Generation of High Temporal Resolution Full-Coverage Aerosol Optical Depth Based on Remote Sensing and Reanalysis Data
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
2.2.1. Satellite Products
2.2.2. Reanalysis Datasets
2.2.3. Auxiliary Data
3. Methodology
3.1. Modelling Method
- LC model: The total sample set was divided into 17 subsets according to the LC type, and the LC model was established for each subset as follows:
- LT model: As the study areas are located in the northern hemisphere, sunlight hours were mainly concentrated between 8:00 and 17:00 LT, and AHI was only observed during daylight hours. Therefore, only observations from 8:00 to 17:00 LT were used as the data sample set for modeling. The data sample set was divided into 10 subsets according to LT, and the LT model was established for each subset as follows:
- LT-LC model: Based on the analysis of the LC model and LT model, the total sample set was divided into 17 LC types and 10 LTs to obtain 170 subsets. The LT-LC model was established for each subset as follows:
3.2. Parameter Reselection and Combination
3.3. Validation Strategy
3.4. Satellite Observation Simulation
3.5. Method Implementation
4. Results
4.1. Model Results
4.2. Parameter Combination Analysis
4.3. Optimal Model Performance
4.4. Site Validation
4.5. Spatiotemporal Distribution Analysis of Full-Coverage AOD
4.6. At-Sensor Radiance Simulation Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Site Name | Number | Longitude | Latitude | LC Type |
---|---|---|---|---|
Luang_Namtha | 1 | 20.9311 | 101.4162 | 2 |
Ussuriysk | 2 | 43.7004 | 132.1635 | 4 |
KORUS_Daegwallyeong | 3 | 37.68712 | 128.7587 | 4 |
Hankuk_UFS | 4 | 37.33883 | 127.2658 | 4 |
KORUS_Taehwa | 5 | 37.31248 | 127.3103 | 4 |
DRAGON_Hankuk_UFS | 6 | 37.33883 | 127.2658 | 4 |
KORUS_UNIST_Ulsan | 7 | 35.5819 | 129.1897 | 8 |
Omkoi | 8 | 17.79833 | 98.43167 | 9 |
Silpakorn_Univ | 9 | 13.81931 | 100.0412 | 9 |
Chiang_Mai_Met_Sta | 10 | 18.77113 | 98.97247 | 9 |
Gangneung_WNU | 11 | 37.771 | 128.867 | 12 |
KORUS_Mokpo_NU | 12 | 34.91342 | 126.4374 | 12 |
KORUS_Songchon | 13 | 37.33849 | 127.4895 | 12 |
KORUS_Baeksa | 14 | 37.41156 | 127.5691 | 12 |
KORUS_Iksan | 15 | 35.9622 | 127.0052 | 12 |
Gandhi_College | 16 | 25.871 | 84.12794 | 12 |
XiangHe | 17 | 39.7536 | 116.9615 | 12 |
Pusan_NU | 18 | 35.23535 | 129.0825 | 13 |
KORUS_Kyungpook_NU | 19 | 35.88999 | 128.6064 | 13 |
Ubon_Ratchathani | 20 | 15.24552 | 104.871 | 13 |
DRAGON_NIER | 21 | 37.56893 | 126.6397 | 13 |
Seoul_SNU | 22 | 37.45806 | 126.9511 | 13 |
KORUS_Olympic_Park | 23 | 37.52165 | 127.1242 | 13 |
Yonsei_University | 24 | 37.56443 | 126.9348 | 13 |
EPA-NCU | 25 | 24.96753 | 121.1855 | 13 |
KORUS_NIER | 26 | 37.56893 | 126.6397 | 13 |
Chen-Kung_Univ | 27 | 22.99342 | 120.2047 | 13 |
Beijing-CAMS | 28 | 39.93333 | 116.3167 | 13 |
Beijing | 29 | 39.97689 | 116.3814 | 13 |
NGHIA_DO | 30 | 21.04778 | 105.7996 | 13 |
Chiayi | 31 | 23.49598 | 120.496 | 14 |
Dalanzadgad | 32 | 43.57722 | 104.4192 | 16 |
References
- Dubovik, O.; Holben, B.N.; Eck, T.F.; Smirnov, A.; Slutsker, I. Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations. J. Atmos. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Huang, R.-J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Levy, H.; Horowitz, L.W.; Schwarzkopf, M.D.; Ming, Y.; Golaz, J.-C.; Naik, V.; Ramaswamy, V. The roles of aerosol direct and indirect effects in past and future climate change. J. Geophys. Res. Atmos. 2013, 118, 4521–4532. [Google Scholar] [CrossRef]
