Ionospheric–Thermospheric Responses to Geomagnetic Storms from Multi-Instrument Space Weather Data
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Geomagnetic Conditions of Storms in June 2015, August 2018 and November 2021
3.2. Ionospheric–Thermospheric Irregularities
3.3. Earth’s Magnetic Field Variations
4. Discussion
5. Conclusions
- Different regions exhibited variable vTEC enhancement/depletion patterns depending on thermospheric ∑O/N2 ratio reduction/enrichment. At low latitudes, the GNSS stations of East Asia (HYDE and IISC), Southeast Asia (COCO and BAKO), and Oceania (KOUC) showed vTEC enhancement in the main phases of the storms of June 2015 and August 2018. The stations in South America (GLPS, KOUR and RIOP) registered no such enhancements. However, both East Asia and Southeast Asia region showed vTEC enhancement during the initial phase of the 2021 November storm. Similarly, GLPS and RIOP stations of South America showed enhancement in vTEC during the recovery phase of the 2021 storm. vTEC enhancement in the Asian and Oceania regions was approximately double the value during the quiet days for both June 2015 and August 2018 storms. The GNSS stations exhibited enhancement during all three storms at the mid-latitudes of Oceania, East Asia, and Russia. Oceania, East Asia and Russia exhibited enhancement during the initial phase of the November 2021 storms, followed by a sharp decrease and then a rise in vTEC.
- Swarm satellites vTEC confirmed the low-and mid-latitude ionospheric irregularities during the main phases of the storms of June 2015 and August 2018.
- GIM-TEC also showed clear agreement with the GNSS-derived vTEC in most parts of the world during the main phase of both the June 2015 and August 2018 storms. During the main phases of both storms, these ionospheric variations at low-and mid-latitude regions were mainly driven by thermospheric ∑O/N2 ratio, PPEF and EEJ.
- The PPEF variations at different longitudes provided different vTEC responses. These variations were present in the low-and mid-latitude regions of Asia, Africa, Russia, and Oceania for all three storms. The southward–northward oscillation of the IMF Bz component drives this variability along with interactions with Earth’s magnetosphere and solar wind. vTEC enhancement at different longitudes were mainly attributed to PPEF variability. vTEC depletion were mainly due to the enriched thermospheric wind composition, as seen by changes in the ∑O/N2 density ratio.
- The Dion from the H component of the Earth’s magnetic field exhibited clear variations during the 2015 storm compared to the 2018 and 2021 storms.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adebiyi, S.J.; Adeniyi, J.O.; Adimula, I.A.; Joshua, B.; Gwani, M. Effect of the geomagnetic storm of April 5th to 7th, 2010, on the F2-layer of the ionosphere of Ilorin, Nigeria. World J. Eng. Pure Appl. Sci. 2012, 2, 56. [Google Scholar]
- Joshua, B.; Adeniyi, J.O.; Adimula, I.A.; Abbas, M.; Adebiyi, S.J. The effect of magnetic storm of May 2010 on the F2 layer over the Ilorin ionosphere. World J. Young Res. 2011, 1, 71. [Google Scholar]
- Fang, H.; Weng, L.; Sheng, Z. Variations in the thermosphere and ionosphere response to the 17–20 April 2002 geomagnetic storms. Adv. Space Res. 2012, 49, 1529–1536. [Google Scholar] [CrossRef]
