Satellite Earth Observation for Essential Climate Variables Supporting Sustainable Development Goals: A Review on Applications
Abstract
:1. Introduction
2. Background
2.1. Satellite Earth Observation for SDGs
2.2. Essential Climate Variables
3. Methods
- Population: scientific research articles in academic literature;
- Outcome: usage of satellite Earth observation for climate essential variables in the SDG context;
- Study types: any published research study, including primary research articles, case studies, and reviews.
3.1. Repositories and Searches
- Sustainable Development Goals/SDG/SDGs;
- Earth observation/remote sensing/satellite;
- Climate;
- Essential variables/EV; and
- Essential climate variables/ECV.
3.2. Inclusion and Exclusion Criteria
- Articles in the context of applications supporting SDGs;
- Studies making use of sEO for deriving data related to applications supporting SDGs.
- Articles that were not digitally available;
- Duplicated studies (overlapping retrievals between Scopus and Web of Science);
- Works published before 2015;
- Contributions in a language different from English and Spanish. Spanish was chosen since it is the native language of some authors of this study;
- Conference and workshop proceedings.
- Articles that only mentioned the SDGs in the abstract or introduction/conclusions without further explanation about implementation, contribution, or implications;
- Articles related to the SDGs but out of the scope of this review. For instance, articles with a specific focus on technological platform implementation or contributions with a lack of sEO data application and analysis.
3.3. Data Extraction and Codification
3.4. Quantitative Analysis and Synthesis
4. Results
4.1. Review Process
4.2. Quantitative Analysis
4.2.1. Keywords, Topics, and Focus of the Contributions
4.2.2. Climate from Satellite Earth Observation: Theoretical and Applied Research for the SDGs
4.3. Synthesis
4.3.1. Applied Satellite ECVs for the SDGs
Atmosphere: Surface
Atmosphere: Atmospheric Composition
Land: Biosphere
Land: Hydrosphere
Ocean: Physical
Ocean: Biogeochemical
4.3.2. Summary
- Surface subdomain: one ECV—precipitation (SDGs 6, 11, 15);
- Atmospheric composition subdomain: three ECVs—ozone (SDGs 3, 7, 10, 11), precursors for aerosols and ozone (SDGs 3, 7, 10, 11), aerosols (SDGs 3, 8, 11, 12, 13, 14, 15).
- Biosphere subdomain: seven ECVs—FAPAR (SDG 15), land surface temperature (SDGs 4, 6, 11, 13, 14, 15), LAI (SDG 15), soil carbon (SDGs 2, 3, 6, 11, 15), soil moisture (SDGs 6, 11, 15), fire (SDGs 1, 2, 6, 13, 14, 15), land cover (SDGs 1 to 16);
- Hydrosphere subdomain: one ECV—lakes (SDGs 3, 6, 11, 14, 16).
- Physical subdomain: one ECV—sea level (SDGs 3, 6, 14);
- Biogeochemical subdomain: one ECV—ocean color (SDGs 13, 14).
5. Discussion
5.1. Contribution to Previous Knowledge
- Precipitation and soil moisture contributed to SDG 6 by computing indicator 6.4.2 [29];
- Land surface temperature was related to SDG 11 [35] in the context of urban heat islands;
- FAPAR and LAI were related to indicators 15.2.1 and 15.3.1 [34]; and
- Soil carbon was predicted based on Sentinel-2 and EnMAP, contributing to SDGs 2, 3, 6, 11, and 15 [38]. Additionally, further uses of this ECV are expected from global products such as the Global Soil Organic Carbon map (GSOCmap) (http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/global-soilorganic-carbon-map-gsocmap, accessed on 22 May 2023) and Global Gridded Soil Information (SoilGrids) (https://www.isric.org/explore/soilgrids, accessed on 22 May 2023).
5.2. Most and Least Used s-ECVs
5.3. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SDG | Sustainable Development Goal |
EO | Earth Observation |
sEO | Satellite Earth Observation |
EV | Essential Variable |
ECV | Essential Climate Variable |
s-ECV | Essential Climate Variable from Satellite Earth Observation source |
Appendix A
D. | S.D. | ECV—Variable | ECV—Product | sEO * | SDG ** |
---|---|---|---|---|---|
Atmosphere | Surface | Precipitation | Estimates of liquid and solid precipitation | Y | 6 |
Pressure | Pressure | N | |||
Radiation budget | Surface ERB (longwave, shortwave) | Y | 13 | ||
Temperature | Temperature | Y | |||
Water vapor | Water vapor (relative humidity, dew point) | Y | |||
Wind speed and direction | Surface wind speed and direction | Y | |||
Upper-air | Earth radiation budget | Top-of atmosphere ERB (longwave, shortwave-reflected), total solar irradiance, solar spectral irradiance | Y | ||
Lightning | Number of lightnings | Y | |||
Temperature | Tropospheric and stratospheric temperature profile, temperature of deep atmospheric layers | P | |||
Water vapor | Water vapor (total column, tropospheric and lower stratospheric profiles, upper tropospheric humidity) | P | |||
Wind speed and direction | Upper-air wind retrievals | Y | |||
Atmospheric composition | Aerosols | Aerosol (optical depth, layer height, extinction coeff. profile), single-scattering albedo | P | ||
Carbon dioxide, methane, and other greenhouse gases | Tropospheric column (CO2, CH4), tropospheric (CO2, CH4), stratospheric CH4 | P | 3, 7, 9, 13 | ||
Clouds | Cloud (amount, top pressure, top temperature, optical depth, water path –liquid/ice, effective particle radius -liquid + ice) | P | |||
