Pedestrian Smartphone Navigation Based on Weighted Graph Factor Optimization Utilizing GPS/BDS Multi-Constellation
Abstract
:1. Introduction
- (1)
- We conducted the analysis of BDS signal qualities based on the smartphone in Nordic areas. In addition, we utilized the GPS/BDS multi-constellation data to realize pedestrian positioning based on the smartphone.
- (2)
- We proposed a W-FGO method for GNSS positioning. The W-FGO method consists of two parts: the FGO framework and a weighting model. By utilizing the FGO framework, we explore the influence of time-correlated measurements and states on positioning accuracy. The weighting model is designed based on signal quality and the time fading factor. By utilizing the signal quality, we can adjust the weight of different satellites’ signals, as well as the proportion between the observations and the predicted values. The time fading factor can determine the importance of the data from different epochs.
- (3)
- We implemented the ground tests with the Huawei Mate40 Pro and the experimental box designed by ourselves. The collected data are processed by the proposed method. The positioning results of the W-FGO method are compared with the least square method (LSM), including BDS-signal-based, GPS-signal-based, and BDS/GPS-multi-signal-based, the EKF method, and the conventional FGO method.
2. Related Works
2.1. The Smartphone-Based GPS/BDS Multi-System Positioning
2.2. The Factor Graph Optimization
3. The BDS Signal Quality Analysis
4. Extended Kalman Filter for GNSS Positioning
5. Weighted Factor Graph Optimization
5.1. The Factor Graph Optimization for Pedestrian Navigation
5.2. The Adaptive Weighting Model
5.2.1. The Weighting
5.2.2. The Adaptive Weighting for Cost Function
6. Experiments and Results
6.1. Ground Tests in Urban Areas
6.2. Results
7. Discussion
- (1)
- For some extremely severe and varied urban scenes, such as test 4, the positioning accuracy based on GPS/BDS signals is not satisfied. By utilizing the GPS/BDS LSM method pronounced by Google, the mean error of test 4 is even over 5 m. That is, there are still various challenges to the improvement of raw data processing, which will significantly influence the optimization performance of the W-FGO method.
- (2)
- The LM algorithm is used to solve the nonlinear least squares problem and obtain the position. However, this method leads to a local optimum rather than a globally optimum solution. Thus, the iterative initial value has a significant influence on the accuracy of the results. In this study, we utilize the combination of the iterative result of the previous epoch and the results of the LSM method as the iterative initial value. However, due to the problem of low accuracy of the LSM we mentioned above, the positioning accuracy of the W-FGO cannot be guaranteed in some specific scenes. Obtaining the global optimum solution and enhancing the constraint of the initial value need to be further investigated.
- (1)
- Since we focus on the investigation of pedestrian positioning, the characteristics of human beings will also make sense. The features of the specific person (e.g., height, step length, and stride frequency) are the potential constraints worthy of research.
- (2)
- In this study, we pay attention to single-user pedestrian positioning. Collaborative pedestrian positioning is possible due to the information exchange between our smartphones in the future. With the increase of the collaborative network, more constraints can be introduced into the W-FGO, which may be positive for the improvement of the positioning accuracy.
