Traditional Village Building Extraction Based on Improved Mask R-CNN: A Case Study of Beijing, China
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Acquisition and Preprocessing
3.1.1. Data Acquisition
3.1.2. Data Preprocessing
3.2. Improved Mask R-CNN Model Architecture
3.2.1. ResNet-50
3.2.2. ASPP-PAFPN
3.2.3. RPN-FCN
3.2.4. Loss Calculation
3.2.5. Evaluation Metrics
4. Results
4.1. Comparison Experiments
4.2. Ablation Experiments
4.3. Application Practices
5. Discussion
5.1. Advantages Brought by AP_Mask R-CNN Model
5.2. Limitations of Automatic Extraction of Traditional Village Building
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghosh, M. Traditional folk art community and urban transformation: The case of the artists’ village at Kalighat, India. J. Archit. Plan. Res. 2019, 36, 70–89. [Google Scholar]
- Xu, Q.; Wang, J. Recognition of values of traditional villages in Southwest China for sustainable development: A case study of Liufang village. Sustainability 2021, 13, 21. [Google Scholar] [CrossRef]
- Liu, Y. On the protection dilemma of traditional Chinese villages: A case study of Xisuguazi Tibetan village. In Proceedings of the Euro-Asian Conference on Corporate Social Responsibility (CSR) and Environmental Management—Tourism, Society and Education Session (Part III), Tianjin, China, 23–24 November 2018; pp. 45–52. [Google Scholar]
- Xie, X.B.; Li, X.J. The formation and transformation of “Cultural Matrix” in traditional village. J. Hunan Univ. Soc. Sci. Ed. 2019, 33, 8. [Google Scholar]
- Liu, C.; Xu, M. Characteristics and influencing factors on the hollowing of traditional villages-taking 2645 villages from the Chinese traditional village catalogue (batch 5) as an example. Int. J. Environ. Res. Public Health 2021, 18, 19. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Ahmad, Y. Heritage protection perspective of sustainable development of traditional villages in Guangxi, China. Sustainability 2023, 15, 23. [Google Scholar] [CrossRef]
- Liu, T.; Liu, P.; Wang, L. The protection and tourism development path of ancient villages and old towns under the background of new-type urbanization: A case study of old town of Xuanzhou in Hunan province. Geogr. Res. 2019, 38, 133–145. [Google Scholar]
- Xia, M. The rural revitalization strategy-strategies for cultural heritage and transformation of traditional village Zhu Jiayu, Zhangqiu. In Proceedings of the International Workshop on Advances in Social Sciences (IWASS), Hong Kong, China, 12–13 December 2018; pp. 1192–1195. [Google Scholar]
- Yu, Y. Landscape transition of historic villages in Southwest China. Front. Archit. Res. 2013, 2, 234–242. [Google Scholar] [CrossRef]
- Olczak, B.; Wilkosz-Mamcarczyk, M.; Prus, B.; Hodor, K.; Dixon-Gough, R. Application of the building cohesion method in spatial planning to shape patterns of the development in a suburban historical landscape of a ‘village within Kraków’. Land Use Policy 2022, 114, 105997. [Google Scholar] [CrossRef]
- Fu, J.; Zhou, J.; Deng, Y. Heritage values of ancient vernacular residences in traditional villages in Western Hunan, China: Spatial patterns and influencing factors. Build. Environ. 2021, 188, 107473. [Google Scholar] [CrossRef]
- Wang, N.; Fang, M.; Beauchamp, M.; Jia, Z.; Zhou, Z. An indigenous knowledge-based sustainable landscape for mountain villages: The Jiabang rice terraces of Guizhou, China. Habitat Int. 2021, 111, 102360. [Google Scholar] [CrossRef]
- Song, L.A.; Gl, B.; Ming, X.C. The linguistic landscape in rural destinations: A case study of Hongcun Village in China. Tour. Manag. 2020, 77, 104005. [Google Scholar]
- Xiong, Y.; Chen, Q.; Zhu, M.; Zhang, Y.; Huang, K. Accurate detection of historical buildings using aerial photographs and deep transfer learning. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020. [Google Scholar]
- Liu, J.; Wang, S.; Hou, X.; Song, W. A deep residual learning serial segmentation network for extracting buildings from remote sensing imagery. Int. J. Remote Sens. 2020, 41, 5573–5587. [Google Scholar] [CrossRef]
- Chen, J.; Wang, G.; Luo, L.; Gong, W.; Cheng, Z. Building area estimation in drone aerial images based on mask R-CNN. IEEE Geosci. Remote Sens. Lett. 2020, 18, 891–894. [Google Scholar] [CrossRef]