- Hänel, G. The Properties of Atmospheric Aerosol Particles as Functions of the Relative Humidity at Thermodynamic Equilibrium with the Surrounding Moist Air. Adv. Geophys. 1976, 19, 73–188. [Google Scholar] [CrossRef]
- Semenov, V.K.; Smirnov, A.; Aref’ev, V.N.; Sinyakov, V.P.; Sorokina, L.I.; Ignatova, N.I. Aerosol optical depth over the mountainous region in central Asia (Issyk-Kul Lake, Kyrgyzstan). Geophys. Res. Lett. 2005, 32, L05807. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, F.; Yang, S.; Xia, N.; Ariken, M. Exploring the spatial-temporal characteristics of the aerosol optical depth (AOD) in Central Asia based on the moderate resolution imaging spectroradiometer (MODIS). Environ. Monit. Assess. 2020, 192, 383. [Google Scholar] [CrossRef]
- Zipfel, L.; Andersen, H.; Cermak, J. Machine-Learning Based Analysis of Liquid Water Path Adjustments to Aerosol Perturbations in Marine Boundary Layer Clouds Using Satellite Observations. Atmosphere 2022, 13, 586. [Google Scholar] [CrossRef]
- Mao, J.T.; Zhang, J.H.; Wang, M.H. Summary comment on research of atmospheric aerosol in China. J. Meteorol. Res. 2002, 60, 625–634. [Google Scholar] [CrossRef]
- Chubarova, N.Y.; Poliukhov, A.A.; Gorlova, I.D. Long-term variability of aerosol optical thickness in Eastern Europe over 2001–2014 according to the measurements at the Moscow MSU MO AERONET site with additional cloud and NO2 correction. Atmos. Meas. Tech. 2016, 9, 313–334. [Google Scholar] [CrossRef]
- Sherman, J.P.; Sheridan, P.J.; Ogren, J.A.; Andrews, E.; Hageman, D.; Schmeisser, L.; Jefferson, A.; Sharma, S. A multi-year study of lower tropospheric aerosol variability and systematic relationships from four North American regions. Atmos. Chem. Phys. 2015, 15, 12487–12517. [Google Scholar] [CrossRef]
- Alexandrov, M.D.; Geogdzhayev, I.V.; Tsigaridis, K.; Marshak, A.; Cairns, B. New statistical model for variability of aerosol optical thickness: Theory and application to MODIS data over ocean. J. Atmos. Sci. 2015, 73, 151201150243008. [Google Scholar] [CrossRef] [PubMed]
- Barnaba, F.; Gobbi, G.P. Aerosol seasonal variability over the Mediterranean region and relative impact of maritime, continental and Saharan dust particles over the basin from MODIS data in the year 2001. Atmos. Chem. Phys. 2004, 4, 188. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, Z.; Wang, Q.; Ban, J.; Chen, N.X.; Li, T. High-resolution daily AOD estimated to full coverage using the random forest model approach in the Beijing-Tianjin-Hebei region. Atmos. Environ. 2019, 203, 70–78. [Google Scholar] [CrossRef]
- Engel-Cox, J.A.; Holloman, C.H.; Coutant, B.W.; Hoff, R.M. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos. Environ. 2004, 38, 2495–2509. [Google Scholar] [CrossRef]
- Leptoukh, G.; Zubko, V.; Gopalan, A. Spatial aspects of multi-sensor data fusion: Aerosol optical thickness. In Proceedings of the International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–27 July 2007. [Google Scholar] [CrossRef]
