Estimation of Bamboo Forest Aboveground Carbon Using the RGLM Model Based on Object-Based Multiscale Segmentation of SPOT-6 Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Data and Processing
2.2.1. Remote Sensing Data
2.2.2. Field Inventory
2.3. Multiscale Image Segmentation and the Optimal Scale Selection
2.4. Development of the AGC Estimation Model
2.4.1. Variable Selection Using All Subsets Regression Method
2.4.2. Introduction of the Random Generalized Linear Model
2.5. Accuracy Assessment
3. Results
3.1. Optimal Segmentation Scale
3.2. Multiscale Hierarchy Construction and Multiscale Object Features Extraction
3.3. Mapping of the Moso Bamboo Forest
3.4. Input Variables Selection
3.5. The Multiscale Carbon Storage Estimation Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruusa, M.; Nick, J.; Daniel, N. Improving above ground biomass estimates of Southern Africa dryland forests by combining Sentinel-1 SAR and Sentinel-2 multispectral imagery. Remote Sens. Environ. 2022, 282, 113232. [Google Scholar]
- Ye, S.; Zhu, Z.; Cao, G.F. Object-based continuous monitoring of land disturbances from dense Landsat time series. Remote Sens. Environ. 2023, 287, 113462. [Google Scholar] [CrossRef]
- Powell, S.L.; Cohen, W.B.; Healey, S.P.; Kennedy, R.E.; Moisen, G.G.; Pierce, K.B.; Ohmann, J.L. Quantification of live aboveground forest biomass dynamics with landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sens. Environ. 2010, 114, 1053–1068. [Google Scholar] [CrossRef]
- Wang, J.; Du, H.; Li, X.; Mao, F.; Zhang, M.; Liu, E.; Ji, J.; Kang, F. Remote Sensing Estimation of Bamboo Forest Aboveground Biomass Based on Geographically Weighted Regression. Remote Sens. Environ. 2021, 13, 2962. [Google Scholar] [CrossRef]
- Wei, S.T.; Luo, M.; Zhu, L.F.; Yang, Z. Using object-oriented coupled deep learning approach for typical object inspection of transmission channel. Int. J. Appl. Earth Observ. Geoinform. 2023, 116, 103137. [Google Scholar] [CrossRef]
- Latifi, H.; Fassnacht, F.E.; Hartig, F.; Berger, C.; Hernández, J.; Corvalán, P.; Koch, B. Stratified aboveground forest biomass estimation by remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 229–241. [Google Scholar] [CrossRef]
- Su, Y.; Guo, Q.; Xue, B.; Hu, T.; Alvarez, O.; Tao, S.; Fang, J. Spatial distribution of forest aboveground biomass in china: Estimation through combination of spaceborne lidar, optical imagery, and forest inventory data. Remote Sens. Environ. 2016, 173, 187–199. [Google Scholar] [CrossRef]
- Kang, X. Forest Resource Management; China Forestry Publishing House: Beijing, China, 2001. [Google Scholar]
- Sun, X.; Du, H.; Han, N.; Ge, H.; Gu, C. Multi-scale segmentation, object-based extraction of moso bamboo forest from spot5 imagery. Sci. Silv. Sin. 2013, 49, 80–87. [Google Scholar]
- Ming, Q.; Miao, L.J.; Zhou, Z.Q.; Song, J.J.; Dong, Y.P.; Yang, X. Task interleaving and orientation estimation for high-precision oriented object detection in aerial images. ISPRS J. Photogramm. Remote Sens. 2023, 196, 241–255. [Google Scholar] [CrossRef]
- Tan, Q.L.; Guo, B.; Hu, J.; Dong, X.F.; Hu, J.P. Object-oriented remote sensing image information extraction method based on multi-classifier combination and deep learning algorithm. Pattern Recognit. Lett. 2021, 141, 32–36. [Google Scholar] [CrossRef]
