossRef]
- Chindo, M.M.; Hashim, M.; Rasib, A.W. Revising Digital Elevation Models Generation from Sentinel-1 Synthetic Aperture Radar and Interferometric Technique in Densely-Vegetated Humid Tropical Environment. Geocarto Int. 2022, 1–20. [Google Scholar] [CrossRef]
- Ramirez, R.; Lee, S.-R.; Kwon, T.-H. Long-Term Remote Monitoring of Ground Deformation Using Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR): Applications and Insights into Geotechnical Engineering Practices. Appl. Sci. 2020, 10, 7447. [Google Scholar] [CrossRef]
- Wegmuller, U.; Werner, C.; Strozzi, T.; Wiesmann, A. Ionospheric Electron Concentration Effects on SAR and INSAR. In Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006; pp. 3731–3734. [Google Scholar] [CrossRef]
- Detection of Perennial Heaving Mound by SAR Backscattering and DinSAR. Available online: https://omdoki.nextgis.com/resource/778/display?panel=layers (accessed on 20 December 2022).
- Porter, C.; Morin, P.; Howat, I.; Noh, M.-J.; Bates, B.; Peterman, K.; Keesey, S.; Schlenk, M.; Gardiner, J.; Tomko, K.; et al. ArcticDEM, Version 3; Harvard Dataverse: Cambridge, MA, USA, 2018. [Google Scholar] [CrossRef]
- Dagurov, P.N.; Chimitdorzhiev, T.N.; Dmitriev, A.V.; Dobrynin, S.I. Estimation of Snow Water Equivalent from L-Band Radar Interferometry: Simulation and Experiment. Int. J. Remote Sens. 2020, 41, 9328–9359. [Google Scholar] [CrossRef]
- Henderson, F.M.; Lewis, A.J. (Eds.) Principles and Applications of Imaging Radar (Manual of Remote Sensing, Volume 2), 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1998; ISBN -13: 978-0471294061. [Google Scholar]
ALOS-2 PALSAR-2 SceneID | Imaging Date | Spatial Baselines, m | ||
---|---|---|---|---|
25 January 2018 | 10 January 2019 | 9 January 2020 | ||
ALOS2146771410-170209 | 9 February 2017 | 185 | ||
ALOS2198521410-180125 | 25 January 2018 | 119 | ||
ALOS2250271410-190110 | 10 January 2019 | 144 | ||
ALOS2304091410-200109 | 9 January 2020 |
Interferometric Baseline, m | 2π Ambiguity, m | Orbit | |
---|---|---|---|
13 December 2010 | 325 | 22 | Ascending |
30 October 2017 | 392.8 | 18.4 | Descending |
22 April 2021 | 264 | 23.7 | Descending |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bondur, V.; Chimitdorzhiev, T.; Dmitriev, A. A Step-Wise Workflow for SAR Remote Sensing of Perennial Heaving Mound/Crater on the Yamal Peninsula, Western Siberia. Remote Sens. 2023, 15, 281. https://doi.org/10.3390/rs15010281
Bondur V, Chimitdorzhiev T, Dmitriev A. A Step-Wise Workflow for SAR Remote Sensing of Perennial Heaving Mound/Crater on the Yamal Peninsula, Western Siberia. Remote Sensing. 2023; 15(1):281. https://doi.org/10.3390/rs15010281
Chicago/Turabian StyleBondur, Valery, Tumen Chimitdorzhiev, and Aleksey Dmitriev. 2023. "A Step-Wise Workflow for SAR Remote Sensing of Perennial Heaving Mound/Crater on the Yamal Peninsula, Western Siberia" Remote Sensing 15, no. 1: 281. https://doi.org/10.3390/rs15010281
APA StyleBondur, V., Chimitdorzhiev, T., & Dmitriev, A. (2023). A Step-Wise Workflow for SAR Remote Sensing of Perennial Heaving Mound/Crater on the Yamal Peninsula, Western Siberia. Remote Sensing, 15(1), 281. https://doi.org/10.3390/rs15010281