Ozone | Ozone (total column, tropospheric, profile in upper troposphere, lower stratosphere, upper strato- and mesosphere) | Y | |||
Precursors for aerosols and ozone | Tropospheric column (NO2, SO2, HCHO, CO) and profile (CO) | P | |||
Land | Hydrosphere | Groundwater | Groundwater (storage change, level, recharge, discharge, wellhead level, quality) | P | 6 |
Lakes | Lakes (water level, water extent, surface water temperature, color, ice thickness and cover) | Y | 6, 15 | ||
River discharge | River discharge, water level, flow velocity, cross-section | N | 6 | ||
Cryosphere | Glaciers | Glacier area, elevation change, mass change | Y | 6 | |
Ice sheets and ice shelves | Surface elevation change, ice velocity, ice mass change, grounding line location, and thickness | P | 6 | ||
Permafrost | Thermal state of permafrost, active layer thickness | P | |||
Snow | Area covered by snow, snow depth, snow water equivalent | Y | 6 | ||
Biosphere | Above-ground biomass | Maps of above-ground biomass | P | 15 | |
Albedo | Maps of directional hemispherical reflectance (DHR) albedo for adaptation, bihemispherical reflectance (BHR) albedo for adaptation, DHR and BHR albedo for modeling | Y | 13 | ||
Evaporation from land | Latent heat flux, sensible heat flux | P | |||
Fire | Burnt area, active fire maps, fire radiative power | Y | 15 | ||
Fraction of absorbed photosynthetically active radiation (FAPAR) | Maps of FAPAR for modeling and adaptation | P | 15 | ||
Land cover | Maps of land cover, high resolution land cover, key IPCC land use, related changes, and land management types | Y | 2, 6, 11, 15 | ||
Land surface temperature | Maps of land surface temperature | Y | |||
Leaf area index (LAI) | Maps of LAI for modeling and adaptation | P | 15 | ||
Soil carbon | % carbon in soil; mineral soil bulk density to 30 cm and 1m Peatlands’ total depth of profile, area, and location | P | 15 | ||
Soil moisture | Surface soil moisture, freeze/thaw, surface inundation, root-zone soil moisture | P | |||
Anthroposphere | Anthropogenic greenhouse gas fluxes | Emissions from fossil fuel use, industry, agriculture and waste sector; emissions/removals by IPCC land categories; estimated fluxes by inversions of observed atmospheric composition—continental; estimated fluxes by inversions of observed atmospheric composition—national; hi-res CO2 column concentrations to monitor point sources | N | 3, 9, 11, 12 | |
Anthropogenic water use | Volume of water use | N | 2, 3, 6 | ||
Ocean | Physical | Ocean surface heat flux | Latent heat flux, sensible heat flux, radiative heat flux | P | |
Sea ice | Sea ice (concentration, extent, thickness, drift) | Y | |||
Sea level | Global mean sea level, regional mean sea level | P | |||
Sea state | Wave height | N | |||
Sea surface currents | Surface geostrophic current | P | |||
Sea surface salinity | Sea surface salinity | Y | |||
Sea surface stress | Surface stress | N | |||
Sea surface temperature | Sea surface temperature | Y | |||
Subsurface currents | Interior currents | N | |||
Subsurface salinity | Interior salinity | NR | |||
Subsurface temperature | Interior temperature | NR | |||
Biogeochemical | Inorganic carbon | Interior ocean carbon storage. At least 2 of: dissolved inorganic carbon (DIC), total alkalinity (TA), or pH; pCO2 | N | 14 | |
Nitrous oxide | Interior ocean N2O, N2O air–sea flux | N | |||
Nutrients | Interior ocean concentrations of silicate, phosphate, nitrate | P | 14 | ||
Ocean color | Water leaving radiance, chlorophyll-a concentration | Y | 14 | ||
Oxygen | Interior ocean oxygen concentration | N | 14 | ||
Transient tracers | Interior ocean (CFC-12, CFC-11, SF6, tritium, 3He, 14C, 9Ar) | N | |||
Biological ecosystems | Marine habitats | Coral reefs, mangrove forests, seagrass beds, macroalgal communities | P | 15 | |
Plankton | Phytoplankton, zooplankton | P |
References
- United Nations General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development, 2015. Available online: https://www.unfpa.org/sites/default/files/resource-pdf/Resolution_A_RES_70_1_EN.pdf (accessed on 24 January 2023).
- Paganini, M.; Petiteville, I.; Ward, S.; Dyke, G.; Steventon, M.; Harry, J.; Kerblat, F. Satellite Earth Observations in Support of the Sustainable Development Goals, 2018. Available online: http://eohandbook.com/sdg/files/CEOS_EOHB_2018_SDG.pdf (accessed on 24 January 2023).
- Anderson, K.; Ryan, B.; Sonntag, W.; Kavvada, A.; Friedl, L. Earth observation in service of the 2030 Agenda for Sustainable Development. Geo. Spat. Inf. Sci. 2017, 20, 77–96. [Google Scholar] [CrossRef]
- Metternicht, G.; Mueller, N.; Lucas, R. Digital Earth for Sustainable Development Goals. In Manual of Digital Earth; Springer: Singapore, 2020; pp. 443–471. [Google Scholar] [CrossRef]
- Reyers, B.; Stafford-Smith, M.; Erb, K.-H.; Scholes, R.J.; Selomane, O. Essential Variables help to focus Sustainable Development Goals monitoring. Curr. Opin. Environ. Sustain. 2017, 26–27, 97–105. [Google Scholar] [CrossRef]
- ESA. Compendium of EO Contributions to the SDG Targets and Indicators, 2020. Available online: https://eo4society.esa.int/wp-content/uploads/2021/01/EO_Compendium-for-SDGs.pdf (accessed on 24 January 2023).