- Adebesin, B.O.; Ikubanni, S.O.; Adebiyi, S.J.; Joshua, B.W. Multi-station observation of ionospheric disturbance of March 9 2012 and comparison with IRI-model. Adv. Space Res. 2013, 52, 604–613. [Google Scholar] [CrossRef]
- Calabia, A.; Anoruo, C.; Shah, M.; Amory-Mazaudier, C.; Yasyukevich, Y.; Owolabi, C.; Jin, S. Low-Latitude Ionospheric Responses and Coupling to the February 2014 Multiphase Geomagnetic Storm from GNSS, Magnetometers, and Space Weather Data. Atmosphere 2022, 13, 518. [Google Scholar] [CrossRef]
- Tsurutani, B.; Mannucci, A.; Iijima, B.; Abdu, M.A.; Sobral, J.H.A.; Gonzalez, W.; Guarnieri, F.; Tsuda, T.; Saito, A.; Yumoto, K.; et al. Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields. J. Geophys. Res. 2004, 109, A08302. [Google Scholar] [CrossRef]
- Mannucci, A.J.; Tsurutani, B.T.; Iijima, B.A.; Komjathy, A.; Saito, A.; Gonzalez, W.D.; Guarnieri, F.L.; Kozyra, J.U.; Skoug, R. Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween Storms”. Geophys. Res. Lett. 2005, 32, 021467. [Google Scholar] [CrossRef]
- Gao, Q.; Liu, L.; Zhao, B.; Wan, W.; Zhang, M.; Ning, B. Statistical Study of the Storm Effects in Middle and Low Latitude Ionosphere in the East-Asian Sector. Chin. J. Geophys. 2008, 51, 435–443. [Google Scholar] [CrossRef]
- Stankov, S.M.; Stegen, K.; Warnant, R. Seasonal variations of storm-time TEC at European middle latitudes. Adv. Space Res. 2010, 46, 1318–1325. [Google Scholar] [CrossRef]
- Laskar, F.I.; Eastes, R.W.; Codrescu, M.V.; Evans, J.S.; Burns, A.G.; Wang, W.; McClintock, W.E.; Aryal, S.; Cai, X. Response of GOLD Retrieved Thermospheric Temperatures to Geomagnetic Activities of Varying Magnitudes. Geophys. Res. Lett. 2021, 48, 15. [Google Scholar] [CrossRef]
- Yu, T.; Wang, W.; Ren, Z.; Yue, J.; Yue, X.; He, M. Middle-Low Latitude Neutral Composition and Temperature Responses to the 20 and 21 November 2003 Superstorm from GUVI Dayside Limb Measurements. J. Geophys. Res. Space Phys. 2021, 126, 1–13. [Google Scholar] [CrossRef]
- Prölss, G.W.; Fricke, K.H. Neutral composition changes during a period of increasing magnetic activity. Planet. Space Sci. 1976, 24, 61–67. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.J.; Codrescu, M.V.; Roble, R.G.; Richmond, A.D. How Does the Thermosphere and Ionosphere React to a Geomagnetic Storm. Geophys. Monogr. 2013, 98, 203–225. [Google Scholar]
- Richmond, A.D. Large-amplitude gravity wave energy production and dissipation in the thermosphere. J. Geophys. Res. Space Phys. 1979, 84, 1880–1890. [Google Scholar] [CrossRef]
- Guo, J.; Wei, F.; Feng, X.; Forbes, J.M.; Wang, Y.; Liu, H.; Wan, W.; Yang, Z.; Liu, C. Prolonged multiple excitation of large-scale Traveling Atmospheric Disturbances (TADs) by successive and interacting coronal mass ejections. J. Geophys. Res. Space Phys. 2016, 121, 2662–2668. [Google Scholar] [CrossRef]
- Bruinsma, S.; Forbes, J.M.; Nerem, R.S.; Zhang, X. Thermosphere density response to the 20–21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data. J. Geophys. Res. Space Phys. 2006, 111, 011284. [Google Scholar] [CrossRef]
- Chartier, A.T.; Mitchell, C.N.; Miller, E.S. Annual occurrence rates of ionospheric polar cap patches observed using Swarm. J. Geophys. Res. Space Phys. 2018, 123, 2327–2335. [Google Scholar] [CrossRef]
