Summer Extreme Dust Activity in the Taklimakan Desert Regulated by the South Asian High
Abstract
:1. Introduction
2. Data and Method
2.1. Observation Data
2.2. Reanalysis Data
2.3. Definition of Summer Dust Activity
3. Results and Discussion
3.1. MERRA-2-Based Dust Activity in the TD
3.2. Satellite-Based Verification of Summer Dust Activity
3.3. Near-Surface Meteorological Factors
3.4. Effect of South Asian High on Summer Dust Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, S.H.; Gong, S.L.; Gong, W.; Makar, P.A.; Moran, M.D.; Zhang, J.; Stroud, C.A. Relative impact of windblown dust versus anthropogenic fugitive dust in PM2.5 on air quality in North America. J. Geophys. Res.-Atmos. 2010, 115, D16210. [Google Scholar] [CrossRef]
- Kim, H.S.; Chung, Y.S.; Yoon, M.B. An analysis on the impact of large-scale transports of dust pollution on air quality in East Asia as observed in central Korea in 2014. Air Qual. Atmos. Health 2016, 9, 83–93. [Google Scholar] [CrossRef]
- Parajuli, S.P.; Stenchikov, G.L.; Ukhov, A.; Kim, H. Dust Emission Modeling Using a New High-Resolution Dust Source Function in WRF-Chem With Implications for Air Quality. J. Geophys. Res.-Atmos. 2019, 124, 10109–10133. [Google Scholar] [CrossRef]
- Sternberg, T.; Edwards, M. Desert Dust and Health: A Central Asian Review and Steppe Case Study. Int. J. Environ. Res. Public Health 2017, 14, 1342. [Google Scholar] [CrossRef]
- Tobias, A.; Karanasiou, A.; Amato, F.; Roque, M.; Querol, X. Health effects of desert dust and sand storms: A systematic review and meta-analysis protocol. BMJ Open 2019, 9, e029876. [Google Scholar] [CrossRef]
- Querol, X.; Tobias, A.; Perez, N.; Karanasiou, A.; Amato, F.; Stafoggia, M.; Garcia-Pando, C.P.; Ginoux, P.; Forastiere, F.; Gumy, S.; et al. Monitoring the impact of desert dust outbreaks for air quality for health studies. Environ. Int. 2019, 130, 104867. [Google Scholar] [CrossRef]
- Lwin, K.S.; Tobias, A.; Chua, P.L.; Yuan, L.; Thawonmas, R.; Ith, S.; Htay, Z.W.; Yu, L.S.; Yamasaki, L.; Roque, M.; et al. Effects of Desert Dust and Sandstorms on Human Health: A Scoping Review. Geohealth 2023, 7, e2022GH000728. [Google Scholar] [CrossRef]
- Huang, J.; Fu, Q.; Su, J.; Tang, Q.; Minnis, P.; Hu, Y.; Yi, Y.; Zhao, Q. Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints. Atmos. Chem. Phys. 2009, 9, 4011–4021. [Google Scholar] [CrossRef]
- Wang, T.H.; Han, Y.; Hua, W.L.; Tang, J.Y.; Huang, J.P.; Zhou, T.; Huang, Z.W.; Bi, J.R.; Xie, H.L. Profiling Dust Mass Concentration in Northwest China Using a Joint Lidar and Sun-Photometer Setting. Remote Sens. 2021, 13, 1099. [Google Scholar] [CrossRef]
- Wang, T.H.; Han, Y.; Huang, J.P.; Sun, M.X.; Jian, B.D.; Huang, Z.W.; Yan, H.R. Climatology of Dust-Forced Radiative Heating Over the Tibetan Plateau and Its Surroundings. J. Geophys. Res.-Atmos. 2020, 125, e2020JD032942. [Google Scholar] [CrossRef]
- Huang, J.P.; Minnis, P.; Yi, Y.H.; Tang, Q.; Wang, X.; Hu, Y.X.; Liu, Z.Y.; Ayers, K.; Trepte, C.; Winker, D. Summer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophys. Res. Lett. 2007, 34, L18805. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Huang, J.P.; Zhao, C.; Jin, Q.J.; Ma, Y.Y.; Yang, B. Modeling dust sources, transport, and radiative effects at different altitudes over the Tibetan Plateau. Atmos. Chem. Phys. 2020, 20, 1507–1529. [Google Scholar] [CrossRef]