- Li, Y.; Xu, W.; Chen, H.; Jiang, J.; Li, X. A novel framework based on mask R-CNN and histogram thresholding for scalable segmentation of new and old rural buildings. Remote Sens. 2021, 13, 1070. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Teng, F.; Cai, H. Improved mask R-CNN for rural building roof type recognition from UAV high-resolution images: A case study in Hunan province, China. Remote Sens. 2022, 14, 265. [Google Scholar] [CrossRef]
- Zhan, Y.; Liu, W.; Maruyama, Y. Damaged building extraction using modified mask R-CNN model using post-event aerial images of the 2016 Kumamoto earthquake. Remote Sens. 2022, 14, 1002. [Google Scholar] [CrossRef]
- Tejeswari, B.; Sharma, S.K.; Kumar, M.V.R.; Gupta, K. Building footprint extraction from space-borne imagery using deep neural networks. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 641–647. [Google Scholar] [CrossRef]
- Katartzis, A.; Sahli, H.; Nyssen, E.; Cornelis, J. Detection of buildings from a single airborne image using a Markov random field model. In Proceedings of the IEEE 2001 Geoscience and Remote Sensing Symposium (IGARSS), Sydney, NSW, Australia, 9–13 July 2001. [Google Scholar]
- Simonetto, E.; Oriot, H.; Garello, R. Rectangular building extraction from stereoscopic airborne Radar images. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2386–2395. [Google Scholar] [CrossRef]
- Jung, C.R.; Schramm, R. Rectangle detection based on a windowed hough transform. In Proceedings of the Brazilian Symposium on Computer Graphics & Image Processing, Curitiba, Brazil, 20 October 2004. [Google Scholar]
- Ma, Y.; Gu, X.D.; Wang, Y.Y. Feature fusion method for edge detection of color images. J. Syst. Eng. Electron. 2009, 20, 394–399. [Google Scholar]
- Zhang, Z.Z.; Zhang, Y.J. Building extraction from airborne laser point cloud using NDVI constrained watershed algorithm. Acta Opt. Sin. 2016, 36, 1028002. [Google Scholar]
- Zhou, S.L.; Liang, D.; Wang, H.; Kong, J. Remote sensing image segmentation approach based on quarter-tree and graph cut. Comput. Eng. 2010, 36, 3. [Google Scholar]
- Wei, D.Q. Research on Building Extraction Technology on High Resolution Remote Sensing Images. Ph.D. Thesis, PLA Information Engineering University, Zhengzhou, China, 2013. [Google Scholar]
- Iyer, B.; Macleod, M.D. Multi-scale region segmentation of images using nonlinear methods. In Proceedings of the Visual Communications and Image Processing, Perth, Australia, 30 May 2000. [Google Scholar]
- Zguira, A.; Doggaz, N.; Zagrouba, E. Region-based objective evaluation of polygonal mesh segmentation methods. In Proceedings of the VISAPP 2011—Sixth International Conference on Computer Vision Theory and Applications, Algarve, Portugal, 5–7 March 2011. [Google Scholar]
- Hui, Z.; Fritts, J.E.; Goldman, S.A. A fast texture feature extraction method for region-based image segmentation. In Proceedings of the SPIE—The International Society for Optical Engineering, San Jose, CA, USA, 18–20 January 2005; p. 5685. [Google Scholar]
- Huang, X.; Zhang, L. Morphological building/shadow index for building extraction from high-resolution imagery over urban areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 161–172. [Google Scholar] [CrossRef]
- Gao, X.; Wang, M.; Yang, Y.; Li, G. Building extraction from RGB VHR images using shifted shadow algorithm. IEEE Access 2018, 6, 22034–22045. [Google Scholar] [CrossRef]
- Maruyama, Y.; Tashiro, A.; Yamazaki, F. Use of digital surface model constructed from digital aerial images to detect collapsed buildings during earthquake. Procedia Eng. 2011, 14, 552–558. [Google Scholar] [CrossRef]
- Tournaire, O.; Bredif, M.; Boldo, D.; Durupt, M. An efficient stochastic approach for building footprint extraction from digital elevation models. ISPRS J. Photogramm. Remote Sens. 2010, 65, 317–327. [Google Scholar] [CrossRef]
- Saeid, P.; Meisam, A. Building extraction from fused LiDAR and hyperspectral data using Random Forest Algorithm. Geomatica 2017, 71, 185–193. [Google Scholar]
- Ferro, A.; Brunner, D.; Bruzzone, L. Automatic detection and reconstruction of building radar footprints from single VHR SAR images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 935–952. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R.B. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 42, 386–397. [Google Scholar] [CrossRef]
- Yuan, Y. Study on the Inheritance and Update of Residence in Jijiaying Village; Beijing University of Civil Engineering and Architecture: Beijing, China.