- Giuliani, G.; Egger, E.; Italiano, J.; Poussin, C.; Richard, J.-P.; Chatenoux, B. Essential Variables for Environmental Monitoring: What Are the Possible Contributions of Earth Observation Data Cubes? Data 2020, 5, 100. [Google Scholar] [CrossRef]
- Plag, H.-P.; Jules-Plag, S.-A. A goal-based approach to the identification of essential transformation variables in support of the implementation of the 2030 agenda for sustainable development. Int. J. Digit. Earth 2020, 13, 166–187. [Google Scholar] [CrossRef]
- Lehmann, A.; Nativi, S.; Mazzetti, P.; Maso, J.; Serral, I.; Spengler, D.; Niamir, A.; McCallum, I.; Lacroix, P.; Patias, P.; et al. GEOEssential—mainstreaming workflows from data sources to environment policy indicators with essential variables. Int. J. Digit. Earth 2020, 13, 322–338. [Google Scholar] [CrossRef]
- Fukui, H.; Man, D.C.; Phan, A. Digital Earth: A platform for the SDGs and green transformation at the global and local level, employing essential SDGs variables. Big Earth Data 2021, 5, 476–496. [Google Scholar] [CrossRef]
- Lehmann, A.; Mazzetti, P.; Santoro, M.; Nativi, S.; Maso, J.; Serral, I.; Spengler, D.; Niamir, A.; Lacroix, P.; Ambrosone, M.; et al. Essential earth observation variables for high-level multi-scale indicators and policies. Environ. Sci. Policy 2022, 131, 105–117. [Google Scholar] [CrossRef]
- Bombelli, A.; Serral, I.; Blonda, P.; Masó, J.; Plag, H.-P.; Jules-Plag, S.; McCallum, I. D2.EVs Current Status in Different Communities and Way to Move Forward. 2015. Available online: https://ddd.uab.cat/record/146882. (accessed on 24 January 2023).
- Lehmann, A.; Masò, J.; Nativi, S.; Giuliani, G. Towards integrated essential variables for sustainability. Int. J. Digit. Earth 2020, 13, 158–165. [Google Scholar] [CrossRef]
- Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The concept of essential climate variables in support of climate research, applications, and policy. Bull. Am. Meteorol. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef]
- Masó, J.; Serral, I.; Domingo-Marimon, C.; Zabala, A. Earth observations for sustainable development goals monitoring based on essential variables and driver-pressure-state-impact-response indicators. Int. J. Digit. Earth 2020, 13, 217–235. [Google Scholar] [CrossRef]
- Estoque, R. A Review of the Sustainability Concept and the State of SDG Monitoring Using Remote Sensing. Remote Sens. 2020, 12, 1770. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Kolotii, A.; Skakun, S.; Rakoid, O.; Shumilo, L. A workflow for Sustainable Development Goals indicators assessment based on high-resolution satellite data. Int. J. Digit. Earth 2020, 13, 309–321. [Google Scholar] [CrossRef]
- Andries, A.; Morse, S.; Murphy, R.J.; Lynch, J.; Woolliams, E.R. Using Data from Earth Observation to Support Sustainable Development Indicators: An Analysis of the Literature and Challenges for the Future. Sustainability 2022, 14, 1191. [Google Scholar] [CrossRef]
- Andries, A.; Morse, S.; Murphy, R.; Lynch, J.; Woolliams, E.; Fonweban, J. Translation of Earth observation data into sustainable development indicators: An analytical framework. Sustain. Dev. 2019, 27, 366–376. [Google Scholar] [CrossRef]
- Kavvada, A.; Metternicht, G.; Kerblat, F.; Mudau, N.; Haldorson, M.; Laldaparsad, S.; Friedl, L.; Held, A.; Chuvieco, E. Towards delivering on the sustainable development goals using earth observations. Remote Sens. Environ. 2020, 247, 111930. [Google Scholar] [CrossRef]
- Espinosa, M.T.M.; Giuliani, G.; Ray, N. Reviewing the discoverability and accessibility to data and information products linked to Essential Climate Variables. Int. J. Digit. Earth 2020, 13, 236–252. [Google Scholar] [CrossRef]
- Senthil Kumar, A.; Camacho, S.; Searby, N.D.; Teuben, J.; Balogh, W. Coordinated Capacity Development to Maximize the Contributions of Space Science, Technology, and its Applications in Support of Implementing Global Sustainable Development Agendas—A Conceptual Framework. Space Policy 2020, 51, 101346. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F.; Pan, M.; Beck, H.; Coccia, G.; Serrat-Capdevila, A.; Verbist, K. Satellite Remote Sensing for Water Resources Management: Potential for Supporting Sustainable Development in Data-Poor Regions. Water Resour. Res. 2018, 54, 9724–9758. [Google Scholar] [CrossRef]
- Group on Earth Observations. EO4SDG: Earth Observations in Service of the 2030 Agenda for Sustainable Development. Strategic Implementation Plan 2020–2024; Geneva, Switzerland, 2019. Available online: https://eo4sdg.org/wp-content/uploads/2019/09/EO4SDG-Strategic-Impl.-Plan-2020-2024.pdf (accessed on 24 January 2023).