- Li, Q.; Su, X.; Xu, Y.; Ma, H.; Liu, Z.; Cui, J.; Geng, T. Performance Analysis of GPS/BDS Broadcast Ionospheric Models in Standard Point Positioning during 2021 Strong Geomagnetic Storms. Remote Sens. 2022, 14, 4424. [Google Scholar] [CrossRef]
- Aquino, M.; Sreeja, V. Correlation of scintillation occurrence with interplanetary magnetic field reversals and impact on global navigation satellite system receiver tracking performance. Space Weather 2013, 11, 219–224. [Google Scholar] [CrossRef]
- Stankov, S.M.; Warnant, R.; Stegen, K. Trans-ionospheric GPS signal delay gradients observed over mid-latitude Europe during the geomagnetic storms of October–November 2003. Adv. Space Res. 2009, 43, 1314–1324. [Google Scholar] [CrossRef]
- Stankov, S.M.; Jakowski, N. Ionospheric effects on GNSS reference network integrity. J. Atmos. Solar-Terr. Phys. 2007, 69, 485–499. [Google Scholar] [CrossRef]
- Heelis, R.A. Electrodynamics in the low and middle latitude ionosphere: A tutorial. J. Atmos. Solar-Terr. Phys. 2004, 66, 825–838. [Google Scholar] [CrossRef]
- Adhikari, B.; Dahal, S.; Chapagain, N.P. Study of field-aligned current (FAC), interplanetary electric field component (Ey), interplanetary magnetic field component (Bz), and northward (x) and eastward (y) components of geomagnetic field during supersubstorm. Earth Space Sci. 2017, 4, 257–274. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.J. Storm-time response of the thermosphere–ionosphere system. In Aeronomy of the Earth’s Atmosphere and Ionosphere; Springer: New York, NY, USA, 2011; pp. 419–435. [Google Scholar]
- Sharma, S.; Galav, P.; Dashora, N.; Alex, S.; Dabas, R.S.; Pandey, R. Response of low-latitude ionospheric total electron content to the geomagnetic storm of 24 August 2005. J. Geophys. Res. Space Phys. 2011, 116, 016368. [Google Scholar] [CrossRef]
- Hargreaves, J.K. The Solar-Terresterial Environment: An Introduction to Geospace—The Science of the Terrestrial, Upper Atmosphere, Ionosphere, and Magnetosphere; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Araujo-Pradere, E.A.; Fuller-Rowell, T.J.; Spencer, P.S.J. Consistent features of TEC changes during ionospheric storms. J. Atmos. Solar-Terr. Phys. 2006, 68, 1834–1842. [Google Scholar] [CrossRef]
- Astafyeva, E.; Zakharenkova, I.; Alken, P. Prompt penetration electric fields and the extreme topside ionospheric response to the June 22–23, 2015 geomagnetic storm as seen by the Swarm constellation. Earth Planets Space 2016, 68, 152. [Google Scholar] [CrossRef]
- Astafyeva, E.; Zakharenkova, I.; Huba, J.D.; Doornbos, E.; Van den IJssel, J. Global ionospheric and thermospheric effects of the June 2015 geomagnetic disturbances: Multi-instrumental observations and modeling. J. Geophys. Res. Space Phys. 2017, 122, 024174. [Google Scholar] [CrossRef]
- Mannucci, A.J.; Tsuruutani, B.T.; Abdu, M.A.; Gonzalez, W.D.; Komjathy, A.; Echer, E.; Iijima, B.A.; Crowley, G.; Anderson, D. Superposed epoch analysis of the dayside ionospheric response to four intense geomagnetic storms. J. Geophys. Res. Space Phys. 2008, 113, 012732. [Google Scholar] [CrossRef]
- Christensen, A.B.; Paxton, L.J.; Avery, S.; Craven, J.; Crowley, G.; Humm, D.C.; Kill, H.; Meier, R.R.; Meng, C.-I.; Morrison, D.; et al. Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission. J. Geophys. Res. Space Phys. 2003, 108, 012732. [Google Scholar] [CrossRef]