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Jha, D.; Smedsrud, P.H.; Riegler, M.A.; Johansen, D. Simulamet. ResUNet++: An advanced architecture for medical image segmentation. arXiv 2019, arXiv:1911.07067. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239. [Google Scholar] [CrossRef]
- Li, W.; Sun, K.; Zhao, H.; Li, W.; Wei, J.; Gao, S. Extracting buildings from high-resolution remote sensing images by deep ConvNets equipped with structural-cue-guided feature alignment. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 102970. [Google Scholar] [CrossRef]
- Lin, T.Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. IEEE Comput. Soc. 2017, 2117–2125. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768. [Google Scholar]
- Ge, J.; Wang, C.; Zhang, B.; Xu, C.; Wen, X. Azimuth-sensitive object detection of high-resolution SAR images in complex scenes by using a spatial orientation attention enhancement network. Remote Sens. 2022, 14, 2198. [Google Scholar] [CrossRef]
- Yingying, X.; Li, D.; Xie, Q.; Wu, Q.; Wang, J. Automatic defect detection and segmentation of tunnel surface using modified Mask R-CNN. Measurement 2021, 178, 109316. [Google Scholar]
- He, D.; Qiu, Y.; Miao, J.; Zou, Z.; Li, K.; Ren, C.; Shen, G. Improved mask R-CNN for obstacle detection of rail transit. Measurement 2022, 190, 110728. [Google Scholar] [CrossRef]
- Fu, C.Y.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. DSSD: Deconvolutional Single Shot Detector. arXiv 2017, arXiv:1701.06659. [Google Scholar]
- Kong, T.; Yao, A.; Chen, Y.; Sun, F. HyperNet: Towards accurate region proposal generation and joint object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 845–853. [Google Scholar]
- Noh, H.; Hong, S.; Han, B. Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Wang, D.G.; Lv, Q.Y.; Wu, Y.F.; Fan, Z.Q. The characteristic of regional differentiation and impact mechanism of architecture style of traditional residence. J. Nat. Resour. 2019, 34, 1864. [Google Scholar]
- Monna, F.; Rolland, T.; Denaire, A.; Navarro, N.; Granjon, L.; Barbé, R.; Chateau-Smith, C. Deep learning to detect built cultural heritage from satellite imagery—Spatial distribution and size of vernacular houses in Sumba, Indonesia. J. Cult. Herit. 2021, 52, 171–183. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 48. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.C.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the NIPS, Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
Technical Indicators | Parameters | |
---|---|---|
Aircraft | Brand | DJI |
Model | M300RTK | |
Maximum flight time | 55 min | |
Protection rating | IP45 | |
RTK position accuracy | 1 cm + 1 ppm (horizontal); 1.5 cm + 1 ppm (vertical) | |
Camera | Camera model | DEFAULTQ |
Aperture | f/0 | |
Exposure time | 1/500 s | |
ISO speed | ISO-200 | |
