Dynamics of Low-Lying Sandy Coast of the Gydan Peninsula, Kara Sea, Russia, Based on Multi-Temporal Remote Sensing Data
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Remote Sensing Data
- Shoreline property—sea—land border. As a rule, this is easy to identify in an image; nevertheless, its position on accumulative low-lying coasts varies significantly (up to the first tens of meters laterally) during the season and even during the day, depending on the run-up of individual swell or wind waves and due to tidal, surge, and storm fluctuations of the sea level;
- High water line or mean water line, or wet–dry line—approximated and averaged shoreline. This varies significantly from one day to the next depending on wind and wave conditions, tides, surges, and is a product of short-term beach erosion/accretion episodes, etc. It can be detectable in the field or with the use of DEM;
- Vegetation line—border of dense vegetation cover. This is the upper boundary of the coastal zone (similar to the cliff edge at the erosional coasts)—the upper boundary of the wave run-up, averaged over recent years. Thus, this boundary is more stable than the coastline, and its movement can better represent coastal dynamics. However, its position is difficult to trace on satellite imagery due to wind-blown sand from the beach deposited on the laida, causing the blurring of this border. The dense vegetation boundary is also highly sensitive to human-made activities;
- Scarp (cliff/bluff) top or baseline, if there is one.
3.2. Analysis of Factors Influencing Coastal Dynamics
4. Results
4.1. Coastal Dynamics
4.1.1. Before the Beginning of Construction
4.1.2. After the Beginning of Construction
4.2. Hydrometeorological Forcing
5. Discussions
5.1. Factors of Spatial Variation of Coastal Dynamics
5.2. Temporal Variation of Coastal Dynamics
5.3. Human Impact
5.4. Comparison to Other Arctic Regions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lantuit, H.; Overduin, P.P.; Couture, N.; Wetterich, S.; Are, F.; Atkinson, D.; Brown, J.; Cherkashov, G.; Drozdov, D.; Forbes, D.; et al. The Arctic Coastal Dynamics database: A new classification scheme and statistics on Arctic permafrost coastlines. Estuaries Coasts 2012, 35, 383–400. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.M.; Arp, C.D.; Jorgenson, M.T.; Hinkel, K.M.; Schmutz, J.A.; Flint, P.L. Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Jones, B.M.; Farquharson, L.M.; Baughman, C.A.; Buzard, R.M.; Arp, C.D.; Grosse, G.; Bull, D.L.; Günther, F.; Nitze, I.; Urban, F.; et al. A decade of remotely sensed observations highlight complex processes linked to coastal permafrost bluff erosion in the Arctic. Environ. Res. Lett. 2018, 13, 115001. [Google Scholar] [CrossRef]
- Irrgang, A.M.; Lantuit, H.; Manson, G.K.; Günther, F.; Grosse, G.; Overduin, P.P. Variability in rates of coastal change along the Yukon coast, 1951 to 2015. J. Geophys. Res. Earth Surf. 2018, 123, 779–800. [Google Scholar] [CrossRef] [Green Version]
- Günther, F.; Overduin, P.P.; Sandakov, A.V.; Grosse, G.; Grigoriev, M.N. Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region. Biogeosciences 2013, 10, 4297–4318. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Douglas, B.C.; Leatherman, S.P. Global warming and coastal erosion. Clim. Chang. 2004, 64, 41–58. [Google Scholar] [CrossRef]
- Nielsen, D.M.; Pieper, P.; Barkhordarian, A.; Overduin, P.; Ilyina, T.; Brovkin, V.; Baehr, J.; Dobrynin, M. Increase in Arctic coastal erosion and its sensitivity to warming in the twenty-first century. Nat. Clim. Chang. 2022, 12, 263–270. [Google Scholar] [CrossRef]