- Lv, B.; Hu, Y.; Chang, H.H.; Russell, A.G.; Bai, Y. Improving the Accuracy of Daily PM2.5 Distributions Derived from the Fusion of Ground-level Measurements with Aerosol Optical Depth Observations, a Case Study in North China. Environ. Sci. Technol. 2016, 50, 4752. [Google Scholar] [CrossRef]
- Nirala, M. Multi-sensor data fusion of aerosol optical thickness. Int. J. Remote Sens. 2008, 29, 2127–2136. [Google Scholar] [CrossRef]
- Yang, J.; Hu, M. Filling the missing data gaps of daily MODIS AOD using spatiotemporal interpolation. Sci. Total Environ. 2018, 633, 677–683. [Google Scholar] [CrossRef]
- Zhou, C.Y.; Liu, Q.H.; Tang, Y.; Wang, K.; Sun, L. Comparison between MODIS aerosol product C004 and C005 and evaluation of their applicability in the north of China. J. Remote Sens. 2009, 13, 854–872. [Google Scholar] [CrossRef]
- Gao, L.; Jun, L.I.; Chen, L.; Zhang, L. Retrieval Atmospheric Aerosol Optical Depth over China from AVHRR by Multiple Regression Method. J. Atmos. Environ. Opt. 2015, 10. [Google Scholar] [CrossRef]
- Li, G.; Chen, W.; Li, R.; Chen, Y.; Li, L. Prediction of AOD data by geographical and temporal weighted regression with nonlinear principal component analysis. Arab. J. Geosci. 2020, 13. [Google Scholar] [CrossRef]
- Di, Q.; Kloog, I.; Koutrakis, P.; Lyapustin, A.; Wang, Y.; Schwartz, J. Assessing PM2.5 Exposures with High Spatiotemporal Resolution across the Continental United States. Environ. Sci. Technol. 2016, 50, 4712–4721. [Google Scholar] [CrossRef] [PubMed]
- Pu, Q.; Yoo, E.H. Ground PM2.5 prediction using imputed MAIAC AOD with uncertainty quantification. Environ. Pollut. 2021, 274, 116574. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Liu, D.; Tang, Y.; Seyler, B.C.; Zhan, Y. Comparison of GOCI and Himawari-8 aerosol optical depth for deriving full-coverage hourly PM2.5 across the Yangtze River Delta. Atmos. Environ. 2019, 217, 116973. [Google Scholar] [CrossRef]
- Jiang, T.; Chen, B.; Nie, Z.; Ren, Z.; Tang, S. Estimation of hourly full-coverage PM2.5 concentrations at 1-km resolution in China using a two-stage random forest model. Atmos. Res. 2020, 248, 105146. [Google Scholar] [CrossRef]
- Xiao, Q.; Wang, Y.; Chang, H.H.; Xia, M.; Yang, L. Full-coverage high-resolution daily PM 2.5 estimation using MAIAC AOD in the Yangtze River Delta of China. Remote Sens. Environ. 2017, 199, 437–446. [Google Scholar] [CrossRef]
- Yoshida, M.; Kikuchi, M.; Nagao, T.M.; Murakami, H.; Nomaki, T.; Higurashi, A. Common Retrieval of Aerosol Properties for Imaging Satellite Sensors. J. Meteorol. Soc. Jpn. Ser. II 2018, 96, 193–209. [Google Scholar] [CrossRef]
- Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid. NASA EOSDIS Land Process. DAAC 2019, 10, 200. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9—Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Liang, S.; Fang, H.; Chen, M.; Shuey, C.J.; Walthall, C.; Daughtry, C.; Morisette, J.; Schaaf, C.; Strahler, A. Validating MODIS land surface reflectance and albedo products: Methods and preliminary results. Remote Sens. Environ. 2002, 83, 149–162. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.-K.; et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Didan, K.; Huete, A. MYD13C1 MODIS/Aqua Vegetation Indices 16-Day L3 Global 0.05Deg CMG. NASA EOSDIS Land Process. DAAC 2015. Available online: https://lpdaac.usgs.gov/products/myd13c1v006/ (accessed on 7 April 2023).
