Tropical Surface Temperature and Atmospheric Latent Heating: A Whole-Tropics Perspective Based on TRMM and ERA5 Datasets
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Results
Climatology of Annual TLH, TST, Their Symmetric and Antisymmetric Parts
4. Summary and Discussion
- (1)
- (2)
- For the principal mode of TLH (and tropical rainfall) interannual variability, we find that equatorial symmetric components dominate only over a zonal band over from the near-Equator Indian Ocean to western and middle equatorial Pacific, salient equatorially antisymmetric variability exists over the middle and Eastern Pacific (Figure 5). In general, the symmetric and antisymmetric TLH exhibits high co-variability over most areas of the tropics (Figure 6b).
- (3)
- We find surprisingly that the spatial patterns of TLH projected upon the first principal components (PC1) of symmetric and antisymmetric TSTs over the whole-tropics, are very similar to each other, seemingly at odds with the classic Mastuno–Gill theory. The similarity in the projected TLH patterns is mainly due to the fact that the symmetric and antisymmetric PCs of TST are both nearly coincident with the ENSO index during the 21 years of 1998–2018.
5. Historical Note
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Matsuno, T. Quasi-Geostrophic Motions in the Equatorial Area. J. Meteorol. Soc. Jpn. Ser. II 1966, 44, 25–43. [Google Scholar] [CrossRef]
- Gill, A.E. Some Simple Solutions for Heat-Induced Tropical Circulation. Q. J. R. Meteorol. Soc. 1980, 106, 447–462. [Google Scholar] [CrossRef]
- Hoerling, M.P.; Kumar, A. Atmospheric Response Patterns Associated with Tropical Forcing. J. Clim. 2002, 15, 2184–2203. [Google Scholar] [CrossRef]
- Qu, X.; Huang, G. An Enhanced Influence of Tropical Indian Ocean on the South Asia High after the Late 1970s. J. Clim. 2012, 25, 6930–6941. [Google Scholar] [CrossRef]
- Hogikyan, A.; Resplandy, L.; Fueglistaler, S. Cause of the Intense Tropics-Wide Tropospheric Warming in Response to El Niño. J. Clim. 2022, 35, 2933–2944. [Google Scholar] [CrossRef]
- Cai, W.; Wu, L.; Lengaigne, M.; Li, T.; McGregor, S.; Kug, J.-S.; Yu, J.-Y.; Stuecker, M.F.; Santoso, A.; Li, X.; et al. Pantropical Climate Interactions. Science 2019, 363, eaav4236. [Google Scholar] [CrossRef] [PubMed]
- Wang, C. Three-Ocean Interactions and Climate Variability: A Review and Perspective. Clim. Dyn. 2019, 53, 5119–5136. [Google Scholar] [CrossRef]
- Zhang, C. Large-Scale Variability of Atmospheric Deep Convection in Relation to Sea Surface Temperature in the Tropics. J. Clim. 1993, 6, 1898–1913. [Google Scholar] [CrossRef]
- Lau, K.-M.; Wu, H.-T.; Bony, S. The Role of Large-Scale Atmospheric Circulation in the Relationship between Tropical Convection and Sea Surface Temperature. J. Clim. 1997, 10, 381–392. [Google Scholar] [CrossRef]
- Lu, R.; Lu, S. Local and Remote Factors Affecting the SST–Precipitation Relationship over the Western North Pacific during Summer. J. Clim. 2014, 27, 5132–5147. [Google Scholar] [CrossRef]
- Sabin, T.P.; Babu, C.A.; Joseph, P.V. SST–Convection Relation over Tropical Oceans. Int. J. Climatol. 2013, 33, 1424–1435. [Google Scholar] [CrossRef]
- Williams, A.I.L.; Jeevanjee, N.; Bloch-Johnson, J. Circus Tents, Convective Thresholds, and the Non-Linear Climate Response to Tropical SSTs. Geophys. Res. Lett. 2023, 50, e2022GL101499. [Google Scholar] [CrossRef]
- Xie, S.-P. Oceanic Response to the Wind Forcing Associated with the Intertropical Convergence Zone in the Northern Hemisphere. J. Geophys. Res. Ocean. 1994, 99, 20393–20402. [Google Scholar] [CrossRef]