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, Z.; Wu, X.; Weng, J. Emergent neural turing machine and its visual navigation. Neural Netw. 2019, 110, 116–130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Mi, J.; Li, J.; Wang, Q. A Continuous PDR and GNSS Fusing Algorithm for Smartphone Positioning. Remote Sens. 2022, 14, 5171. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, R.; Pei, L.; Kröger, T.; Kuusniemi, H.; Liu, J.; Chen, W. Knowledge-based error detection and correction method of a multi-sensor multi-network positioning platform for pedestrian indoor navigation. In Proceedings of the IEEE/ION Position, Location and Navigation Symposium, Indian Wells, CA, USA, 4–6 May 2010; pp. 873–879. [Google Scholar]
- Gao, L.; Xiong, L.; Xia, X.; Lu, Y.; Yu, Z.; Khajepour, A. Improved vehicle localization using on-board sensors and vehicle lateral velocity. IEEE Sens. J. 2022, 22, 6818–6831. [Google Scholar] [CrossRef]
- Kuusniemi, H. Reliability considerations of multi-sensor multi-network pedestrian navigation. IET Radar Sonar Navig. 2012, 6, 157–164. [Google Scholar] [CrossRef]
- Kuusniemi, H.; Liu, J.; Pei, L.; Chen, Y.; Chen, L.; Chen, R. The evaluation of WiFi positioning in a Bluetooth and WiFi coexistence environment. In Proceedings of the 2012 Ubiquitous Positioning, Indoor Navigation, and Location Based Service (UPINLBS), Helsinki, Finland, 3–4 October 2012; pp. 1–6. [Google Scholar]
- Chen, W.; Chen, R.; Chen, X.; Zhang, X.; Chen, Y.; Wang, J.; Fu, Z. Comparison of EMG-based and accelerometer-based speed estimation methods in pedestrian dead reckoning. J. Navig. 2011, 64, 265–280. [Google Scholar] [CrossRef]
- Zhu, H.; Xia, L.; Li, Q.; Xia, J.; Cai, Y. IMU-Aided Precise Point Positioning Performance Assessment with Smartphones in GNSS-Degraded Urban Environments. Remote Sens. 2022, 14, 4469. [Google Scholar] [CrossRef]
- Fu, G.M.; Khider, M.; van Diggelen, F. Android Raw GNSS measurement datasets for precise positioning. In Proceedings of the 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation, Portland, OR, USA, 21–25 September 2020; pp. 1925–1937. [Google Scholar]
- Paziewski, J. Recent advances and perspectives for positioning and applications with smartphone GNSS observations. Meas. Sci. Technol. 2020, 31, 091001. [Google Scholar] [CrossRef]
- Zou, R.; Chen, Y.; Koivula, H.; Lahtinen, S.; Poutanen, M.; Tang, J.; Shi, C. The performance of BeiDou signals in high latitude area in Nordic countries. In Proceedings of the 2016 European Navigation Conference (ENC), Helsinki, Finland, 30 May–2 June 2016; pp. 1–6. [Google Scholar]
- Xia, X.; Hashemi, E.; Xiong, L.; Khajepour, A. Autonomous Vehicle Kinematics and Dynamics Synthesis for Sideslip Angle Estimation Based on Consensus Kalman Filter. IEEE Trans. Control. Syst. Technol. 2022, 31, 179–192. [Google Scholar] [CrossRef]
- Xia, X.; Xiong, L.; Huang, Y.; Lu, Y.; Gao, L.; Xu, N.; Yu, Z. Estimation on IMU yaw misalignment by fusing information of automotive onboard sensors. Mech. Syst. Signal Process. 2022, 162, 107993. [Google Scholar] [CrossRef]
- Liu, W.; Xia, X.; Xiong, L.; Lu, Y.; Gao, L.; Yu, Z. Automated vehicle sideslip angle estimation considering signal measurement characteristic. IEEE Sens. J. 2021, 21, 21675–21687. [Google Scholar] [CrossRef]
- Bugallo, M.F.; Xu, S.; Djurić, P.M. Performance comparison of EKF and particle filtering methods for maneuvering targets. Digit. Signal Process. 2007, 17, 774–786. [Google Scholar] [CrossRef]