- Han, N.; Wang, K.; Yu, L.; Zhang, X. Integration of texture and landscape features into object-based classification for delineating torreya using ikonos imagery. Int. J. Remote Sens. 2012, 33, 2003–2033. [Google Scholar] [CrossRef]
- Pagot, E.; Pesaresi, M.; Buda, D.; Ehrlich, D. Development of an object-oriented classification model using very high resolution satellite imagery for monitoring diamond mining activity. Int. J. Remote Sens. 2008, 29, 499–512. [Google Scholar] [CrossRef]
- Zhou, W.Q.; Huang, G.L.; Troy, A.; Cadenasso, M.L. Object-based land cover classification of shaded areas in high spatial resolution imagery of urban areas: A comparison study. Remote Sens. Environ. 2009, 113, 1769–1777. [Google Scholar] [CrossRef]
- Mallinis, G.; Koutsias, N.; Tsakiri-Strati, M.; Karteris, M. Object-based classification using quickbird imagery for delineating forest vegetation polygons in a mediterranean test site. ISPRS J. Photogramm. Remote Sens. 2008, 63, 237–250. [Google Scholar] [CrossRef]
- Han, N.; Du, H.; Zhou, G.; Sun, X.; Ge, H.; Xu, X. Object-based classification using spot-5 imagery for moso bamboo forest mapping. Int. J. Remote Sens. 2014, 35, 1126–1142. [Google Scholar] [CrossRef]
- Yiming, F.; Zheng, D.; Zhi, C.; Yao, A.; Gao, Z. Desertification land information extraction based on object-oriented classification method. Sci. Silv. Sin. 2013, 49, 126–133. [Google Scholar]
- Ke, Y.; Quackenbush, L.J.; Im, J. Synergistic use of quickbird multispectral imagery and lidar data for object-based forest species classification. Remote Sens. Environ. 2010, 114, 1141–1154. [Google Scholar] [CrossRef]
- Zaki, N.A.M.; Latif, Z.A.; Suratman, M.N. Modelling above-ground live trees biomass and carbon stock estimation of tropical lowland dipterocarp forest: Integration of field-based and remotely sensed estimates. Int. J. Remote Sens. 2018, 39, 2312–2340. [Google Scholar] [CrossRef]
- Chubey, M.S. Object-based analysis of ikonos-2 imagery for extraction of forest inventory parameters. Photogramm. Eng. Remote Sens. 2006, 72, 383–394. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.; Zhang, X.; Liu, S.; Sun, P.; Wang, T. The basic principle of random forest and its applications in ecology: A case study of pinus yunnanensis. Acta Ecol. Sin. 2014, 34, 650–659. [Google Scholar]
- Lopatin, J.; Dolos, K.; Hernández, H.J.; Galleguillos, M.; Fassnacht, F.E. Comparing generalized linear models and random forest to model vascular plant species richness using lidar data in a natural forest in central chile. Remote Sens. Environ. 2016, 173, 200–210. [Google Scholar] [CrossRef]
- Dong, L.; Du, H.; Mao, F.; Han, N.; Li, X.; Zhou, G.; Zhu, D.; Zheng, J.; Zhang, M.; Xing, L. Very High Resolution Remote Sensing Imagery Classification Using a Fusion of Random Forest and Deep Learning Technique-Subtropical Area for Example. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 13, 113–128. [Google Scholar] [CrossRef]
- Li, M.; Im, J.; Quackenbush, L.J.; Liu, T. Forest biomass and carbon stock quantification using airborne lidar data: A case study over huntington wildlife forest in the adirondack park. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 7, 3143–3156. [Google Scholar] [CrossRef]
- Pham, L.T.H.; Brabyn, L. Monitoring mangrove biomass change in vietnam using spot images and an object-based approach combined with machine learning algorithms. ISPRS J. Photogramm. Remote Sens. 2017, 128, 86–97. [Google Scholar] [CrossRef]