- Li, T.; Philander, S.G.H. On the Annual Cycle of the Eastern Equatorial Pacific. J. Clim. 1996, 9, 2986–2998. [Google Scholar] [CrossRef]
- Masunaga, H.; L’Ecuyer, T.S. Equatorial Asymmetry of the East Pacific ITCZ: Observational Constraints on the Underlying Processes. J. Clim. 2011, 24, 1784–1800. [Google Scholar] [CrossRef]
- Schneider, T.; Bischoff, T.; Haug, G.H. Migrations and Dynamics of the Intertropical Convergence Zone. Nature 2014, 513, 45–53. [Google Scholar] [CrossRef]
- Sun, Z.; Lu, J. The North Equatorial Countercurrent and the Zonality of the Intertropical Convergence Zone. Geophys. Res. Lett. 2021, 48, e2021GL095657. [Google Scholar] [CrossRef]
- An, S.-I.; Ham, Y.-G.; Kug, J.-S.; Timmermann, A.; Choi, J.; Kang, I.-S. The Inverse Effect of Annual-Mean State and Annual-Cycle Changes on ENSO. J. Clim. 2010, 23, 1095–1110. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Wallace, J.M.; Smith, C.; Bretherton, C.S. Singular Value Decomposition of Wintertime Sea Surface Temperature and 500-Mb Height Anomalies. J. Clim. 1992, 5, 561–576. [Google Scholar] [CrossRef]
- Hu, Q. On the Uniqueness of the Singular Value Decomposition in Meteorological Applications. J. Clim. 1997, 10, 1762–1766. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Zhao, F. Singular Value Decomposition Analysis of Spatial Relationships between Monthly Weather and Air Pollution Index in China. Stoch. Environ. Res. Risk Assess. 2018, 32, 733–748. [Google Scholar] [CrossRef]
- Riehl, H.; Yeh, T.C. The Intensity of the Net Meridional Circulation. Q. J. R. Meteorol. Soc. 1950, 76, 182–186. [Google Scholar] [CrossRef]
- Riehl, H.; Yeh, T.C.; Malkus, J.S.; la Seur, N.E. The North-East Trade of the Pacific Ocean. Q. J. R. Meteorol. Soc. 1951, 77, 598–626. [Google Scholar] [CrossRef]
r | Significance Level | |
---|---|---|
TST vs. TLH (original) | 0.9 | <0.01 |
Symmetric TST (TST_SYM) vs. original TLH | 0.89 | <0.01 |
Antisymmetric TST (TST_ASYM) vs. original TLH | 0.82 | <0.01 |
r | Significance Level | |
---|---|---|
TST vs. ONI | 0.915 | <0.01 |
TLH (TST) vs. ONI | 0.933 | <0.01 |
TST_SYM vs. ONI | 0.928 | <0.01 |
TLH (TST_SYM) vs. ONI | 0.935 | <0.01 |
TST_ASYM vs. ONI | 0.763 | <0.01 |
TLH (TST_ASYM) vs. ONI | 0.925 | <0.01 |
r | Significance Level | |
---|---|---|
TST_PC1& TST_SYM_PC1 | 0.99 | <0.01 |
TST_PC1&TST_ASYM_PC1 | 0.87 | <0.01 |
TST_SYM_PC1&TST_ASYM_PC1 | 0.82 | <0.01 |
R | Significance Level | |
---|---|---|
TST_PC1& ONI | 0.897 | <0.01 |
TST_SYM_PC1&ONI | 0.907 | <0.01 |
TST_ASYM_PC1&ONI | 0.721 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Liu, X.; Lu, J. Tropical Surface Temperature and Atmospheric Latent Heating: A Whole-Tropics Perspective Based on TRMM and ERA5 Datasets. Remote Sens. 2023, 15, 2746. https://doi.org/10.3390/rs15112746
Gao Y, Liu X, Lu J. Tropical Surface Temperature and Atmospheric Latent Heating: A Whole-Tropics Perspective Based on TRMM and ERA5 Datasets. Remote Sensing. 2023; 15(11):2746. https://doi.org/10.3390/rs15112746
Chicago/Turabian StyleGao, Yue, Xiaolin Liu, and Jianhua Lu. 2023. "Tropical Surface Temperature and Atmospheric Latent Heating: A Whole-Tropics Perspective Based on TRMM and ERA5 Datasets" Remote Sensing 15, no. 11: 2746. https://doi.org/10.3390/rs15112746
APA StyleGao, Y., Liu, X., & Lu, J. (2023). Tropical Surface Temperature and Atmospheric Latent Heating: A Whole-Tropics Perspective Based on TRMM and ERA5 Datasets. Remote Sensing, 15(11), 2746. https://doi.org/10.3390/rs15112746