- Li, W.; Jia, Y.; Du, J. State estimation for stochastic complex networks with switching topology. IEEE Trans. Autom. Control 2017, 62, 6377–6384. [Google Scholar] [CrossRef]
- Zhang, X.; Tao, X.; Zhu, F.; Shi, X.; Wang, F. Quality assessment of GNSS observations from an Android N smartphone and positioning performance analysis using time-differenced filtering approach. Gps Solut. 2018, 22, 70. [Google Scholar] [CrossRef]
- Zhang, K.; Jiao, W.; Wang, L.; Li, Z.; Li, J.; Zhou, K. Smart-RTK: Multi-GNSS kinematic positioning approach on android smart devices with Doppler-smoothed-code filter and constant acceleration model. Adv. Space Res. 2019, 64, 1662–1674. [Google Scholar] [CrossRef]
- Odolinski, R.; Teunissen, P.J. An assessment of smartphone and low-cost multi-GNSS single-frequency RTK positioning for low, medium and high ionospheric disturbance periods. J. Geod. 2019, 93, 701–722. [Google Scholar] [CrossRef]
- Lachapelle, G.; Gratton, P.; Horrelt, J.; Lemieux, E.; Broumandan, A. Evaluation of a low cost hand held unit with GNSS raw data capability and comparison with an android smartphone. Sensors 2018, 18, 4185. [Google Scholar] [CrossRef]
- Li, M.; Yuan, Y. Estimation and analysis of BDS2 and BDS3 differential code biases and global ionospheric maps using BDS observations. Remote Sens. 2021, 13, 370. [Google Scholar] [CrossRef]
- Jin, S.; Su, K. PPP models and performances from single-to quad-frequency BDS observations. Satell. Navig. 2020, 1, 16. [Google Scholar] [CrossRef]
- Chen, B.; Gao, C.; Liu, Y.; Sun, P. Real-time precise point positioning with a Xiaomi MI 8 android smartphone. Sensors 2019, 19, 2835. [Google Scholar] [CrossRef]
- Sun, W.; Li, Y.; Duan, S. Xiaomi Mi 8 smartphone GNSS data quality analysis and single-frequency RTK positioning performance evaluation. IET Radar Sonar Navig. 2020, 14, 1410–1416. [Google Scholar] [CrossRef]
- Dai, S. 2nd Place Winner of the Smartphone Decimeter Challenge: Improving Smartphone GNSS Positioning Using Gradient Descent Method. In Proceedings of the 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022), Denver, CO, USA, 19–23 September 2022; pp. 2321–2328. [Google Scholar]
- Zhang, Z.; Li, B.; Shen, Y. Efficient approximation for a fully populated variance-covariance matrix in RTK positioning. J. Surv. Eng. 2018, 144, 04018005. [Google Scholar] [CrossRef]
- Wen, W.; Hsu, L.T. Towards robust GNSS positioning and Real-time kinematic using factor graph optimization. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation, Xi’an, China, 30 May–5 June 2021; pp. 5884–5890. [Google Scholar]
- Watson, R.M.; Gross, J.N. Robust navigation in GNSS degraded environment using graph optimization. In Proceedings of the 30th International Technical Meeting of the Satellite Division of the Institute of Navigation, Portland, OR, USA, 25–29 September 2017; pp. 2906–2918. [Google Scholar]
- Zhang, G.; Ng, H.F.; Wen, W.; Hsu, L.T. 3D mapping database aided GNSS based collaborative positioning using factor graph optimization. IEEE Trans. Intell. Transp. Syst. 2020, 22, 6175–6187. [Google Scholar] [CrossRef]
- Kaess, M.; Johannsson, H.; Roberts, R.; Ila, V.; Leonard, J.J.; Dellaert, F. iSAM2: Incremental smoothing and mapping using the Bayes tree. Int. J. Robot. Res. 2012, 31, 216–235. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, Y.; Chen, C.; Jia, J.; Sun, H.; Wang, T.; Hyyppä, J. Smartphone PDR/GNSS Integration via Factor Graph Optimization for Pedestrian Navigation. IEEE Trans. Instrum. Meas. 2022, 71, 1–12. [Google Scholar] [CrossRef]