- Lahoz, W.A.; Schneider, P. Data assimilation: Making sense of Earth Observation. Front. Environ. Sci. 2014, 2, 16. [Google Scholar] [CrossRef]
- CEOS Database Climate Chapter. Available online: http://database.eohandbook.com/climate/gcos.aspx. (accessed on 24 January 2023).
- CEE Collaboration for Environmental Evidence. Guidelines and Standards for Evidence Synthesis in Environmental Management. Version 5.0, 2018. Available online: www.environmentalevidence.org/information-for-authors. (accessed on 24 January 2023).
- Thies, B.; Bendix, J. Satellite based remote sensing of weather and climate: Recent achievements and future perspectives. Meteorol. Appl. 2011, 18, 262–295. [Google Scholar] [CrossRef]
- Li, W.; El-Askary, H.; Lakshmi, V.; Piechota, T.; Struppa, D. Earth Observation and Cloud Computing in Support of Two Sustainable Development Goals for the River Nile Watershed Countries. Remote Sens. 2020, 12, 1391. [Google Scholar] [CrossRef]
- Sang, S.; Wu, T.; Wang, S.; Yang, Y.; Liu, Y.; Li, M.; Zhao, Y. Ecological Safety Assessment and Analysis of Regional Spatiotemporal Differences Based on Earth Observation Satellite Data in Support of SDGs: The Case of the Huaihe River Basin. Remote Sens. 2021, 13, 3942. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.J.; Yu, H.; Lim, C.-H.; Park, E.; Kim, J.; Lee, W.-K. Developing an Adaptive Pathway to Mitigate Air Pollution Risk for Vulnerable Groups in South Korea. Sustainability 2020, 12, 1790. [Google Scholar] [CrossRef]
- Shikwambana, L.; Mhangara, P.; Mbatha, N. Trend analysis and first time observations of sulphur dioxide and nitrogen dioxide in South Africa using TROPOMI/Sentinel-5 P data. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102130. [Google Scholar] [CrossRef]
- Boyd, D.S.; Perrat, B.; Li, X.; Jackson, B.; Landman, T.; Ling, F.; Bales, K.; Choi-Fitzpatrick, A.; Goulding, J.; Marsh, S.; et al. Informing action for United Nations SDG target 8.7 and interdependent SDGs: Examining modern slavery from space. Humanit. Soc. Sci. Commun. 2021, 8, 1–14. [Google Scholar] [CrossRef]
- Forkuor, G.; Benewinde Zoungrana, J.-B.; Dimobe, K.; Ouattara, B.; Vadrevu, K.P.; Tondoh, J.E. Above-ground biomass mapping in West African dryland forest using Sentinel-1 and 2 datasets—A case study. Remote Sens. Environ. 2020, 236, 111496. [Google Scholar] [CrossRef]
- Ravanelli, R.; Nascetti, A.; Cirigliano, R.V.; Di Rico, C.; Leuzzi, G.; Monti, P.; Crespi, M. Monitoring the Impact of Land Cover Change on Surface Urban Heat Island through Google Earth Engine: Proposal of a Global Methodology, First Applications and Problems. Remote Sens. 2018, 10, 1488. [Google Scholar] [CrossRef]
- Polpanich, O.; Bhatpuria, D.; Santos Santos, T.F.; Krittasudthacheewa, C. Leveraging Multi-Source Data and Digital Technology to Support the Monitoring of Localized Water Changes in the Mekong Region. Sustainability 2022, 14, 1739. [Google Scholar] [CrossRef]
- Cui, Y.; Li, X. A new global land productivity dynamic product based on the consistency of various vegetation biophysical indicators. Big Earth Data 2022, 6, 36–53. [Google Scholar] [CrossRef]
- Tziolas, N.; Tsakiridis, N.; Ogen, Y.; Kalopesa, E.; Ben-Dor, E.; Theocharis, J.; Zalidis, G. An integrated methodology using open soil spectral libraries and Earth Observation data for soil organic carbon estimations in support of soil-related SDGs. Remote Sens. Environ. 2020, 244, 111793. [Google Scholar] [CrossRef]
- Poussin, C.; Massot, A.; Ginzler, C.; Weber, D.; Chatenoux, B.; Lacroix, P.; Piller, T.; Nguyen, L.; Giuliani, G. Drying conditions in Switzerland-indication from a 35-year Landsat time-series analysis of vegetation water content estimates to support SDGs. Big Earth Data 2021, 5, 445–475. [Google Scholar] [CrossRef]
- Wei, M.; Zhang, Z.; Long, T.; He, G.; Wang, G. Monitoring Landsat based burned area as an indicator of Sustainable Development Goals. Earth’s Futur. 2021, 9, e2020EF001960. [Google Scholar] [CrossRef]
- Weise, K.; Höfer, R.; Franke, J.; Guelmami, A.; Simonson, W.; Muro, J.; O’Connor, B.; Strauch, A.; Flink, S.; Eberle, J.; et al. Wetland extent tools for SDG 6.6.1 reporting from the Satellite-based Wetland Observation Service (SWOS). Remote Sens. Environ. 2020, 247, 111892. [Google Scholar] [CrossRef]
- Bian, J.; Li, A.; Lei, G.; Zhang, Z.; Nan, X. Global high-resolution mountain green cover index mapping based on Landsat images and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 162, 63–76. [Google Scholar] [CrossRef]