- Kahn, R.A.; Gaitley, B.J.; Garay, M.J.; Diner, D.J.; Eck, T.F.; Smirnov, A.; Holben, B.N. Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network. J. Geophys. Res. Atmos. 2010, 115, D23209. [Google Scholar] [CrossRef]
- Holben, B.N.; Tanré, D.; Smirnov, A.; Eck, T.F.; Slutsker, I.; Abuhassan, N.; Newcomb, W.W.; Schafer, J.S.; Chatenet, B.; Lavenu, F. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res. 2001, 106, 12067–12097. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database—Automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Copernic. GmbH 2019, 12, 169–209. [Google Scholar] [CrossRef]
- She, L.; Zhang, H.K.; Li, Z.; Leeuw, G.D.; Huang, B. Himawari-8 Aerosol Optical Depth (AOD) Retrieval Using a Deep Neural Network Trained Using AERONET Observations. Remote Sens. 2020, 12, 4125. [Google Scholar] [CrossRef]
- Stafoggia, M.; Bellander, T.; Bucci, S.; Davoli, M.; De Hoogh, K.; De’ Donato, F.; Gariazzo, C.; Lyapustin, A.; Michelozzi, P.; Renzi, M. Estimation of daily PM10 and PM2.5 concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model. Environ. Int. 2019, 124, 170–179. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Pinker, R.T.; Sun, L.; Li, R. Himawari-8-derived diurnal variations of ground-level PM2.5 pollution across China using a fast space-time Light Gradient Boosting Machine. Atmos. Chem. Phys. 2021, 21, 7863–7880. [Google Scholar] [CrossRef]
- Su, Y.; Xie, Y.; Tao, Z.; Hu, Q.; Gu, X. Validation and inter-comparison of MODIS and VIIRS aerosol optical depth products against data from multiple observation networks over East China. Atmos. Environ. 2021, 247, 118205. [Google Scholar] [CrossRef]
- Cao, Q.L.; Dong, L.L.; Zhao, M.; Xu, W.H.; Li, Y. Adaptive Exposure of Space Camera. Acta Photonica Sin. 2016, 45. [Google Scholar] [CrossRef]
- Murthy, K.; Shearn, M.; Smiley, B.D.; Chau, A.H.; Levine, J. MD Robinson SkySat-1: Very high-resolution imagery from a small satellite. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XVIII, Amsterdam, The Netherlands, 22–25 September 2014. [Google Scholar] [CrossRef]
- Cattrall, C.; Thome, K.J. Exploitation of MODTRAN4 capabilities to predict at-sensor radiance. Proc. SPIE Int. Soc. Opt. Eng. 2003, 5157, 98–106. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Automated water surface temperature retrieval from Landsat 8/TIRS. Remote Sens. Environ. 2020, 237, 111518. [Google Scholar] [CrossRef]
- Song, Z.; Liang, S.; Zhou, H. Top-of-Atmosphere Clear-Sky Albedo Estimation over Ocean: Preliminary Framework for MODIS. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–9. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, C.; Luo, N.; Zhao, W.; Shi, W.; Yan, X. Evaluation and Comparison of Himawari-8 L2 V1.0, V2.1 and MODIS C6.1 aerosol products over Asia and the Oceania regions. Atmos. Environ. 2020, 220, 117068.1–117068.17. [Google Scholar] [CrossRef]
- Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation-Based Anomaly Detection. Acm Trans. Knowl. Discov. Data 2012, 6, 1–39. [Google Scholar] [CrossRef]
- Li, T.; Zhang, C.; Shen, H.; Yuan, Q.; Zhang, L. Real-Time and Seamless Monitoring of Ground-Level PM2.5 Using Satellite Remote Sensing. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Copernicus GmbH, Beijing, China, 23 April 2018; Volume IV–3, pp. 143–147. [Google Scholar] [CrossRef]