- Wen, W.; Kan, Y.C.; Hsu, L.T. Performance comparison of GNSS/INS integrations based on EKF and factor graph optimization. In Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation, Miami, FL, USA, 16–20 September 2019; pp. 3019–3032. [Google Scholar]
- Ng, H.F.; Zhang, G.; Luo, Y.; Hsu, L.T. Urban positioning: 3D mapping-aided GNSS using dual-frequency pseudorange measurements from smartphones. Navigation 2021, 68, 727–749. [Google Scholar] [CrossRef]
- Suzuki, T. First Place Award Winner of the Smartphone Decimeter Challenge: Global Optimization of Position and Velocity by Factor Graph Optimization. In Proceedings of the 34th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2021), St. Louis, Missouri, USA, 20–24 September 2021; pp. 2974–2985. [Google Scholar]
- Chen, C.; Chen, Y.; Jiang, C.; Bo, Y.; Jia, J.; Sun, H.; He, Z. The performance analysis of bds positioning in nordic areas based on the smartphone. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Wuhan, China, 18–19 March 2022; pp. 21–28. [Google Scholar]
- Jiang, C.; Chen, Y.; Jia, J.; Sun, H.; Wang, T.; Duan, Z.; Hyyppa, J. Open-source optimization method for android smartphone single point positioning. GPS Solut. 2022, 26, 90. [Google Scholar] [CrossRef]
- Dellaert, F. Factor Graphs and GTSAM: A Hands-on Introduction; Georgia Institute of Technology: Atlanta, GA, USA, 2012. [Google Scholar]
- Wang, L.; Li, Z.; Wang, N.; Wang, Z. Real-time GNSS precise point positioning for low-cost smart devices. GPS Solut. 2021, 25, 69. [Google Scholar] [CrossRef]
- Won, D.H.; Ahn, J.; Lee, S.W.; Lee, J.; Sung, S.; Park, H.W.; Lee, Y.J. Weighted DOP with consideration on elevation-dependent range errors of GNSS satellites. IEEE Trans. Instrum. Meas. 2012, 61, 3241–3250. [Google Scholar] [CrossRef]
PRN | Common Name | Int. Sat. ID | Orbit |
---|---|---|---|
C02 | BDS-2 GEO-6 | 2012-059A | 80.3°E |
C05 | BDS-2 GEO-5 | 2010-036A | 58.75°E |
C08 | BDS-2 IGSO-3 | 2011-013A | 117°E |
C13 | BDS-2 IGSO-6 | 2016-021A | 94°E |
C14 | BDS-2 MEO-5 | 2012-050B | between slots B-3 and B-4 |
C20 | BDS-3 MEO-2 | 2017-068B | Slot B-8 |
C26 | BDS-3 MEO-12 | 2018-067A | Slot C-2 |
C27 | BDS-3 MEO-7 | 2018-003A | Slot A-4 |
C28 | BDS-3 MEO-8 | 2018-003B | Slot A-5 |
C29 | BDS-3 MEO-9 | 2018-029A | Slot A-2 |
C30 | BDS-3 MEO-10 | 2018-029B | Slot A-3 |
C32 | BDS-3 MEO-13 | 2018-072A | Slot B-1 |
C33 | BDS-3 MEO-14 | 2018-072B | Slot B-3 |
C36 | BDS-3 MEO-17 | 2018-093A | Slot C-4 |
C38 | BDS-3 IGSO-1 | 2019-023A | 110.5°E |
C41 | BDS-3 MEO-19 | 2019-090A | Slot B-2 |
C42 | BDS-3 MEO-20 | 2019-090B | Moving to Slot B-4 |
C45 | BDS-3 MEO-23 | 2019-061B | Slot-C3 |
C46 | BDS-3 MEO-24 | 2019-061A | Slot C-5 |
Constellation | Mean (dB-Hz) | STD (dB-Hz) |
---|---|---|
BDS | 32.9915 | 5.7309 |
GPS | 35.3457 | 6.0886 |
Galileo | 30.0272 | 6.1583 |
GLONASS | 35.9885 | 5.8280 |
Constellation | PRN | Elevation Angle (°) | Mean (dB-Hz) | STD (dB-Hz) |
---|---|---|---|---|
C08 | 47.9∼22.2 | 31.5002 | 4.4961 | |
C13 | 54.8∼35.2 | 37.3910 | 1.8184 | |
C27 | 80.3∼20.0 | 34.5171 | 4.9459 | |
C28 | 34.8∼20.0 | 32.9846 | 6.5131 | |
C29 | 20.0∼52.3 | 35.9722 | 4.3560 | |
C30 | 34.5∼83.4 | 33.6805 | 5.2821 | |
BDS | C32 | 20.0∼43.3 | 31.3789 | 5.9250 |
C33 | 20.4∼25.6 | 31.3565 | 6.1090 | |
C36 | 45.9∼20.0 | 35.9820 | 4.0039 | |
C38 | 35.4∼20.0 | 29.2391 | 4.6902 | |
C41 | 31.9∼37.2 | 29.0289 | 3.5818 | |