- Prolss, G.W. Physics of the Earth’s Space Environment: An Introduction; Springer: New York, NY, USA, 2004. [Google Scholar]
- Arikan, F.; Nayir, H.; Sezen, U.; Arikan, O. Estimation of single station interfrequency receiver bias using GPS-TEC. Radio Sci. 2008, 43, 003785. [Google Scholar] [CrossRef]
- Shah, M.; Aibar, A.C.; Tariq, M.A.; Ahmed, J.; Ahmed, A. Possible ionosphere and atmosphere precursory analysis related to Mw > 6.0 earthquakes in Japan. Remote Sens. Environ. 2020, 239, 111620. [Google Scholar] [CrossRef]
- Klobuchar, J.A. Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users. IEEE Trans. Aerosp. Electron. Syst. 1987, AES-23, 325–331. [Google Scholar] [CrossRef]
- Hernández-Pajares, M.; Juan, J.M.; Sanz, J. New approaches in global ionospheric determination using ground GPS data. J. Atmos. Solar-Terr. Phys. 1999, 61, 1237–1247. [Google Scholar] [CrossRef]
- Roma-Dollase, D.; Hernández-Pajares, M.; Krankowski, A.; Kotulak, K.; Ghoddousi-Fard, R.; Yuan, Y.; Li, Z.; Zhang, H.; Shi, C.; Wang, C.; et al. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. J. Geod. 2018, 92, 691–706. [Google Scholar] [CrossRef]
- Calabia, A.; Jin, S. New modes and mechanisms of long-term ionospheric TEC variations from global ionosphere maps. J. Geophys. Res. Space Phys. 2020, 125, 027703. [Google Scholar] [CrossRef]
- Shao, X.; Guzdar, P.N.; Milikh, G.M.; Papadopoulos, K.; Goodrich, C.C.; Sharma, A.; Wiltberger, M.J.; Lyon, J.G. Comparing ground magnetic field perturbations from global MHD simulations with magnetometer data for the 10 January 1997 magnetic storm event. J. Geophys. Res. Spacce Phys. 2002, 107, SMP-11. [Google Scholar] [CrossRef]
- Le Huy, M.; Amory-Mazaudier, C. Magnetic signature of the ionospheric disturbance dynamo at equatorial latitudes: “Ddyn”. J. Geophys. Res. Space Phys. 2005, 110, 010578. [Google Scholar] [CrossRef]
- Cole, K.D. Magnetic storms and associated phenomena. Space Sci. Rev. 1966, 5, 699–770. [Google Scholar] [CrossRef]
- Zaourar, N.; Amory-Mazaudier, C.; Fleury, R. Hemispheric asymmetries in the ionosphere response observed during the high-speed solar wind streams of the 24–28 August 2010. Adv. Space Res. 2017, 59, 2229–2247. [Google Scholar] [CrossRef]
- Nishida, A. Coherence of geomagnetic DP 2 fluctuations with interplanetary magnetic variations. J. Geophys. Res. 1968, 73, 5549–5559. [Google Scholar] [CrossRef]
- Anderson, D.; Anghel, A.; Chau, J.; Veliz, O. Daytime vertical E × B drift velocities inferred from ground-based magnetometer observations at low latitudes. Space Weather 2004, 2, 000095. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.J.; Millward, G.H.; Richmond, A.D.; Codrescu, M.V. Storm-time changes in the upper atmosphere at low latitudes. J. Atmos. Solar-Terr. Phys. 2002, 64, 1383–1391. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.J.; Codrescu, M.V.; Moffett, R.J.; Quegan, S. Response of the thermosphere and ionosphere to geomagnetic storms. J. Geophys. Res. Space Phys. 1994, 99, 3893–3914. [Google Scholar] [CrossRef]
- Lissa, D.; Srinivasu, V.K.D.; Prasad, D.; Niranjan, K. Ionospheric response to the 26 August 2018 geomagnetic storm using GPS-TEC observations along 80 E and 120 E longitudes in the Asian sector. Adv. Space Res. 2020, 66, 1427–1440. [Google Scholar] [CrossRef]