- Irrgang, A.M.; Bendixen, M.; Farquharson, L.M.; Baranskaya, A.V.; Erikson, L.H.; Gibbs, A.E.; Ogorodov, S.A.; Overduin, P.P.; Lantuit, H.; Grigoriev, M.N.; et al. Drivers, dynamics and impacts of changing Arctic coasts. Nat. Rev. Earth Environ. 2022, 3, 39–54. [Google Scholar] [CrossRef]
- Gibbs, A.E.; Erikson, L.H.; Jones, B.M.; Richmond, B.M.; Engelstad, A.C. Seven Decades of Coastal Change at Barter Island, Alaska: Exploring the Importance of Waves and Temperature on Erosion of Coastal Permafrost Bluffs. Remote Sens. 2021, 13, 4420. [Google Scholar] [CrossRef]
- Baranskaya, A.; Novikova, A.; Shabanova, N.; Belova, N.; Maznev, S.; Ogorodov, S.; Jones, B.M. The role of thermal denudation in erosion of ice-rich permafrost coasts in an enclosed bay. Front. Earth Sci. 2021, 8, 566227. [Google Scholar] [CrossRef]
- Belova, N.G.; Novikova, A.V.; Günther, F.; Shabanova, N.N. Spatiotemporal variability of coastal retreat rates at western Yamal Peninsula, Russia, based on remotely sensed data. J. Coast. Res. 2020, 95, 367–371. [Google Scholar] [CrossRef]
- Novikova, A.; Belova, N.; Baranskaya, A.; Aleksyutina, D.; Maslakov, A.; Zelenin, E.; Shabanova, N.; Ogorodov, S. Dynamics of permafrost coasts of Baydaratskaya Bay (Kara Sea) based on multi-temporal remote sensing data. Remote Sens. 2018, 10, 1481. [Google Scholar] [CrossRef] [Green Version]
- Pye, K.; Blott, S.J. Decadal-scale variation in dune erosion and accretion rates: An investigation of the significance of changing storm tide frequency and magnitude on the Sefton coast, UK. Geomorphology 2008, 102, 652–666. [Google Scholar] [CrossRef]
- Esteves, L.S.; Brown, J.M.; Williams, J.J.; Lymbery, G. Quantifying thresholds for significant dune erosion along the Sefton Coast, Northwest England. Geomorphology 2012, 143, 52–61. [Google Scholar] [CrossRef]
- Del Río, L.; Gracia, F.J.; Benavente, J. Shoreline change patterns in sandy coasts. A case study in SW Spain. Geomorphology 2013, 196, 252–266. [Google Scholar] [CrossRef] [Green Version]
- Zarkogiannis, S.D.; Kontakiotis, G.; Vousdoukas, M.I.; Velegrakis, A.F.; Collins, M.B.; Antonarakou, A. Scarping of artificially nourished mixed sand and gravel beaches: Sedimentological characteristics of Hayling Island beach, Southern England. Coast. Eng. 2018, 133, 1–12. [Google Scholar] [CrossRef]
- Bossard, V.; Lerma, A.N. Geomorphologic characteristics and evolution of managed dunes on the South West Coast of France. Geomorphology 2020, 367, 107312. [Google Scholar] [CrossRef]
- Brunier, G.; Tamura, T.; Anthony, E.J.; Dussouillez, P.; Gardel, A. Evolution of the French Guiana coast from Late Pleistocene to Holocene based on chenier and beach sand dating. Reg. Environ. Chang. 2022, 22, 122. [Google Scholar] [CrossRef]
- Hequette, A.; Ruz, M.-H. Spit and barrier island migration in the southeastern Canadian Beaufort Sea. J. Coast. Res. 1991, 7, 677–698. Available online: https://www.jstor.org/stable/4297885 (accessed on 20 December 2020).
- Tweedie, C.E.; Aguirre, A.; Cody, R.; Vargas, S.; Brown, J. Spatial and temporal dynamics of erosion along the Elson Lagoon Coastline near Barrow, Alaska (2002–2011). In Proceedings of the Tenth International Conference on Permafrost, Salekhard, Russia, 25–29 June 2012; pp. 25–29. Available online: https://www.researchgate.net/profile/Sergio-Vargas-Zesati/publication/262450831_Spatial_and_Temporal_Dynamics_of_Erosion_Along_the_Elson_Lagoon_Coastline_near_Barrow_Alaska_2002-2011/links/55fb0ff208aeba1d9f3a0da6/Spatial-and-Temporal-Dynamics-of-Erosion-Along-the-Elson-Lagoon-Coastline-near-Barrow-Alaska-2002-2011.pdf (accessed on 20 December 2020).