Focal length | 36 mm |
Technical Indicators | Parameters |
---|---|
Aviation high | 100 m |
Return altitude | 200 m |
Flight mode | RTK |
Speed | 8 m/s |
Overlap | 80% |
Working Environment | Versions | |
---|---|---|
Software | Pycharm | 2022.3.1 |
Anaconda | 3 | |
Computer System | Window10 64-bit | |
Cuda | 11.3 | |
Hardware | Processor | I9-9900k |
GPU | NVIDIA 2080 super (8 g) | |
Frame | Tensorflow | 2.2 |
Python | 3.7 |
Model | Metric | Overall | TGTR | TTB | MCSR | LBCSR | GCSR | GCR | DBCSR | RRR |
---|---|---|---|---|---|---|---|---|---|---|
AP_Mask R-CNN | Precision | 0.713 | 0.905 | 0.985 | 0.475 | 0.65 | 0.545 | 0.675 | 0.897 | 0.574 |
Recall | 0.819 | 0.918 | 0.996 | 0.639 | 0.809 | 0.582 | 0.791 | 0.991 | 0.77 | |
F1-Score | 0.757 | 0.912 | 0.991 | 0.545 | 0.721 | 0.563 | 0.728 | 0.942 | 0.658 | |
IoU | 0.694 | 0.873 | 0.956 | 0.462 | 0.633 | 0.528 | 0.65 | 0.89 | 0.561 | |
PspNet | Precision | 0.64 | 0.79 | 0.93 | 0.63 | 0.53 | 0.38 | 0.52 | 0.71 | 0.63 |
Recall | 0.66 | 0.79 | 0.9 | 0.53 | 0.68 | 0.59 | 0.37 | 0.61 | 0.81 | |
F1-Score | 0.65 | 0.79 | 0.915 | 0.576 | 0.596 | 0.462 | 0.432 | 0.656 | 0.709 | |
IoU | 0.496 | 0.657 | 0.845 | 0.418 | 0.435 | 0.302 | 0.274 | 0.481 | 0.556 | |
Deeplabv3 | Precision | 0.418 | 0.64 | 0.78 | 0.33 | 0.37 | 0.2 | 0.38 | 0.29 | 0.35 |
Recall | 0.46 | 0.76 | 0.75 | 0.47 | 0.43 | 0.44 | 0.17 | 0.37 | 0.29 | |
F1-Score | 0.438 | 0.695 | 0.765 | 0.388 | 0.398 | 0.275 | 0.235 | 0.325 | 0.317 | |
IoU | 0.298 | 0.547 | 0.623 | 0.245 | 0.258 | 0.164 | 0.146 | 0.202 | 0.198 | |
U-Net | Precision | 0.663 | 0.86 | 0.89 | 0.77 | 0.54 | 0.36 | 0.61 | 0.61 | 0.67 |
Recall | 0.751 | 0.88 | 0.95 | 0.68 | 0.67 | 0.56 | 0.67 | 0.83 | 0.78 | |
F1-Score | 0.704 | 0.87 | 0.919 | 0.722 | 0.598 | 0.44 | 0.639 | 0.704 | 0.721 | |
IoU | 0.601 | 0.825 | 0.901 | 0.603 | 0.454 | 0.312 | 0.515 | 0.586 | 0.608 |
Model | Metric | Overall | TGTR | TTB | MCSR | LBCSR | GCSR | GCR | DBCSR | RRR |
---|---|---|---|---|---|---|---|---|---|---|
AP_Mask R-CNN | Precision | 0.713 | 0.905 | 0.985 | 0.475 | 0.65 | 0.545 | 0.675 | 0.897 | 0.574 |
Recall | 0.819 | 0.918 | 0.996 | 0.639 | 0.809 | 0.582 | 0.791 | 0.991 | 0.77 | |
F1- Score | 0.757 | 0.912 | 0.991 | 0.545 | 0.721 | 0.563 | 0.728 | 0.942 | 0.658 | |
IoU | 0.694 | 0.873 | 0.956 | 0.462 | 0.633 | 0.528 | 0.65 | 0.89 | 0.561 | |
A_Mask R-CNN | Precision | 0.656 | 0.901 | 0.951 | 0.493 | 0.569 | 0.496 | 0.617 | 0.828 | 0.396 |
Recall | 0.807 | 0.913 | 1 | 0.629 | 0.806 | 0.603 | 0.781 | 0.97 | 0.74 | |
F1-Score | 0.724 | 0.907 | 0.98 | 0.553 | 0.667 | 0.544 | 0.689 | 0.893 | 0.515 | |
IoU | 0.64 | 0.893 | 0.912 | 0.481 | 0.543 | 0.492 | 0.605 | 0.81 | 0.386 | |
P_Mask R-CNN | Precision | 0.684 | 0.897 | 0.966 | 0.422 | 0.619 | 0.476 | 0.654 | 0.861 | 0.581 |
Recall | 0.804 | 0.913 | 1 | 0.581 | 0.817 | 0.572 | 0.81 | 0.97 | 0.76 | |