- Yang, R.M.; Zhang, G.L.; Liu, F.; Lu, Y.Y.; Yang, F.; Yang, F.; Yang, M.; Zhao, Y.G.; Li, D.C. Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecol. Indic. 2016, 60, 870–878. [Google Scholar] [CrossRef]
- Song, L.; Langfelder, P.; Horvath, S. Random generalized linear model: A highly accurate and interpretable ensemble predictor. BMC Bioinform. 2013, 14, 5. [Google Scholar] [CrossRef]
- Huete, A.R. Vegetation Indices, Remote Sensing and Forest Monitoring. Geogr. Compass 2012, 6, 513–532. [Google Scholar] [CrossRef]
- Xue, J.R.; Su, B.F. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- López-Serrano, P.M.; Corral-Rivas, J.J.; Díaz-Varela, R.A.; Álvarez-González, J.G.; López-Sánchez, C.A. Evaluation of Radiometric and Atmospheric Correction Algorithms for Aboveground Forest Biomass Estimation Using Landsat 5 TM Data. Remote Sens. 2016, 8, 369. [Google Scholar] [CrossRef]
- Li, X.J.; Du, H.Q.; Mao, F.J.; Zhou, G.M.; Chen, L.; Xing, L.Q.; Fan, W.L.; Xu, X.J.; Liu, Y.L.; Cui, L. Estimating bamboo forest aboveground biomass using EnKF-assimilated MODIS LAI spatiotemporal data and machine learning algorithms. Agric. For. Meteorol. 2018, 256–257, 445–457. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. 1974. Monitoring Vegetation Systems in the Great Plains with Erts. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Richardson, A.; Wiegand, C. Distinguishing Vegetation from Soil Background Information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Lou, Y.P.; Li, Y.X.; Buckingham, K.; Henley, G.; Zhou, G.M. Bamboo and Climate Change Mitigation; INBAR: Beijing, China, 2010. [Google Scholar]
- Li, P.; Zhou, G.; Du, H.; Lu, D.; Mo, L.; Xu, X.; Shi, Y.; Zhou, Y. Current and potential carbon stocks in moso bamboo forests in china. J. Env. Manag. 2015, 156, 89–96. [Google Scholar] [CrossRef]
- Henley, G.; Lou, Y. The Climate Change Challenge and Bamboo: Mitigation and Adaptation; INBAR: Beijing, China, 2009. [Google Scholar]
- Zhou, G.; Shi, Y.; Lou, Y.; Li, J.; Yannick, K.; Chen, J.; Ma, G.; He, Y.; Wang, X.; Yu, T. Methodology for Carbon Accounting and Monitoring of Bamboo Afforestation Projects in China; INBAR: Beijing China, 2013. [Google Scholar]
- Dong, L.; Du, H.; Han, N.; Li, X.; Zhu, D.; Mao, F.; Zhang, M.; Zheng, J.; Liu, H.; Huang, Z. Application of Convolutional neural network on lei bamboo above-ground-biomass (AGB) estimation using Worldview-2. Remote Sens. 2020, 12, 958. [Google Scholar] [CrossRef]
- Zhou, G.; Xu, X.; Du, H.; Ge, H.; Shi, Y.; Zhou, Y. Estimating aboveground carbon of moso bamboo forests using the k nearest neighbors technique and satellite imagery. Photogramm. Eng. Remote Sens. 2011, 77, 1123–1131. [Google Scholar] [CrossRef]
- Shang, Z.; Zhou, G.; Du, H.; Xu, X.; Shi, Y.; Lü, Y.; Zhou, Y.; Gu, C. Moso bamboo forest extraction and aboveground carbon storage estimation based on multi-source remotely sensed images. Int. J. Remote Sens. 2013, 34, 5351–5368. [Google Scholar] [CrossRef]
- Han, N.; Du, H.; Zhou, G.; Xu, X.; Cui, R.; Gu, C. Spatiotemporal heterogeneity of moso bamboo aboveground carbon storage with landsat thematic mapper images: A case study from anji county, china. Int. J. Remote Sens. 2013, 34, 4917–4932. [Google Scholar] [CrossRef]
- Liu, E.; Shi, Y.; Li, Y.; Zhou, G. Carbon sequestration potential of Moso bamboo forest in Zhejiang Province based on the non-spatial structure. Sci. Silv. Sin. 2012, 48, 9–14. [Google Scholar]