- Klimenko, M.V.; Klimenko, V.V.; Ratovsky, K.G.; Goncharenko, L.P. Disturbances in the ionospheric F-region peak heights in the American longitudinal sector during geomagnetic storms of September 2005. Adv. Space Res. 2011, 48, 1184–1195. [Google Scholar] [CrossRef]
- Vankadara, R.K.; Panda, S.K.; Amory-Mazaudier, C.; Fleury, R.; Devanaboyina, V.R.; Pant, T.K.; Jamjareegulgarn, P.; Anul Haq, M.; Okoh, D.; Seemala, G.K. Signatures of Equatorial Plasma Bubbles and Ionospheric Scintillations from Magnetometer and GNSS Observations in the Indian Longitudes during the Space Weather Events of Early September 2017. Remote Sens. 2022, 14, 652. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, B.; Lan, R.; Liu, D.; Wu, B.; Li, Y.; Liu, X. Experimental Study on Failure Model of Tailing Dam Overtopping under Heavy Rainfall. Lithosphere 2022, 10, 5922501. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, J.; Zhang, Y.; Huang, Y.; Cai, X.; Yang, J.; Zhang, Y. Resolution Enhancement for Large-Scale Real Beam Mapping Based on Adaptive Low-Rank Approximation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5116921. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, J.; Li, J.; Mao, D.; Zhang, Y.; Huang, Y.; Yang, J. Fast Inverse-Scattering Reconstruction for Airborne High-Squint Radar Imagery Based on Doppler Centroid Compensation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5205517. [Google Scholar] [CrossRef]
- Zhao, C.; Cheung, C.F.; Xu, P. High-efficiency sub-microscale uncertainty measurement method using pattern recognition. ISA Trans. 2020, 101, 503–514. [Google Scholar] [CrossRef]
- Xu, K.; Guo, Y.; Liu, Y.; Deng, X.; Chen, Q.; Ma, Z. 60-GHz Compact Dual-Mode On-Chip Bandpass Filter Using GaAs Technology. IEEE Electron Device Lett. 2021, 42, 1120–1123. [Google Scholar] [CrossRef]
- Huang, S.; Huang, M.; Lyu, Y. Seismic performance analysis of a wind turbine with a monopile foundation affected by sea ice based on a simple numerical method. Eng. Appl. Comput. Fluid Mech. 2021, 15, 1113–1133. [Google Scholar] [CrossRef]
- Huang, S.; Lyu, Y.; Sha, H.; Xiu, L. Seismic performance assessment of unsaturated soil slope in different groundwater levels. Landslides 2021, 18, 2813–2833. [Google Scholar] [CrossRef]
- Liu, C.; Peng, Z.; Cui, J.; Huang, X.; Li, Y.; Chen, W. Development of crack and damage in shield tunnel lining under seismic loading: Refined 3D finite element modeling and analyses. Thin-Walled Struct. 2023, 185, 110647. [Google Scholar] [CrossRef]
- Liu, H.; Ding, F.; Li, J.; Meng, X.; Liu, C.; Fang, H. Improved Detection of Buried Elongated Targets by Dual-Polarization GPR. IEEE Geosci. Remote Sens. Lett. 2023, 20, 121–130. [Google Scholar] [CrossRef]
- Liu, H.; Yue, Y.; Liu, C.; Spencer, B.F.; Cui, J. Automatic recognition and localization of underground pipelines in GPR B-scans using a deep learning model. Tunn. Undergr. Space Technol. 2023, 134, 104861. [Google Scholar] [CrossRef]
- Li, R.; Zhang, H.; Chen, Z.; Yu, N.; Kong, W.; Li, T.; Liu, Y. Denoising method of ground-penetrating radar signal based on independent component analysis with multifractal spectrum. Measurement 2022, 192, 110886. [Google Scholar] [CrossRef]