- Petersen, J.; Michel, J.; Zengel, S.; White, M.; Lord, C.; Plank, C. Environmental Sensitivity Index Guidelines. Version 3.0. NOAA Technical Memorandum NOS OR&R 11. 2002. Available online: https://response.restoration.noaa.gov/sites/default/files/ESI_Guidelines.pdf (accessed on 20 December 2020).
- Kara Sea. Ecological Atlas; Arctic Scientific Center LLC: Moscow, Russia, 2016. (In Russian)
- Bartsch, A.; Pointner, G.; Nitze, I.; Efimova, A.; Jakober, D.; Ley, S.; Högström, E.; Grosse, G.; Schweitzer, P. Expanding infrastructure and growing anthropogenic impacts along Arctic coasts. Environ. Res. Lett. 2021, 16, 115013. [Google Scholar] [CrossRef]
- Constable, A.J.; Harper, S.; Dawson, J.; Holsman, K.; Mustonen, T.; Piepenburg, D.; Rost, B. Cross-Chapter Paper 6: Polar Regions. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 2319–2368. [Google Scholar] [CrossRef]
- Popov, B.A.; Sovershaev, V.A.; Novikov, V.N.; Biryukov, V.Y.; Kamalov, A.M.; Fedorova, E.V. Coastal zone of the seas of the Pechora-Kara region. In Study of the Stability of the Geosystems of the North; Solomatin, V.I., Ed.; Moscow University Press: Moscow, Russia, 1988; pp. 176–190. (In Russian) [Google Scholar]
- Osadchiev, A.; Konovalova, O.; Gordey, A. Water exchange between the Gulf of Ob and the Kara Sea during ice-free seasons: The roles of river discharge and wind forcing. Front. Mar. Sci. 2021, 126, e2020JC016486. [Google Scholar] [CrossRef]
- Atlas of the Yamalo-Nenets Autonomous Okrug; Omsk Cartographic Factory: Omsk, Russia, 2004; 303p. (In Russian)
- Vasiliev, A.A.; Streletskaya, I.D.; Cherkashev, G.A.; Vanshtein, B.G. The Kara Sea coastal dynamics. Earth’s Cryosphere 2006, 10, 56–67. (In Russian) [Google Scholar]
- Porter, C.; Morin, P.; Howat, I.; Noh, M.; Bates, B.; Peterman, K.; Keesey, S.; Schlenk, M.; Gardiner, J.; Tomko, K.; et al. “ArcticDEM”, Harvard Dataverse, V1. 2018. [Google Scholar] [CrossRef]
- Kryjov, V.N.; Tsvetsinsky, A.S.; Melnikov, S.A.; Dubikov, G.I.; Danilov, A.I. Investigation into environmental conditions of the Ob and Taz Bay shelf gas fields. In Proceedings of the 8th International Offshore and Polar Engineering Conference, Montreal, QC, Canada, 24 May 1998; part 2. pp. 291–295. [Google Scholar]
- Weather and Climate (Pogoda I Klimat), Weather Records at Seyakha Weather Station. Available online: http://www.pogodaiklimat.ru/history/20967.htm (accessed on 1 November 2022).
- Shabanov, P.A. Changes in the Ice-Free Period Duration in the Kara Sea Coastal Zone from Satellite Data. Oceanology 2022, 62, 447–457. [Google Scholar] [CrossRef]
- Ogorodov, S.A.; Baranskaya, A.V.; Belova, N.G.; Kamalov, A.M.; Kuznetsov, D.E.; Overduin, P.; Shabanova, N.N.; Vergun, A.P. Coastal Dynamics of the Pechora and Kara Seas Under Changing Climatic Conditions and Human Disturbances. Geogr. Environ. Sustain. 2016, 3, 53–73. [Google Scholar] [CrossRef] [PubMed]
- Grosse, G.; Schirrmeister, L.; Kunitsky, V.V.; Hubberten, H.W. The use of CORONA images in remote sensing of periglacial geomorphology: An illustration from the NE Siberian coast. Permafr. Periglac. Process. 2005, 16, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Mars, J.C.; Houseknecht, D.W. Quantitative remote sensing study indicates doubling of coastal erosion rate in past 50 yr along a segment of the Arctic coast of Alaska. Geology 2007, 35, 583–586. [Google Scholar] [CrossRef]
- Obu, J.; Lantuit, H.; Fritz, M.; Pollard, W.H.; Sachs, T.; Günther, F. Relation between planimetric and volumetric measurements of permafrost coast erosion: A case study from Herschel Island, western Canadian Arctic. Polar Res. 2016, 35, 30313. [Google Scholar] [CrossRef] [Green Version]
- Hanslow, D. Beach erosion trend measurement: A comparison of trend indicators. J. Coast. Res. 2007, 588–593. Available online: https://www.jstor.org/stable/26481655 (accessed on 20 December 2020).