- Hakimdavar, R.; Hubbard, A.; Policelli, F.; Pickens, A.; Hansen, M.; Fatoyinbo, T.; Lagomasino, D.; Pahlevan, N.; Unninayar, S.; Kavvada, A.; et al. Monitoring Water-Related Ecosystems with Earth Observation Data in Support of Sustainable Development Goal (SDG) 6 Reporting. Remote Sens. 2020, 12, 1634. [Google Scholar] [CrossRef]
- Salazar-Ceballos, A.; Álvarez-Miño, L. El Índice de calor: Un factor de alerta temprana en salud pública y ciudades sostenibles. Rev. Salud Uninorte 2019, 35, 440–449. Available online: https://www.redalyc.org/journal/817/81763959010/html/ (accessed on 24 January 2023). [CrossRef]
- Mao, D.; Tian, Y.; Wang, Z.; Jia, M.; Du, J.; Song, C. Wetland changes in the Amur River Basin: Differing trends and proximate causes on the Chinese and Russian sides. J. Environ. Manag. 2021, 280, 111670. [Google Scholar] [CrossRef]
- Ahmad, F.; Uddin, M.M.; Goparaju, L.; Rizvi, J.; Biradar, C. Quantification of the Land Potential for Scaling Agroforestry in South Asia. KN J. Cartogr. Geogr. Inf. 2020, 70, 71–89. [Google Scholar] [CrossRef]
- Nagabhatla, N.; Brahmbhatt, R. Geospatial Assessment of Water-Migration Scenarios in the Context of Sustainable Development Goals (SDGs) 6, 11, and 16. Remote Sens. 2020, 12, 1376. [Google Scholar] [CrossRef]
- Abdullah, H.M.; Islam, I.; Miah, M.G.; Ahmed, Z. Quantifying the spatiotemporal patterns of forest degradation in a fragmented, rapidly urbanizing landscape: A case study of Gazipur, Bangladesh. Remote Sens. Appl. Soc. Environ. 2019, 13, 457–465. [Google Scholar] [CrossRef]
- Helmer, E.H.; Ruzycki, T.S.; Wilson, B.T.; Sherrill, K.R.; Lefsky, M.A.; Marcano-Vega, H.; Brandeis, T.J.; Erickson, H.E.; Ruefenacht, B. Tropical Deforestation and Recolonization by Exotic and Native Trees: Spatial Patterns of Tropical Forest Biomass, Functional Groups, and Species Counts and Links to Stand Age, Geoclimate, and Sustainability Goals. Remote Sens. 2018, 10, 1724. [Google Scholar] [CrossRef]
- Fakhruddin, B.; Mahalingam, R.; Padmanaban, R. Sustainable development goals for reducing the impact of sea level rise on mangrove forests. NISCAIR Online Period. Repos. 2018, 4, 1947–1958. Available online: http://nopr.niscair.res.in/handle/123456789/45168 (accessed on 24 January 2023).
- Mitri, G.; Nasrallah, G.; Gebrael, K.; Bou Nassar, M.; Abou Dagher, M.; Nader, M.; Masri, N.; Choueiter, D. Assessing land degradation and identifying potential sustainable land management practices at the subnational level in Lebanon. Environ. Monit. Assess. 2019, 191, 567. [Google Scholar] [CrossRef] [PubMed]
- Mondal, P.; McDermid, S.S.; Qadir, A. A reporting framework for Sustainable Development Goal 15: Multi-scale monitoring of forest degradation using MODIS, Landsat and Sentinel data. Remote Sens. Environ. 2020, 237, 111592. [Google Scholar] [CrossRef]
- Antonarakis, A.S.; Pacca, L.; Antoniades, A. The effect of financial crises on deforestation: A global and regional panel data analysis. Sustain. Sci. 2022, 17, 1037–1057. [Google Scholar] [CrossRef]
- Mulligan, M.; van Soesbergen, A.; Hole, D.G.; Brooks, T.M.; Burke, S.; Hutton, J. Mapping nature’s contribution to SDG 6 and implications for other SDGs at policy relevant scales. Remote Sens. Environ. 2020, 239, 111671. [Google Scholar] [CrossRef]
- Ujoh, F.; Igbawua, T.; Paul, M.O. Suitability mapping for rice cultivation in Benue State, Nigeria using satellite data. Geo-spatial Inf. Sci. 2019, 22, 332–344. [Google Scholar] [CrossRef]
- Dubovyk, O.; Ghazaryan, G.; González, J.; Graw, V.; Löw, F.; Schreier, J. Drought hazard in Kazakhstan in 2000–2016: A remote sensing perspective. Environ. Monit. Assess. 2019, 191, 510. [Google Scholar] [CrossRef]
- Mashaba-Munghemezulu, Z.; Chirima, G.J.; Munghemezulu, C. Mapping smallholder maize farms using multi-temporal sentinel-1 data in support of the sustainable development goals. Remote Sens. 2021, 13, 1666. [Google Scholar] [CrossRef]
- Aquilino, M.; Tarantino, C.; Adamo, M.; Barbanente, A.; Blonda, P. Earth Observation for the Implementation of Sustainable Development Goal 11 Indicators at Local Scale: Monitoring of the Migrant Population Distribution. Remote Sens. 2020, 12, 950. [Google Scholar] [CrossRef]