- Zhan, C.; Dai, Z.; Soltanian, M.R.; de Barros, F.P.J. Data-worth analysis for heterogeneous subsurface structure identification with a stochastic deep learning framework. Water Resour. Res. 2022, 144, 144861. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, S.; Li, C.; Xiong, L.; Song, F.; Du, C.; Wang, S. A carbon-neutrality-capactiy index for evaluating carbon sink contributions. Environ. Sci. Ecotechnol. 2023, 15, 100237. [Google Scholar] [CrossRef]
- Zhang, S.; Bai, X.; Zhao, C.; Tan, Q.; Luo, G.; Wang, J.; Xi, H. Global CO2 Consumption by Silicate Rock Chemical Weathering: Its Past and Future. Earth’s Future 2021, 9, 132–136. [Google Scholar] [CrossRef]
- Yang, J.; Fu, L.Y.; Zhang, Y.; Han, T. Temperature- and Pressure-Dependent Pore Microstructures Using Static and Dynamic Moduli and Their Correlation. Rock Mech. Rock Eng. 2022, 55, 4073–4092. [Google Scholar] [CrossRef]
- Cheng, Y.; Fu, L. Nonlinear seismic inversion by physics-informed Caianiello convolutional neural networks for overpressure prediction of source rocks in the offshore Xihu depression, East China. J. Pet. Sci. Eng. 2022, 215, 110654. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, J.; Feng, Q.; Liu, W.; He, P.; Fu, S. Elastoplastic Analytical Solution for the Stress and Deformation of the Surrounding Rock in Cold Region Tunnels Considering the Influence of the Temperature Field. Int. J. Geomech. 2022, 22, 4022118. [Google Scholar] [CrossRef]
- Yang, J.; Fu, L.; Fu, B.; Deng, W.; Han, T. Third-Order Padé Thermoelastic Constants of Solid Rocks. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024517. [Google Scholar] [CrossRef]
- Xiao, D.; Hu, Y.; Wang, Y.; Deng, H.; Zhang, J.; Tang, B.; Li, G. Wellbore cooling and heat energy utilization method for deep shale gas horizontal well drilling. Appl. Ther. Eng. 2022, 213, 118684. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J.; Liu, M.; Yin, Z.; Liu, X.; Yin, L.; Zheng, W. Remote sensing and geostatistics in urban water-resource monitoring: A review. Mar. Freshw. Res. 2023, 73, 23–34. [Google Scholar] [CrossRef]
- Liu, X.; Li, Z.; Fu, X.; Yin, Z.; Liu, M.; Yin, L.; Zheng, W. Monitoring House Vacancy Dynamics in The Pearl River Delta Region: A Method Based on NPP-VIIRS Night-Time Light Remote Sensing Images. Land 2023, 12, 831. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, Z.; Liu, Z.; Liu, M.; Yin, Z.; Yin, L.; Zheng, W. Impact of dam construction on precipitation: A regional perspective. Mar. Freshw. Res. 2022, 72, 23–34. [Google Scholar] [CrossRef]
- Zhao, F.; Song, L.; Peng, Z.; Yang, J.; Luan, G.; Chu, C.; Xie, Z. Night-Time Light Remote Sensing Mapping: Construction and Analysis of Ethnic Minority Development Index. Remote Sens. 2021, 13, 2129. [Google Scholar] [CrossRef]
- Mao, Y.; Sun, R.; Wang, J.; Cheng, Q.; Kiong, L.C.; Ochieng, W.Y. New time-differenced carrier phase approach to GNSS/INS integration. GPS Solut. 2022, 26, 122. [Google Scholar] [CrossRef]
- Sun, R.; Fu, L.; Cheng, Q.; Chiang, K.; Chen, W. Resilient Pseudorange Error Prediction and Correction for GNSS Positioning in Urban Areas. IEEE Internet Things J. 2023, 9, 32–40. [Google Scholar] [CrossRef]