Code | AOD | Atmosphere Parameter | Land Surface Parameter | Geometric | Socioeconomic Parameters | Population Density | ||
---|---|---|---|---|---|---|---|---|
DOY | Geolocation | Distance | ||||||
C1 | Y | N | N | N | N | N | N | N |
C2 | Y | Y | N | N | N | N | N | N |
C3 | Y | N | Y | N | N | N | N | N |
C4 | Y | N | N | Y | N | N | N | N |
C5 | Y | N | Y | Y | N | N | N | N |
C6 | Y | N | N | N | Y | N | N | N |
C7 | Y | N | N | N | N | Y | N | N |
C8 | Y | N | N | N | N | N | Y | N |
C9 | Y | N | N | N | N | Y | Y | N |
C10 | Y | N | N | N | Y | Y | Y | N |
C11 | Y | N | N | N | N | N | N | Y |
C12 | Y | Y | Y | Y | N | N | N | N |
C13 | Y | Y | N | N | Y | Y | Y | N |
C14 | Y | N | Y | Y | Y | Y | Y | N |
C15 | Y | Y | Y | Y | Y | Y | Y | N |
C16 | Y | Y | Y | Y | Y | Y | Y | Y |
C17 | N | Y | Y | Y | Y | Y | Y | Y |
AOD Type | Spring | Summer | Autumn | Winter |
---|---|---|---|---|
Full-coverage AOD in NC | 0.32 | 0.18 | 0.15 | 0.23 |
MERRA-2 AOD in NC | 0.27 | 0.21 | 0.31 | 0.17 |
Full-coverage AOD in SC | 0.61 | 0.42 | 0.47 | 0.58 |
MERRA-2 AOD in SC | 0.85 | 0.34 | 0.79 | 0.53 |
Region | Season | AOD Type | δm ≤ −20 | −20 < δm ≤ −5 | −5 < δm ≤ 5 | 5 < δm ≤ 20 | 20 < δm |
---|---|---|---|---|---|---|---|
NC | Spring | Full-coverage AOD | 5.9% | 18.4% | 73.4% | 2.3% | 0% |
Spring | MERRA-2 AOD | 0.7% | 3.8% | 61.8% | 28.9% | 4.8% | |
Summer | Full-coverage AOD | 0.8% | 5.2% | 86.1% | 6.7% | 1.2% | |
Summer | MERRA-2 AOD | 0% | 4.3% | 69.4% | 23.8% | 2.5% | |
Autumn | Full-coverage AOD | 1.9% | 12.7% | 79.6% | 5.8% | 0% | |
Autumn | MERRA-2 AOD | 0% | 2.2% | 53.3% | 35.7% | 8.8% | |
Winter | Full-coverage AOD | 1.6% | 5.2% | 85.3% | 6.8% | 1.1% | |
Winter | MERRA-2 AOD | 0% | 1.7% | 67.9% | 22.1% | 8.3% | |
SC | Spring | Full-coverage AOD | 0.0% | 8.8% | 80.9% | 9.1% | 1.2% |
Spring | MERRA-2 AOD | 13.1% | 68.2% | 18.7% | 0.0 | 0.0% | |
Summer | Full-coverage AOD | 0.1% | 5.7% | 89.7% | 4.4% | 0.1% | |
Summer | MERRA-2 AOD | 0.9% | 9.3% | 78.7% | 9.8% | 1.3% | |
Autumn | Full-coverage AOD | 0.7% | 8.7% | 82.3% | 7.2% | 1.1% | |
Autumn | MERRA-2 AOD | 7.4% | 38.3% | 54.3% | 0.0% | 0.0% | |
Winter | Full-coverage AOD | 0.0% | 5.4% | 80.1% | 14.4% | 0.1% | |
Winter | MERRA-2 AOD | 0.0% | 1.7% | 67.9% | 22.1% | 8.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, Z.; Jin, Z.; Meng, Y.; Ma, J. Generation of High Temporal Resolution Full-Coverage Aerosol Optical Depth Based on Remote Sensing and Reanalysis Data. Remote Sens. 2023, 15, 2769. https://doi.org/10.3390/rs15112769
Long Z, Jin Z, Meng Y, Ma J. Generation of High Temporal Resolution Full-Coverage Aerosol Optical Depth Based on Remote Sensing and Reanalysis Data. Remote Sensing. 2023; 15(11):2769. https://doi.org/10.3390/rs15112769
Chicago/Turabian StyleLong, Zhiyong, Zichun Jin, Yizhen Meng, and Jin Ma. 2023. "Generation of High Temporal Resolution Full-Coverage Aerosol Optical Depth Based on Remote Sensing and Reanalysis Data" Remote Sensing 15, no. 11: 2769. https://doi.org/10.3390/rs15112769
APA StyleLong, Z., Jin, Z., Meng, Y., & Ma, J. (2023). Generation of High Temporal Resolution Full-Coverage Aerosol Optical Depth Based on Remote Sensing and Reanalysis Data. Remote Sensing, 15(11), 2769. https://doi.org/10.3390/rs15112769