C45 | 20.0∼32.5 | 35.2199 | 4.6683 | |
C46 | 39.5∼20.0 | 36.1796 | 5.0112 | |
G05 | 33.1∼20.0 | 36.7451 | 4.7027 | |
G08 | 20.0∼26.9 | 35.1775 | 3.8554 | |
G10 | 20.0∼41.0 | 39.3837 | 2.6044 | |
G15 | 20.0∼26.2 | 37.0806 | 3.6709 | |
G16 | 20.0∼56.4 | 39.2454 | 4.7941 | |
G18 | 42.1∼75.8 | 35.3325 | 3.6929 | |
GPS | G20 | 20.0∼40.9 | 32.6049 | 4.6311 |
G23 | 20.0∼59.6 | 34.3010 | 4.8063 | |
G25 | 28.5∼20.0 | 32.4971 | 4.1494 | |
G26 | 20.0∼58.8 | 40.8628 | 4.2843 | |
G29 | 74.1∼20.0 | 36.7590 | 4.3347 | |
G31 | 29.6∼20.0 | 38.9876 | 1.8416 | |
E01 | 32.1∼31.6 | 23.2340 | 4.1922 | |
E07 | 20.0∼22.9 | 27.3001 | 5.4657 | |
E12 | 20.0∼75.7 | 27.9136 | 4.5362 | |
E24 | 31.4∼52.8 | 34.6085 | 5.4665 | |
Galileo | E25 | 20.0∼35.4 | 30.4673 | 6.9783 |
E26 | 59.2∼20.1 | 36.2810 | 3.4519 | |
E31 | 67.3∼20.0 | 33.4713 | 4.4128 | |
E33 | 57.3∼79.6 | 29.4240 | 4.2281 | |
R01 | 26.3∼25.0 | 37.8000 | 1.1353 | |
R07 | 22.0∼20.0 | 31.9132 | 4.7945 | |
R08 | 21.7∼27.1 | 33.3159 | 5.7961 | |
R09 | 20.0∼36.6 | 32.1362 | 4.3685 | |
R14 | 41.3∼20.0 | 38.6520 | 1.7602 | |
GLONASS | R15 | 61.8∼20.0 | 39.8010 | 3.7695 |
R17 | 41.1∼84.1 | 39.1089 | 3.2452 | |
R18 | 20.0∼80.7 | 38.2912 | 4.3538 | |
R19 | 25.0∼34.5 | 25.4738 | 4.5936 | |
R23 | 30.5∼20.0 | 34.5310 | 2.0161 | |
R24 | 79.2∼20.0 | 39.5584 | 2.2728 |
Constellation | GDOP | PDOP | HDOP | VDOP |
---|---|---|---|---|
GPS | 2.4 | 2.1 | 1.1 | 1.7 |
BDS | 1.8 | 1.6 | 0.8 | 1.4 |
Galileo | 2.5 | 2.3 | 1.3 | 1.8 |
GLONASS | 3.1 | 2.8 | 1.8 | 2.1 |
Dateset | Method | Mean (m) | STD (m) |
---|---|---|---|
BDS-LSM | 6.0199 | 3.5744 | |
GPS-LSM | 5.0221 | 3.4315 | |
GPS/BDS LSM | 4.3285 | 3.2680 | |
test 1 | EKF | 2.8675 | 2.3140 |
FGO | 2.5886 | 1.4571 | |
W-FGO | 1.8729 | 1.1016 | |
BDS-LSM | 6.1050 | 3.3940 | |
GPS-LSM | 5.2150 | 3.9528 | |
GPS/BDS LSM | 3.3169 | 2.6891 | |
Test 2 | EKF | 2.4750 | 2.3051 |
FGO | 2.0902 | 1.3024 | |
W-FGO | 1.5704 | 0.8973 | |
BDS-LSM | 5.7422 | 3.9868 | |
GPS-LSM | 4.8661 | 2.4944 | |
GPS/BDS LSM | 4.5547 | 2.5342 | |
test 3 | EKF | 2.7858 | 2.0991 |
FGO | 2.5551 | 1.5375 | |
W-FGO | 1.9408 | 1.5290 | |
BDS-LSM | 6.5474 | 2.9093 | |
GPS-LSM | 6.2373 | 2.3262 | |
GPS/BDS LSM | 5.6119 | 2.0653 | |
test 4 | EKF | 3.4884 | 1.5254 |
FGO | 2.7083 | 1.3474 | |
W-FGO | 1.8792 | 0.9530 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Zhu, J.; Bo, Y.; Chen, Y.; Jiang, C.; Jia, J.; Duan, Z.; Karjalainen, M.; Hyyppä, J. Pedestrian Smartphone Navigation Based on Weighted Graph Factor Optimization Utilizing GPS/BDS Multi-Constellation. Remote Sens. 2023, 15, 2506. https://doi.org/10.3390/rs15102506
Chen C, Zhu J, Bo Y, Chen Y, Jiang C, Jia J, Duan Z, Karjalainen M, Hyyppä J. Pedestrian Smartphone Navigation Based on Weighted Graph Factor Optimization Utilizing GPS/BDS Multi-Constellation. Remote Sensing. 2023; 15(10):2506. https://doi.org/10.3390/rs15102506
Chicago/Turabian StyleChen, Chen, Jianliang Zhu, Yuming Bo, Yuwei Chen, Changhui Jiang, Jianxin Jia, Zhiyong Duan, Mika Karjalainen, and Juha Hyyppä. 2023. "Pedestrian Smartphone Navigation Based on Weighted Graph Factor Optimization Utilizing GPS/BDS Multi-Constellation" Remote Sensing 15, no. 10: 2506. https://doi.org/10.3390/rs15102506
APA StyleChen, C., Zhu, J., Bo, Y., Chen, Y., Jiang, C., Jia, J., Duan, Z., Karjalainen, M., & Hyyppä, J. (2023). Pedestrian Smartphone Navigation Based on Weighted Graph Factor Optimization Utilizing GPS/BDS Multi-Constellation. Remote Sensing, 15(10), 2506. https://doi.org/10.3390/rs15102506