- Guo, C.; Ye, C.; Ding, Y.; Wang, P. A Multi-State Model for Transmission System Resilience Enhancement against Short-Circuit Faults Caused by Extreme Weather Events. IEEE Trans. Power Deliv. 2021, 36, 2374–2385. [Google Scholar] [CrossRef]
- Zhou, G.; Bao, X.; Ye, S.; Wang, H.; Yan, H. Selection of Optimal Building Facade Texture Images from UAV-Based Multiple Oblique Image Flows. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1534–1552. [Google Scholar] [CrossRef]
- Zhou, G.; Zhou, X.; Song, Y.; Xie, D.; Wang, L.; Yan, G.; Wang, H. Design of supercontinuum laser hyperspectral light detection and ranging (LiDAR) (SCLaHS LiDAR). Int. J. Remote Sens. 2021, 42, 3731–3755. [Google Scholar] [CrossRef]
- Zhou, G.; Li, C.; Zhang, D.; Liu, D.; Zhou, X.; Zhan, J. Overview of Underwater Transmission Characteristics of Oceanic LiDAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8144–8159. [Google Scholar] [CrossRef]
- Li, X.; Yu, P.; Niu, X.; Yamaguchi, H.; Li, D. Non-contact manipulation of nonmagnetic materials by using a uniform magnetic field: Experiment and simulation. J. Magn. Magn. Mater. 2020, 497, 165957. [Google Scholar] [CrossRef]
- Shah, M.; Shahzad, R.; Ehsan, M.; Ghaffar, B.; Ullah, I.; Jamjareegulgarn, P.; Hassan, A.M. Seismo Ionospheric Anomalies around and over the Epicenters of Pakistan Earthquakes. Atmosphere 2023, 14, 601. [Google Scholar] [CrossRef]
- Draz, M.U.; Shah, M.; Jamjareegulgarn, P.; Shahzad, R.; Hassan, A.M. Deep Machine Learning based possible Atmospheric and Ionospheric Precursors of the 2021 Mw 7.1 Japan Earthquake. Remote Sens. 2023, 15, 1904. [Google Scholar] [CrossRef]
- Shahzad, F.; Shah, M.; Riaz, S.; Ghaffar, B.; Ullah, I.; Eldin, S.M. Integrated Analysis of Lithosphere Atmosphere-Ionospheric Coupling Associated with the 2021 Mw 7.2 Haiti Earthquake. Atmosphere 2023, 14, 347. [Google Scholar] [CrossRef]
- Khan, M.M.; Ghaffar, B.; Shahzad, R.; Khan, M.R.; Shah, M.; Amin, A.H.; Eldin, S.M.; Naqvi, N.A.; Ali, R. Atmospheric Anomalies Associated with the 2021 Mw 7.2 Haiti Earthquake Using Machine Learning from Multiple Satellites. Sustainability 2022, 14, 14782. [Google Scholar] [CrossRef]
- De Oliveira-Júnior, J.F.; Shah, M.; Abbas, A.; Correia Filho, W.L.F.; da Silva Junior, C.A.; de Barros Santiago, D.; Teodoro, P.E.; Mendes, D.; de Souza, A.; Aviv-Sharon, E.; et al. Spatiotemporal Analysis of Fire Foci and Environmental Degradation in the Biomes of Northeastern Brazil. Sustainability 2022, 14, 6935. [Google Scholar] [CrossRef]
- De Oliveira Filho, H.; de Oliveira-Júnior, J.F.; da Silva, M.V.; da Rosa Ferraz Jardim, A.M.; Shah, M.; Gobo, J.P.A.; Blanco, C.J.C.; Pimentel, L.C.G.; da Silva, C.; da Silva, E.B.; et al. Dynamics of Fire Foci in the Amazon Rainforest and Their Consequences on Environmental Degradation. Sustainability 2022, 14, 9419. [Google Scholar] [CrossRef]
Region | Station | Receiver | Geographic Latitude (Longitude) | Geomagnetic Latitude (Longitude) | ||
---|---|---|---|---|---|---|
2015 | 2018 | |||||
Low Latitude | South East Asia | Australia (COCO) | SEPT POLARX5 | 12.188°S (96.834°E) | 21.62°S (168.89°E) | 21.46°S (168.95°E) |
Indonesia (BAKO) | LEICA GR50 | 6.49°S (106.85°E) | 16.13°S (179.44°E) | 15.97°S (179.49°E) | ||
South Asia | India (HYDE) | LEICA GRX1200G GPRO | 17.417°N (78.551°E) | 8.77°N (152.23°E) | 8.92°N (152.26°E) | |
India (IISC) | SEPT POLARX5 | 13.021°N (77.570°E) | 4.50°N (150.92°E) | 4.64°N (150.9°E) | ||