- US Army Corps of Engeineers. USACE Coastal Engineering Manual; U.S. Army Corps of Engineers: Washington, DC, USA, 2008.
- ESRI ArcGIS Desktop, Release 10.2.2; Environmental Systems Research Institute: Redlands, CA, USA, 2014.
- Himmelstoss, E.A.; Henderson, R.E.; Kratzmann, M.G.; Farris, A.S. Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide: U.S. Geological Survey Open-File Report 2018–1179; U.S. Geological Survey: Reston, VA, USA, 2018; 110p. [CrossRef] [Green Version]
- Shabanova, N.N.; Ogorodov, S.A.; Romanenko, F.A. Russian arctic coastal dynamics hydrometeorological forcing: Half-century his-tory and current state. In Proceedings of the Coastal Dynamics 2017, Helsingør, Denmark, 12–16 June 2017; pp. 108–116. Available online: http://coastaldynamics2017.dk/onewebmedia/196_shabanova.pdf (accessed on 20 December 2020).
- Weather Timetable. Weather Records at Seyakha Weather Station. Available online: https://rp5.ru/Weather_archive_in_Seyakha (accessed on 1 November 2022).
- Arctic and Antarctic Research Institute. Available online: http://www.aari.ru/ (accessed on 1 November 2022).
- Amante, C.; Eakins, B.W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. In NOAA Technical Memorandum NESDIS NGDC-24; National Geophysical Data Center, NOAA: Boulder, CO, USA, 2009; Available online: https://www.researchgate.net/profile/Christopher-Amante/publication/228077300_ETOPO1_1_Arc-Minute_Global_Relief_Model_procedures_data_sources_and_analysis/links/59f77930458515547c24c805/ETOPO1-1-Arc-Minute-Global-Relief-Model-procedures-data-sources-and-analysis.pdf (accessed on 20 December 2020).
- Pörtner, H.O.; Roberts, D.C.; Masson-Delmotte, V.; Zhai, P.; Tignor, M.; Poloczanska, E.; Weyer, N.M. The ocean and cryosphere in a changing climate. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Abuodha, P.A.; Woodroffe, C.D. Assessing Vulnerability of Coasts to Climate Change: A Review of Approaches and Their Application to the Australian Coast. In GIS for the Coastal Zone: A Selection of Papers from CoastGIS 2006, 1st ed.; Woodroffe, C.D., Bruce, E., Puotinen, M., Furness, R.A., Eds.; Australia National Centre for Ocean Resources and Security: Wollongong, Australia, 2007; 458p, Available online: https://ro.uow.edu.au/scipapers/161/ (accessed on 20 December 2020).
- Thieler, E.R.; Hammar-Klose, E.S. National Assessment of Coastal Vulnerability to Sea-Level Rise: Preliminary Results for the U.S. Pacific Coast. U.S. Geological Survey Open-File Report, v. 00-178; U.S. Geological Survey: Reston, VA. USA, 1999; pp. 1–17. [CrossRef]
- Wobus, C.A. Thermal erosion of a permafrost coastline: Improving process-based models using time-lapse photography. Arct. Antarct. Alp. Res. 2011, 43, 474–484. [Google Scholar] [CrossRef]
- Vasiliev, A.K. Coastal dynamics at the Barents and Kara Sea key sites. Geo-Mar. Lett. 2005, 25, 110–120. Available online: https://link.springer.com/article/10.1007/s00367-004-0192-z (accessed on 20 December 2020). [CrossRef] [Green Version]
- Brown, J.; Jorgenson, M.T.; Smith, O.P.; Lee, W. Long-term rates of erosion and carbon input, Elson Lagoon, Barrow, Alaska. In Proceedings of the 8th International Conference on Permafrost, Zürich, Switzerland, 21–25 July 2003; pp. 101–106. Available online: https://www.arlis.org/docs/vol1/ICOP/55700698/Pdf/Chapter_019.pdf (accessed on 20 December 2020).