- Aquilino, M.; Adamo, M.; Blonda, P.; Barbanente, A.; Tarantino, C. Improvement of a Dasymetric Method for Implementing Sustainable Development Goal 11 Indicators at an Intra-Urban Scale. Remote Sens. 2021, 13, 2835. [Google Scholar] [CrossRef]
- Giuliani, G.; Chatenoux, B.; Benvenuti, A.; Lacroix, P.; Santoro, M.; Mazzetti, P. Monitoring land degradation at national level using satellite Earth Observation time-series data to support SDG15—exploring the potential of data cube. Big Earth Data 2020, 4, 3–22. [Google Scholar] [CrossRef]
- Momblanch, A.; Kelkar, N.; Braulik, G.; Krishnaswamy, J.; Holman, I.P. Exploring trade-offs between SDGs for Indus River Dolphin conservation and human water security in the regulated Beas River, India. Sustain. Sci. 2022, 17, 1619–1637. [Google Scholar] [CrossRef]
- De Simone, L.; Navarro, D.; Gennari, P.; Pekkarinen, A.; de Lamo, J. Using Standardized Time Series Land Cover Maps to Monitor the SDG Indicator “Mountain Green Cover Index” and Assess its Sensitivity to Vegetation Dynamics. ISPRS Int. J. Geo-Information 2021, 10, 427. [Google Scholar] [CrossRef]
- Kruitwagen, L.; Story, K.T.; Friedrich, J.; Byers, L.; Skillman, S.; Hepburn, C. A global inventory of photovoltaic solar energy generating units. Nature 2021, 598, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Anas, A.; Krishna, K.; Vijayakumar, S.; George, G.; Menon, N.; Kulk, G.; Chekidhenkuzhiyil, J.; Ciambelli, A.; Kuttiyilmemuriyil Vikraman, H.; Tharakan, B.; et al. Dynamics of Vibrio cholerae in a typical tropical lake and estuarine system: Potential of remote sensing for risk mapping. Remote Sens. 2021, 13, 1034. [Google Scholar] [CrossRef]
- Dube, K.; Nhamo, G.; Chikodzi, D. Rising sea level and its implications on coastal tourism development in Cape Town, South Africa. J. Outdoor Recreat. Tour. 2021, 33, 100346. [Google Scholar] [CrossRef]
- Iida, Y.; Takatani, Y.; Kojima, A.; Ishii, M. Global trends of ocean CO2 sink and ocean acidification: An observation-based reconstruction of surface ocean inorganic carbon variables. J. Oceanogr. 2020, 77, 323–358. [Google Scholar] [CrossRef]
- Maúre, E.D.R.; Terauchi, G.; Ishizaka, J.; Clinton, N.; DeWitt, M. Globally consistent assessment of coastal eutrophication. Nat. Commun. 2021, 12, 6142. [Google Scholar] [CrossRef]
- Avtar, R.; Aggarwal, R.; Kharrazi, A.; Kumar, P.; Kurniawan, T.A. Utilizing geospatial information to implement SDGs and monitor their Progress. Environ. Monit. Assess. 2019, 192, 35. [Google Scholar] [CrossRef]
- Bayat, B.; Camacho, F.; Nickeson, J.; Cosh, M.; Bolten, J.; Vereecken, H.; Montzka, C. Toward operational validation systems for global satellite-based terrestrial essential climate variables. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102240. [Google Scholar] [CrossRef]
- Pereira, H.M.; Ferrier, S.; Walters, M.; Geller, G.N.; Jongman, R.H.G.; Scholes, R.J.; Bruford, M.W.; Brummitt, N.; Butchart, S.H.M.; Cardoso, A.C.; et al. Essential biodiversity variables. Science 2013, 339, 277–278. [Google Scholar] [CrossRef] [PubMed]
- Lawford, R. The GEOSS Water Strategy: From Observations to Decisions; Japan Aerospace Exploration Agency: Tokyo, Japan, 2014; Available online: https://ceos.org/document_management/Ad_Hoc_Teams/WSIST/WSIST_GEOSS-Water-Strategy-Full-Report_Jan2014.pdf (accessed on 24 January 2023).
- Whitcraft, A.K.; Becker-Reshef, I.; Justice, C.O.; Gifford, L.; Kavvada, A.; Jarvis, I. No pixel left behind: Toward integrating Earth Observations for agriculture into the United Nations Sustainable Development Goals framework. Remote Sens. Environ. 2019, 235, 111470. [Google Scholar] [CrossRef]
- Miloslavich, P.; Seeyave, S.; Muller-Karger, F.; Bax, N.; Ali, E.; Delgado, C.; Evers-King, H.; Loveday, B.; Lutz, V.; Newton, J.; et al. Challenges for global ocean observation: The need for increased human capacity. J. Oper. Oceanogr. 2019, 12, S137–S156. [Google Scholar] [CrossRef]
- Ranchin, T.; Trolliet, M.; Ménard, L.; Wald, L. Which variables are essential for renewable energies? Int. J. Digit. Earth 2020, 13, 253–261. [Google Scholar] [CrossRef]
- Shelestov, A.; Kolotii, A.; Borisova, T.; Turos, O.; Milinevsky, G.; Gomilko, I.; Bulanay, T.; Fedorov, O.; Shumilo, L.; Pidgorodetska, L.; et al. Essential variables for air quality estimation. Int. J. Digit. Earth 2020, 13, 278–298. [Google Scholar] [CrossRef]
- Nüst, D.; Pebesma, E. Practical Reproducibility in Geography and Geosciences. Ann. Am. Assoc. Geogr. 2020, 111, 1300–1310. [Google Scholar] [CrossRef]