- Zhou, G.; Wu, J.; Jiang, P. Effects of different management models on carbon storage in phyllostachys pubescens forests. J. Beijing Univ. 2006, 28, 51–55. [Google Scholar]
- Han, N.; Du, H.; Zhou, G.; Xu, X.; Ge, H.; Liu, L.; Gao, G.; Sun, S. Exploring the synergistic use of multi-scale image object metrics for land-use/land-cover mapping using an object-based approach. Int. J. Remote Sens. 2015, 36, 3544–3562. [Google Scholar] [CrossRef]
- Tavallali, P.; Razavi, M.; Brady, S. A non-linear data mining parameter selection algorithm for continuous variables. PLoS ONE 2017, 12, e0187676. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844. [Google Scholar]
- Lin, L.I. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255. [Google Scholar] [CrossRef]
- Calvão, T.; Palmeirim, J.M. Mapping mediterranean scrub with satellite imagery: Biomass estimation and spectral behaviour. Int. J. Remote Sens. 2004, 25, 3113–3126. [Google Scholar] [CrossRef]
- Zhang, C.; Yue, P.; Tapete, D.; Shangguan, B.; Wang, M.; Wu, Z. A multi-level context-guided classification method with object-based convolutional neural network for land cover classification using very high resolution remote sensing images. Int. J. Appl. Earth Observ. Geoinform. 2020, 88, 102086. [Google Scholar] [CrossRef]
- Li, X.; Meng, Q.; Wang, C.; Liu, M.; Zheng, L.; Wang, K. A hybrid model of object-oriented and pixel based classification of remotely sensed data. J. Geo-Inf. Sci. 2013, 15, 744–751. [Google Scholar] [CrossRef]
- Walker, J.S.; Blaschke, T. Object-based land-cover classification for the phoenix metropolitan area: Optimization vs. Transportability. Int. J. Remote Sens. 2008, 29, 2021–2040. [Google Scholar] [CrossRef]
Sample Size | Min | Max | Mean | SD | |
---|---|---|---|---|---|
Sample plots | 60 | 1.14 | 10.92 | 5.72 | 2.62 |
Scale Parameter | Samples Data Used or Not | Shape | Color | Compactness | Smoothness |
---|---|---|---|---|---|
20 | Yes | 0.3 | 0.7 | 0.5 | 0.5 |
30 | Yes | 0.3 | 0.7 | 0.5 | 0.5 |
40 | Yes | 0.3 | 0.7 | 0.5 | 0.5 |
50 | Yes | 0.3 | 0.7 | 0.5 | 0.5 |
60 | Yes | 0.3 | 0.7 | 0.5 | 0.5 |
Total Number of Variables (N) | Proportion of Randomly Selected Variables (n/N) |
---|---|
1–10 | 1 |
11–300 | 1.0276–0.00276N |
>300 | 0.2 |
Segmentation Scale | The Number of Objects | The Number of Objects Overlapping with Irregular Samples |
---|---|---|
20 | 2,168,849 | 40 |
30 | 1,096,942 | 68 |
40 | 563,176 | 35 |
50 | 375,692 | 31 |
60 | 264,880 | 26 |
Feature Number | Feature Name | Feature Meaning | Feature Number | Feature Name | Feature Meaning |
---|---|---|---|---|---|
F1 | L30-GLCMHom4 | Texture: NIR homogeneity | F46 | L60-Mean7 | Mean: RVI |
F2 | L30-GLCMHom3 | Texture: Red homogeneity | F47 | L60-Mean6 | Mean: DVI |
F3 | L30-GLCMHom2 | Texture: Green homogeneity | F48 | L60-Mean5 | Mean: NDVI |
F4 | L30-GLCMHom1 | Texture: Blue homogeneity | F49 | L60-Mean4 | Mean: NIR |
F5 | L30-GLCMCon4 | Texture: NIR Contrast | F50 | L60-Mean3 | Mean: Red |
F6 | L30-GLCMCon3 | Texture: Red Contrast | F51 | L60-Mean2 | Mean: Green |
F7 | L30-GLCMCon2 | Texture: Green Contrast | F52 | L60-Mean1 | Mean: Blue |
F8 | L30-GLCMCon1 | Texture: Blue Contrast | F53 | L60-GLCMStd4 | Texture: NIRSD |
F9 | L30-Std7 | SD: RVI | F54 | L60-GLCMStd3 | Texture: RedSD |
F10 | L30-Std6 | SD: DVI | F55 | L60-GLCMStd2 | Texture: GreenSD |
F11 | L30-Std5 | SD: NDVI | F56 | L60-GLCMStd1 | Texture: GreenSD |
F12 | L30-Std4 | SD: NIR | F57 | L60-GLCMMean4 | Texture: NIRaverage |