- Farquharson, L.M.; Mann, D.H.; Swanson, D.K.; Jones, B.M.; Buzard, R.M.; Jordan, J.W. Temporal and spatial variability in coastline response to declining sea-ice in northwest Alaska. Mar. Geol. 2018, 404, 71–83. [Google Scholar] [CrossRef]
Time Period | Rate of Retreat/Advance, m/yr | Dynamics, % of All Shoreline | ||||
---|---|---|---|---|---|---|
Average | Max | Min | Retreat | Advance | No Data | |
All periods of study 1972–2020 | −1.1 | 0.1 | −2.5 | 75 | 1 | 23 |
Before the beginning of construction 1972–2014 | −0.6 | 0.2 | −2.4 | 92 | 5 | 2 |
1972–2012 | −0.8 | −0.03 | −2.5 | 94 | 0 | 6 |
2012–2014 | 4.1 | 21.6 | −3.4 | 17 | 77 | 6 |
After the beginning of construction 2014–2020 | −4.9 | 2.1 | −16.1 | 69 | 7 | 24 |
2014–2017 | −5.8 | 5.8 | −28.5 | 77 | 16 | 7 |
2017–2020 | −3.8 | 3.9 | −13.9 | 65 | 10 | 25 |
Time Period | Rate of Retreat/Advance, m/yr | Dynamics, % of All Shoreline | ||||
---|---|---|---|---|---|---|
Average | Max | Min | Retreat | Advance | No Data | |
All periods of study 1972–2020 | −0.1 | 0.6 | −0.9 | 19 | 11 | 39 |
Before the beginning of construction 1972–2014 | 0.9 | 1.6 | 0.0 | 2 | 80 | 18 |
1972–2012 | 0.9 | 1.7 | −0.2 | 2 | 78 | 20 |
2012–2014 | 2.1 | 15.5 | −4.7 | 29 | 34 | 6 |
After the beginning of construction 2014–2020 | −3.4 | 1.3 | −8.6 | 35 | 9 | 57 |
2014–2017 | −5.2 | 2.9 | −28.8 | 67 | 22 | 11 |
2017–2020 | −2.1 | 9.1 | −10.9 | 33 | 14 | 53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belova, N.; Ermolov, A.; Novikova, A.; Ogorodov, S.; Stanilovskaya, Y. Dynamics of Low-Lying Sandy Coast of the Gydan Peninsula, Kara Sea, Russia, Based on Multi-Temporal Remote Sensing Data. Remote Sens. 2023, 15, 48. https://doi.org/10.3390/rs15010048
Belova N, Ermolov A, Novikova A, Ogorodov S, Stanilovskaya Y. Dynamics of Low-Lying Sandy Coast of the Gydan Peninsula, Kara Sea, Russia, Based on Multi-Temporal Remote Sensing Data. Remote Sensing. 2023; 15(1):48. https://doi.org/10.3390/rs15010048
Chicago/Turabian StyleBelova, Nataliya, Alexander Ermolov, Anna Novikova, Stanislav Ogorodov, and Yulia Stanilovskaya. 2023. "Dynamics of Low-Lying Sandy Coast of the Gydan Peninsula, Kara Sea, Russia, Based on Multi-Temporal Remote Sensing Data" Remote Sensing 15, no. 1: 48. https://doi.org/10.3390/rs15010048
APA StyleBelova, N., Ermolov, A., Novikova, A., Ogorodov, S., & Stanilovskaya, Y. (2023). Dynamics of Low-Lying Sandy Coast of the Gydan Peninsula, Kara Sea, Russia, Based on Multi-Temporal Remote Sensing Data. Remote Sensing, 15(1), 48. https://doi.org/10.3390/rs15010048