Item | Definition | Codification |
---|---|---|
Keywords | It identifies the term group by which the study was discovered. Each contribution may have more than one keyword. | SDG, EO, EV, Climate, ECV |
Snowballing | It indicates whether the snowballing criteria found the study. | Yes, No |
Topic | Main thematic topic of the study, such as agriculture, urban, biodiversity, among others. Conceptual topics such as workflows, Earth observation, and essential variables were used for conceptual studies, reviews, and position papers. | Thematic topics, Conceptual topics |
Type of research | Theoretical studies are reviews or position papers about SDGs and EO contributions. However, they did not calculate indicators or use sEO data to monitor SDGs. Applied studies calculate SDG indicators by using sEO data for ECVs in the context of monitoring, tracking, or developing new SDG indicators. They present applied examples or operational monitoring systems. The applied contribution was identified as related works with a direct contribution of sEO to SDGs. | Theoretical, Applied |
SDG | It identifies the SDG scope of the study. There may be more than one SDG. | 1 to 17, NS = Not specified |
SDG target or indicator * | It identifies the SDG targets or indicators that the study contributes to. There may be no or more than one reported SDG target or indicator. | - |
sEO | It answers the following question: Does the study explicitly make use of or promote the use of satellite EO data in the context of SDGs? | Yes, No |
s-ECV * | It answers the following question: Does the study explicitly use climate data (ECVs) from satellite EO sources in the context of SDGs? | Yes, No |
s-ECV details * | It details the ECVs from satellite EO sources (as named by GCOS https://gcos.wmo.int/en/essential-climate-variables/) mentioned in the study. It may have more than one ECV. | List of ECVs |
Satellite source * | Product or source of the s-ECV used in the study. | As reported in the study |
Spatial resolution * | The spatial resolution of the product or source of the s-ECV used in the study. | As reported in the study |
Temporal resolution * | The temporal resolution of the product or source of the s-ECV used in the study. | As reported in the study |
Retrieved Studies (371) | Scopus/Web of Science | Snowballing | |
---|---|---|---|
360 | 11 | ||
Exclusion criteria | Documents not available. | 3 | |
Documents repeated in previous searches and between Scopus and Web of Science. | 151 | ||
Conference proceedings. | 46 | ||
Older than 2015. | 3 | ||
The language was different from English and Spanish. | 2 | ||
Documents that only mentioned the SDGs in the abstract or introduction/conclusions, without further contribution or explanation. | 48 | ||
Documents on the SDGs but out of the scope of this review. Too broad or topics not related to climate data. | 13 | ||
Final selected studies (105) | 94 | 11 |
D | SD | ECV | ECV-P | SDG | SDG Ind. | Product | Sp-Res. | T-Res. | Citation |
---|---|---|---|---|---|---|---|---|---|
Atmosphere | Surface | Precipitation | Estimates of liquid and solid precipitation | 6 15 | 6.4.2 NS | CHIRPS NESSDC | 0.05° NS | Pentad Yearly | [29] [30] |
Atmospheric Composition | Ozone | Total column ozone | 3 7 10 11 | 3.8.1 3.9.1 7.1.2 10.2.1 11.5.1 11.6.2 | NEO | 1 km | Time stamp | [31] | |
Precursors for aerosols and ozone | Nitrogen dioxide concentration (NO2) | 3 7 10 11 | 3.8.1 3.9.1 7.1.2 10.2.1 11.5.1 11.6.2 | Sentinel-5P OMI NEO | 7 × 3.5 km NS 1 km | Monthly Time stamp | [32] [31] | ||
Total column sulfur dioxide (SO2) | 3 7 11 | 3.9.1 7.1.2 11.6.2 | Sentinel-5P | 7 × 3.5 km | Monthly | [32] | |||
Aerosols | Aerosol optical depth | 3 8 11, 12 13, 14 15 | NS 8.7 NS NS NS | MISR SeaWiFS | 0.01° | Yearly | [33] | ||
Land | Biosphere | FAPAR | Maps of FAPAR for modeling | 15 | 15.2.1 15.3.1 | Sentinel-2 | 10 m | Monthly | [34] |
Land surface temperature | Maps of land surface temperature | 4, 6 11, 13 14, 15 | NS NS NS | Landsat NESSDC | 30 m NS | Yearly 16 days Yearly | [35] [30] [36] | ||
LAI | Maps of LAI for modeling | 15 | 15.2.1 15.3.1 | Sentinel-2 MODIS (MOD15A2H) | 10 m 500 m | Monthly Yearly | [34] [37] | ||
Soil carbon | % Carbon in soil | 2 3 6 11 13 15 | 2.3 2.4 3.9 6.4 6.5 11.3 13.2 15.3 | EnMAP (1) Sentinel-2 (2) | 30 m 10 m | NS | [38] | ||
Soil moisture | Surface soil moisture | 6 15 | 6.4.2 NS | NASA-USDA Global soil moisture dataset (3) Landsat (OLI, TIRS, TM) | 0.25° 30 m | 3 days Yearly Seasonal | [29] [39] | ||