F13 | L30-Std3 | SD: Red | F58 | L60-GLCMMean3 | Texture: Redaverage |
F14 | L30-Std2 | SD: Green | F59 | L60-GLCMMean2 | Texture: Greenaverage |
F15 | L30-Std1 | SD: Blue | F60 | L60-GLCMMean1 | Texture: Blueaverage |
F16 | L30-Mean7 | Mean: RVI | F61 | L90-GLCMHom4 | Texture: NIR homogeneity |
F17 | L30-Mean6 | Mean: DVI | F62 | L90-GLCMHom3 | Texture: Red homogeneity |
F18 | L30-Mean5 | Mean: NDVI | F63 | L90-GLCMHom2 | Texture: Green homogeneity |
F19 | L30-Mean4 | Mean: NIR | F64 | L90-GLCMHom1 | Texture: Blue homogeneity |
F20 | L30-Mean3 | Mean: Red | F65 | L90-GLCMCon4 | Texture: NIR Contrast |
F21 | L30-Mean2 | Mean: Green | F66 | L90-GLCMCon3 | Texture: Red Contrast |
F22 | L30-Mean1 | Mean: Blue | F67 | L90-GLCMCon2 | Texture: Green Contrast |
F23 | L30-GLCMStd4 | Texture: NIRSD | F68 | L90-GLCMCon1 | Texture: Blue Contrast |
F24 | L30-GLCMStd3 | Texture: RedSD | F69 | L90-Std7 | SD: RVI |
F25 | L30-GLCMStd2 | Texture: GreenSD | F70 | L90-Std6 | SD: DVI |
F26 | L30-GLCMStd1 | Texture: GreenSD | F71 | L90-Std5 | SD: NDVI |
F27 | L30-GLCMMean4 | Texture: NIRaverage | F72 | L90-Std4 | SD: NIR |
F28 | L30-GLCMMean3 | Texture: Redaverage | F73 | L90-Std3 | SD: Red |
F29 | L30-GLCMMean2 | Texture: Greenaverage | F74 | L90-Std2 | SD: Green |
F30 | L30-GLCMMean1 | Texture: Blueaverage | F75 | L90-Std1 | SD: Blue |
F31 | L60-GLCMHom4 | Texture: NIR homogeneity | F76 | L90-Mean7 | Mean: RVI |
F32 | L60-GLCMHom3 | Texture: Red homogeneity | F77 | L90-Mean6 | Mean: DVI |
F33 | L60-GLCMHom2 | Texture: Green homogeneity | F78 | L90-Mean5 | Mean: NDVI |
F34 | L60-GLCMHom1 | Texture: Blue homogeneity | F79 | L90-Mean4 | Mean: NIR |
F35 | L60-GLCMCon4 | Texture: NIR Contrast | F80 | L90-Mean3 | Mean: Red |
F36 | L60-GLCMCon3 | Texture: Red Contrast | F81 | L90-Mean2 | Mean: Green |
F37 | L60-GLCMCon2 | Texture: Green Contrast | F82 | L90-Mean1 | Mean: Blue |
F38 | L60-GLCMCon1 | Texture: Blue Contrast | F83 | L90-GLCMStd4 | Texture: NIRSD |
F39 | L60-Std7 | SD: RVI | F84 | L90-GLCMStd3 | Texture: RedSD |
F40 | L60-Std6 | SD: DVI | F85 | L90-GLCMStd2 | Texture: GreenSD |
F41 | L60-Std5 | SD: NDVI | F86 | L90-GLCMStd1 | Texture: GreenSD |
F42 | L60-Std4 | SD: NIR | F87 | L90-GLCMMean4 | Texture: NIRaverage |
F43 | L60-Std3 | SD: Red | F88 | L90-GLCMMean3 | Texture: Redaverage |
F44 | L60-Std2 | SD: Green | F89 | L90-GLCMMean2 | Texture: Greenaverage |
F45 | L60-Std1 | SD: Blue | F90 | L90-GLCMMean1 | Texture: Blueaverage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Y.; Han, N.; Du, H. Estimation of Bamboo Forest Aboveground Carbon Using the RGLM Model Based on Object-Based Multiscale Segmentation of SPOT-6 Imagery. Remote Sens. 2023, 15, 2566. https://doi.org/10.3390/rs15102566
Lv Y, Han N, Du H. Estimation of Bamboo Forest Aboveground Carbon Using the RGLM Model Based on Object-Based Multiscale Segmentation of SPOT-6 Imagery. Remote Sensing. 2023; 15(10):2566. https://doi.org/10.3390/rs15102566
Chicago/Turabian StyleLv, Yulong, Ning Han, and Huaqiang Du. 2023. "Estimation of Bamboo Forest Aboveground Carbon Using the RGLM Model Based on Object-Based Multiscale Segmentation of SPOT-6 Imagery" Remote Sensing 15, no. 10: 2566. https://doi.org/10.3390/rs15102566
APA StyleLv, Y., Han, N., & Du, H. (2023). Estimation of Bamboo Forest Aboveground Carbon Using the RGLM Model Based on Object-Based Multiscale Segmentation of SPOT-6 Imagery. Remote Sensing, 15(10), 2566. https://doi.org/10.3390/rs15102566