Oceania | New Caledonia (KOUC) | TRIMBLE NETR9 | 20.559°S (164.287°E) | 25.48°S (119.59°W) | 25.40°S (119.61°W) | |
South America | Ecuador (GLPS) | JAVAD TRE_G3TH | 0.743°S (90.304°W) | 8.49°N (17.89°W) | 8.33°N (17.84°W) | |
French Guiana (KOUR) | SEPT POLARX5 TR | 5.252°N (52.640°W) | 14.31°N (20.55°E) | 14.15°N (20.58°E) | ||
Ecuador (RIOP) | TRIMBLE NETRS | 1.651°S (78.651°W) | 7.99°N (6.09°W) | 7.83°N (6.05°W) | ||
Mid Latitude | Oceania | New Zealand (AUCK) | TRIMBLE ALLOY | 36.63°S (174.834°E) | 39.58°S (105.37°W) | 39.53°S (105.47°W) |
East Asia | Japan (STK2) | TRIMBLE ALLOY | 43.529°N (141.845°E) | 35.14°N (149.78°W) | 35.29°N (149.69°W) | |
Japan (USUD) | SEPT POLARX5 | 36.133°N (138.362°E) | 27.51°N (151.98°W) | 27.66°N (151.91°W) | ||
Eastern Europe and Russia | Russia (YSSK) | JAVAD TRE_3N | 47.030°N (142.717°E) | 38.69°N (149.55°W) | 38.84°N (149.45°W) | |
South America | Chile (SANT) | SEPT POLARX5 | −33.150°S (70.669°W) | −23.29°S (1.78°E) | −23.46°S (1.81°E) | |
High Latitude | Western Europe | Sweden (KIR0) | SEPT POLARX5 | 67.878°N (21.060°E) | 65.26°N (115.42°E) | 65.33°N (115.13°E) |
Sweden (MAR6) | SEPT POLARX5 | 60.595°N (17.259°E) | 59.04°N (106.40°E) | 59.08°N (106.17°E) |
Region | Station Code | Geographic Latitude (Longitude) | Geomagnetic Latitude (Longitude) | Dip Angle | ||||
---|---|---|---|---|---|---|---|---|
2015 | 2018 | 2021 | 2015 | 2018 | 2021 | |||
America | HUA | 12.0686°S (75.2103°W) | 2.31°S (2.54°W) | 2.48°S (2.50°W) | 2.64°S (2.49°W) | −0.361° | −0.838° | −1.405° |
Pacific Ocean | GUA | 13.4443°N (144.7937°E) | 5.61°N (143.57°W) | 5.74°N (143.52°W) | 5.87°N (143.4°W) | 12.458° | 12.321° | 11.846° |
Africa | MBO | 14.4228°N (16.9654°W) | 19.63°N (58.13°E) | 19.54°N (58.12°E) | 19.45°N (58.09°E) | 7.060° | 6.628° | 6.865° |
Asia | DLT | 11.9404°N (108.4583°E) | 2.18°N (178.95°W) | 2.34°N (178.91°W) | 2.50°N (178.8°W) | 11.230° | 11.666° | 12.707° |
Q1 | Q2 | Q3 | Q4 | Q5 | |
---|---|---|---|---|---|
June, 2015 | 20 | 5 | 2 | 4 | 3 |
August, 2018 | 6 | 14 | 10 | 13 | 23 |
November, 2021 | 13 | 26 | 14 | 12 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahzad, R.; Shah, M.; Tariq, M.A.; Calabia, A.; Melgarejo-Morales, A.; Jamjareegulgarn, P.; Liu, L. Ionospheric–Thermospheric Responses to Geomagnetic Storms from Multi-Instrument Space Weather Data. Remote Sens. 2023, 15, 2687. https://doi.org/10.3390/rs15102687
Shahzad R, Shah M, Tariq MA, Calabia A, Melgarejo-Morales A, Jamjareegulgarn P, Liu L. Ionospheric–Thermospheric Responses to Geomagnetic Storms from Multi-Instrument Space Weather Data. Remote Sensing. 2023; 15(10):2687. https://doi.org/10.3390/rs15102687
Chicago/Turabian StyleShahzad, Rasim, Munawar Shah, M. Arslan Tariq, Andres Calabia, Angela Melgarejo-Morales, Punyawi Jamjareegulgarn, and Libo Liu. 2023. "Ionospheric–Thermospheric Responses to Geomagnetic Storms from Multi-Instrument Space Weather Data" Remote Sensing 15, no. 10: 2687. https://doi.org/10.3390/rs15102687
APA StyleShahzad, R., Shah, M., Tariq, M. A., Calabia, A., Melgarejo-Morales, A., Jamjareegulgarn, P., & Liu, L. (2023). Ionospheric–Thermospheric Responses to Geomagnetic Storms from Multi-Instrument Space Weather Data. Remote Sensing, 15(10), 2687. https://doi.org/10.3390/rs15102687