- Huang, Z.W.; Huang, J.P.; Hayasaka, T.; Wang, S.S.; Zhou, T.; Jin, H.C. Short-cut transport path for Asian dust directly to the Arctic: A case study. Environ. Res. Lett. 2015, 10, 114018. [Google Scholar] [CrossRef]
- Gautam, R.; Hsu, N.C.; Lau, W.K.M.; Yasunari, T.J. Satellite observations of desert dust-induced Himalayan snow darkening. Geophys. Res. Lett. 2013, 40, 988–993. [Google Scholar] [CrossRef]
- Yin, Y.; Chen, L. The effects of heating by transported dust layers on cloud and precipitation: A numerical study. Atmos. Chem. Phys. 2007, 7, 3497–3505. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Gong, S.L.; Zhao, T.L.; Arimoto, R.; Wang, Y.Q.; Zhou, Z.J. Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophys. Res. Lett. 2003, 30, 2272. [Google Scholar] [CrossRef]
- Laurent, B.; Marticorena, B.; Bergametti, G.; Chazette, P.; Maignan, F.; Schmechtig, C. Simulation of the mineral dust emission frequencies from desert areas of China and Mongolia using an aerodynamic roughness length map derived from the POLDER/ADEOS 1 surface products. J. Geophys. Res.-Atmos. 2005, 110, D18s04. [Google Scholar] [CrossRef]
- Laurent, B.; Marticorena, B.; Bergametti, G.; Mei, F. Modeling mineral dust emissions from Chinese and Mongolian deserts. Glob. Planet. Chang. 2006, 52, 121–141. [Google Scholar] [CrossRef]
- Shi, Z.G.; Liu, X.D. Distinguishing the provenance of fine-grained eolian dust over the Chinese Loess Plateau from a modelling perspective. Tellus B Chem. Phys. Meteorol. 2011, 63, 959–970. [Google Scholar] [CrossRef]
- Wei, G.R.; Zhang, C.L.; Li, Q.; Wang, R.D.; Wang, H.T.; Zhang, Y.J.; Yuan, Y.X.; Li, W.P. Grain-size composition of the surface sediments in Chinese deserts and the associated dust emission. Catena 2022, 219, 106615. [Google Scholar] [CrossRef]
- Chen, S.Y.; Huang, J.P.; Li, J.X.; Jia, R.; Jiang, N.X.; Kang, L.T.; Ma, X.J.; Xie, T.T. Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011. Sci. China Earth Sci. 2017, 60, 1338–1355. [Google Scholar] [CrossRef]
- Chen, S.Y.; Huang, J.P.; Kang, L.T.; Wang, H.; Ma, X.J.; He, Y.L.; Yuan, T.G.; Yang, B.; Huang, Z.W.; Zhang, G.L. Emission, transport, and radiative effects of mineral dust from the Taklimakan and Gobi deserts: Comparison of measurements and model results. Atmos. Chem. Phys. 2017, 17, 2401–2421. [Google Scholar] [CrossRef]
- Liu, L.; Guo, J.P.; Gong, H.N.; Li, Z.Q.; Chen, W.; Wu, R.G.; Wang, L.; Xu, H.; Li, J.; Chen, D.D.; et al. Contrasting influence of Gobi and Taklimakan Deserts on the Dust Aerosols in Western North America. Geophys. Res. Lett. 2019, 46, 9064–9071. [Google Scholar] [CrossRef]
- Han, Y.; Wang, T.H.; Tang, J.Y.; Wang, C.Y.; Jian, B.D.; Huang, Z.W.; Huang, J.P. New insights into the Asian dust cycle derived from CALIPSO lidar measurements. Remote Sens. Environ. 2022, 272, 112906. [Google Scholar] [CrossRef]