Fire | Burnt area | 1, 2 3, 6 13, 14 15 | NS NS NS NS | Landsat 8 | 30 m | Yearly | [40] | ||
Land cover | Maps of land cover | 1, 2, 3 4, 5 6 7 8 11 12, 13, 14 15 16 | NS NS 6.4 6.5 6.4.2 6.6.1 NS 8.7 11.B 11.1.1 11.3.1 NS 15.1 15.1.1 15.1.2 15.2 15.3 15.4.1 15.4.2 15.5 15.8 16.7 | Landsat (OLI, TM, MSS, ETM+, NLCD, GFW) | 15 m 30 m 0.09 ha 0.25° | Time series Time stamp Yearly | [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [35] [29] [33] [36] [53] | ||
1, 3 2 6 8 11, 12 13, 14 15 | NS 2.4 6.1 6.2 6.6 8.7 NS NS 15.1.1 15.1.2 | MODIS (Land cover, MCD12Q1, MOD13A1, GLCNMO) | 250 m 500 m 1 km 0.0083° | Time series Time stamp Yearly | [54] [52] [55] [56] [30] [33] | ||||
2 6 | NS 6.6.1 | Sentinel-1 | 10 m 30 m | Time stamp Yearly | [43] [57] | ||||
4, 6 11 13, 14 15 | NS 11.1.1 11.2.1 11.3.1 11.6.2 NS 15.1.1 15.1.2 | Sentinel-2 | 10 m 100 m | Time series Time stamp Yearly | [58] [52] [59] [36] | ||||
15 | 15.3 | IRS | 5 m | Time stamp | [51] | ||||
2 3 6 7 8, 9, 10 11 1315 | 2.4.1 NS 6.1.1 6.4.2 6.6.1 7.2.1 NS 11.5.1 NS 15.2 15.3.1 15.4.2 15.5.1 | ESA land cover (4) | 300 m | Yearly | [60] [37] [61] [53] [62] [63] | ||||
Hydrosphere | Lakes | Water extent | 6 11 16 | 6.4 6.5 6.6.1 11.B 16.7 | Landsat (MSS, TM, GLAD, GSWE) MODIS (MOD44W) | 30 m 250 m | Time series Yearly | [47] [43] | |
Lake surface water temperature | 3 6 14 | 3.3 NS NS | Sentinel-3A (LSWT) Sentinel-2A and 2B (MSI) | 1 km 10 m 20 m | [64] | ||||
Ocean | Physical | Sea Level | Regional mean sea level | 13 14 | 13.1 14.7 | NOAA | Monthly | [65] | |
Biogeochemical | Ocean color | Chlorophyll-a concentration | 3 6 14 | 3.3 NS 14.3.1 14.1.1a | MODIS (Aqua) Landsat (OLI) Sentinel-2 | 1° 4 km | Monthly Yearly Time stamp | [66] [67] [64] |
Targets | SDGs | Indicators | ||||||
---|---|---|---|---|---|---|---|---|
NS | 1—No Poverty | NS | ||||||
2.3 | 2.4 | 2—Zero Hunger | 2.4.1 | |||||
3.9 | 3.8 | 3.9 | 3—Good Health and Well-being | 3.8.1 | 3.9.1 | |||
NS | 4—Quality Education | NS | ||||||
NS | 5—Gender Equality | NS | ||||||
6.6 | 6.4 | 6.1 | 6—Clean Water and Sanitation | 6.4.2 | 6.6.1 | |||
6.5 | 6.2 | |||||||
7.2 | 7.1 | 7—Affordable and Clean Energy | 7.1.2 | 7.2.1 | ||||
8.7 | 8—Decent Work and Economic Growth | NS | ||||||
NS | 9—Industry, Innovation and Infrastructure | NS | ||||||
10.2 | 10—Reduced Inequalities | 10.2.1 | ||||||
11.B | 11.3 | 11.1 | 11—Sustainable Cities and Communities | 11.1.1 | 11.3.1 | 11.6.2 | ||
11.5 | 11.2 | 11.2.1 | 11.5.1 | |||||
NS | 12—Responsible Consumption and Production | NS | ||||||
13.2 | 13.1 | 13—Climate Action | NS | |||||
14.7 | 14.3 | 14.7 | 14.3 | 14—Life below Water | 14.3.1 | 14.1.1a | ||
15.5 | 15.3 | 15.1 | 15—Life on Land | 15.1.1 | 15.2.1 | 15.4.1 | 15.5.1 | |
15.8 | 15.4 | 15.2 | 15.1.2 | 15.3.1 | 15.4.2 | 15.8.1 | ||
16.7 | 16—Peace, Justice Strong Institutions | NS | ||||||
17—Partnerships for the Goals |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballari, D.; Vilches-Blázquez, L.M.; Orellana-Samaniego, M.L.; Salgado-Castillo, F.; Ochoa-Sánchez, A.E.; Graw, V.; Turini, N.; Bendix, J. Satellite Earth Observation for Essential Climate Variables Supporting Sustainable Development Goals: A Review on Applications. Remote Sens. 2023, 15, 2716. https://doi.org/10.3390/rs15112716
Ballari D, Vilches-Blázquez LM, Orellana-Samaniego ML, Salgado-Castillo F, Ochoa-Sánchez AE, Graw V, Turini N, Bendix J. Satellite Earth Observation for Essential Climate Variables Supporting Sustainable Development Goals: A Review on Applications. Remote Sensing. 2023; 15(11):2716. https://doi.org/10.3390/rs15112716
Chicago/Turabian StyleBallari, Daniela, Luis M. Vilches-Blázquez, María Lorena Orellana-Samaniego, Francisco Salgado-Castillo, Ana Elizabeth Ochoa-Sánchez, Valerie Graw, Nazli Turini, and Jörg Bendix. 2023. "Satellite Earth Observation for Essential Climate Variables Supporting Sustainable Development Goals: A Review on Applications" Remote Sensing 15, no. 11: 2716. https://doi.org/10.3390/rs15112716
APA StyleBallari, D., Vilches-Blázquez, L. M., Orellana-Samaniego, M. L., Salgado-Castillo, F., Ochoa-Sánchez, A. E., Graw, V., Turini, N., & Bendix, J. (2023). Satellite Earth Observation for Essential Climate Variables Supporting Sustainable Development Goals: A Review on Applications. Remote Sensing, 15(11), 2716. https://doi.org/10.3390/rs15112716