F1-Score | 0.739 | 0.905 | 0.988 | 0.489 | 0.704 | 0.52 | 0.724 | 0.912 | 0.658 | |
IoU | 0.632 | 0.828 | 0.932 | 0.383 | 0.571 | 0.406 | 0.592 | 0.827 | 0.513 | |
Mask R-CNN | Precision | 0.635 | 0.892 | 0.941 | 0.436 | 0.579 | 0.504 | 0.611 | 0.738 | 0.376 |
Recall | 0.773 | 0.909 | 1 | 0.524 | 0.789 | 0.562 | 0.771 | 0.88 | 0.75 | |
F1-Score | 0.697 | 0.9 | 0.97 | 0.476 | 0.668 | 0.531 | 0.682 | 0.803 | 0.501 | |
IoU | 0.609 | 0.874 | 0.916 | 0.41 | 0.553 | 0.476 | 0.571 | 0.696 | 0.373 |
Model | Metric | Overall | TGTR | TTB | MCSR | LBCSR | GCSR | GCR | DBCSR | RRR |
---|---|---|---|---|---|---|---|---|---|---|
AP_Mask R-CNN | Precision | 0.078 | 0.013 | 0.044 | 0.039 | 0.071 | 0.041 | 0.064 | 0.159 | 0.198 |
Recall | 0.046 | 0.009 | −0.004 | 0.115 | 0.02 | 0.02 | 0.02 | 0.111 | 0.02 | |
F1- Score | 0.06 | 0.012 | 0.021 | 0.069 | 0.053 | 0.032 | 0.046 | 0.139 | 0.157 | |
IoU | 0.085 | −0.001 | 0.04 | 0.052 | 0.08 | 0.052 | 0.085 | 0.194 | 0.182 | |
A_Mask R-CNN | Precision | 0.021 | 0.009 | 0.01 | 0.057 | −0.01 | −0.008 | 0.006 | 0.09 | 0.02 |
Recall | 0.034 | 0.004 | 0 | 0.105 | 0.017 | 0.041 | 0.01 | 0.09 | −0.01 | |
F1-Score | 0.027 | 0.007 | 0.01 | 0.077 | −0.001 | 0.013 | 0.007 | 0.09 | 0.014 | |
IoU | 0.031 | 0.019 | −0.004 | 0.071 | −0.01 | 0.016 | 0.034 | 0.114 | 0.013 | |
P_Mask R-CNN | Precision | 0.049 | 0.005 | 0.025 | −0.014 | 0.04 | −0.028 | 0.043 | 0.123 | 0.205 |
Recall | 0.031 | 0.004 | 0 | 0.057 | 0.028 | 0.01 | 0.039 | 0.09 | 0.01 | |
F1-Score | 0.042 | 0.005 | 0.018 | 0.013 | 0.036 | −0.011 | 0.042 | 0.109 | 0.157 | |
IoU | 0.023 | −0.046 | 0.016 | −0.027 | 0.018 | −0.07 | 0.021 | 0.131 | 0.14 | |
Mask R-CNN | Precision | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Recall | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
F1-Score | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
IoU | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Shi, Y.; Zhang, J.; Hu, L.; Li, S.; He, D.; Liu, F. Traditional Village Building Extraction Based on Improved Mask R-CNN: A Case Study of Beijing, China. Remote Sens. 2023, 15, 2616. https://doi.org/10.3390/rs15102616
Wang W, Shi Y, Zhang J, Hu L, Li S, He D, Liu F. Traditional Village Building Extraction Based on Improved Mask R-CNN: A Case Study of Beijing, China. Remote Sensing. 2023; 15(10):2616. https://doi.org/10.3390/rs15102616
Chicago/Turabian StyleWang, Wenke, Yang Shi, Jie Zhang, Lujin Hu, Shuo Li, Ding He, and Fei Liu. 2023. "Traditional Village Building Extraction Based on Improved Mask R-CNN: A Case Study of Beijing, China" Remote Sensing 15, no. 10: 2616. https://doi.org/10.3390/rs15102616
APA StyleWang, W., Shi, Y., Zhang, J., Hu, L., Li, S., He, D., & Liu, F. (2023). Traditional Village Building Extraction Based on Improved Mask R-CNN: A Case Study of Beijing, China. Remote Sensing, 15(10), 2616. https://doi.org/10.3390/rs15102616