- Sun, J.M.; Zhang, M.Y.; Liu, T.S. Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: Relations to source area and climate. J. Geophys. Res.-Atmos. 2001, 106, 10325–10333. [Google Scholar] [CrossRef]
- Fang, X.M.; Han, Y.X.; Ma, J.H.; Song, L.C.; Yang, S.L.; Zhang, X.Y. Dust storms and loess accumulation on the Tibetan Plateau: A case study of dust event on 4 March 2003 in Lhasa. Chin. Sci. Bull. 2004, 49, 953–960. [Google Scholar] [CrossRef]
- Zhang, B.; Tsunekawa, A.; Tsubo, M. Contributions of sandy lands and stony deserts to long-distance dust emission in China and Mongolia during 2000–2006. Glob. Planet. Chang. 2008, 60, 487–504. [Google Scholar] [CrossRef]
- Yumimoto, K.; Eguchi, K.; Uno, I.; Takemura, T.; Liu, Z.; Shimizu, A.; Sugimoto, N.; Strawbridge, K. Summertime trans-Pacific transport of Asian dust. Geophys. Res. Lett. 2010, 37, L18815. [Google Scholar] [CrossRef]
- Cao, J.H.; Chen, S.Y. The Tibetan Plateau as dust aerosol transit station in middle troposphere over northern East Asia: A case study. Atmos. Res. 2022, 280, 106416. [Google Scholar] [CrossRef]
- Guo, J.P.; Lou, M.Y.; Miao, Y.C.; Wang, Y.; Zeng, Z.L.; Liu, H.; He, J.; Xu, H.; Wang, F.; Min, M.; et al. Trans-Pacific transport of dust aerosols from East Asia: Insights gained from multiple observations and modeling. Environ. Pollut. 2017, 230, 1030–1039. [Google Scholar] [CrossRef]
- Yumimoto, K.; Eguchi, K.; Uno, I.; Takemura, T.; Liu, Z.; Shimizu, A.; Sugimoto, N. An elevated large-scale dust veil from the Taklimakan Desert: Intercontinental transport and three-dimensional structure as captured by CALIPSO and regional and global models. Atmos. Chem. Phys. 2009, 9, 8545–8558. [Google Scholar] [CrossRef]
- Jia, R.; Liu, Y.Z.; Chen, B.; Zhang, Z.J.; Huang, J.P. Source and transportation of summer dust over the Tibetan Plateau. Atmos. Environ. 2015, 123, 210–219. [Google Scholar] [CrossRef]
- Yuan, T.G.; Chen, S.Y.; Huang, J.P.; Wu, D.Y.; Lu, H.; Zhang, G.L.; Ma, X.J.; Chen, Z.Q.; Luo, Y.; Ma, X.H. Influence of Dynamic and Thermal Forcing on the Meridional Transport of Taklimakan Desert Dust in Spring and Summer. J. Clim. 2019, 32, 749–767. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Huang, J.P.; Wang, T.H.; Li, J.M.; Yan, H.R.; He, Y.L. Aerosol-cloud interactions over the Tibetan Plateau: An overview. Earth-Sci. Rev. 2022, 234, 104216. [Google Scholar] [CrossRef]
- Tanaka, T.Y. Numerical Study of the Seasonal Variation of Elevated Dust Aerosols from the Taklimakan Desert. Sola 2012, 8, 98–102. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, G.P.; Hu, Z.Y.; Shi, P.J.; Lyu, Y.L.; Zhang, G.M.; Gu, Y.; Liu, Y.; Hong, C.; Guo, L.L.; et al. Dust storm susceptibility on different land surface types in arid and semiarid regions of northern China. Atmos. Res. 2020, 243, 105031. [Google Scholar] [CrossRef]
- Xiao, F.J.; Zhou, C.P.; Liao, Y.M. Dust storms evolution in Taklimakan Desert and its correlation with climatic parameters. J. Geogr. Sci. 2008, 18, 415–424. [Google Scholar] [CrossRef]
- Han, W.X.; Lu, S.; Appel, E.; Berger, A.; Madsen, D.; Vandenberghe, J.; Yu, L.P.; Han, Y.X.; Yang, Y.B.; Zhang, T.; et al. Dust Storm Outbreak in Central Asia After similar to 3.5 kyr BP. Geophys. Res. Lett. 2019, 46, 7624–7633. [Google Scholar] [CrossRef]
- Mao, R.; Ho, C.H.; Shao, Y.P.; Gong, D.Y.; Kim, J. Influence of Arctic Oscillation on dust activity over northeast Asia. Atmos. Environ. 2011, 45, 326–337. [Google Scholar] [CrossRef]
- Fan, K.; Wang, H.J. Interannual variability of dust weather frequency in Beijing and its global atmospheric circulation. Chin. J. Geophys. 2006, 49, 1006–1014. [Google Scholar] [CrossRef]
- Kang, L.T.; Huang, J.P.; Chen, S.Y.; Wang, X. Long-term trends of dust events over Tibetan Plateau during 1961–2010. Atmos. Environ. 2016, 125, 188–198. [Google Scholar] [CrossRef]
- Shi, L.M.; Zhang, J.H.; Zhang, D.; Wang, J.W.; Meng, X.L.; Liu, Y.Q.; Yao, F.M. What caused the interdecadal shift in the El Nino-Southern Oscillation (ENSO) impact on dust mass concentration over northwestern South Asia? Atmos. Chem. Phys. 2022, 22, 11255–11274. [Google Scholar] [CrossRef]
- Li, J.; Garshick, E.; Huang, S.D.; Koutrakis, P. Impacts of El Nino-Southern Oscillation on surface dust levels across the world during 1982–2019. Sci. Total Environ. 2021, 769, 144566. [Google Scholar] [CrossRef] [PubMed]
- Le, T.; Bae, D.H. Causal influences of El Nino-Southern Oscillation on global dust activities. Atmos. Chem. Phys. 2022, 22, 5253–5263. [Google Scholar] [CrossRef]
- Lee, Y.G.; Kim, J.; Ho, C.H.; An, S.I.; Cho, H.K.; Mao, R.; Tian, B.J.; Wu, D.; Lee, J.N.; Kalashnikova, O.; et al. The effects of ENSO under negative AO phase on spring dust activity over northern China: An observational investigation. Int. J. Climatol. 2015, 35, 935–947. [Google Scholar] [CrossRef]
- Ge, J.M.; Liu, H.Y.; Huang, J.P.; Fu, Q. Taklimakan Desert nocturnal low-level jet: Climatology and dust activity. Atmos. Chem. Phys. 2016, 16, 7773–7783. [Google Scholar] [CrossRef]
- Han, Z.H.; Ge, J.M.; Chen, X.Y.; Hu, X.Y.; Yang, X.; Du, J.J. Dust Activities Induced by Nocturnal Low-Level Jet Over the Taklimakan Desert from WRF-Chem Simulation. J. Geophys. Res.-Atmos. 2022, 127, e2021JD036114. [Google Scholar] [CrossRef]
- Zhang, P.F.; Liu, Y.M.; He, B.A. Impact of East Asian Summer Monsoon Heating on the Interannual Variation of the South Asian High. J. Clim. 2016, 29, 159–173. [Google Scholar] [CrossRef]
- Jin, Q.; Yang, X.Q.; Sun, X.G.; Fang, J.B. East Asian summer monsoon circulation structure controlled by feedback of condensational heating. Clim. Dyn. 2013, 41, 1885–1897. [Google Scholar] [CrossRef]
- Duan, A.M.; Wu, G.X. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Clim. Dyn. 2005, 24, 793–807. [Google Scholar] [CrossRef]
- Liu, Y.M.; Hoskins, B.; Blackburn, M. Impact of Tibetan orography and heating on the summer flow over Asia. J. Meteorol. Soc. Jpn. 2007, 85b, 1–19. [Google Scholar] [CrossRef]
- Ren, R.C.; Zhu, C.D.; Cai, M. Linking quasi-biweekly variability of the South Asian high to atmospheric heating over Tibetan Plateau in summer. Clim. Dyn. 2019, 53, 3419–3429. [Google Scholar] [CrossRef]
- Liu, Y.M.; Wang, Z.Q.; Zhuo, H.F.; Wu, G.X. Two types of summertime heating over Asian large-scale orography and excitation of potential-vorticity forcing II. Sensible heating over Tibetan-Iranian Plateau. Sci. China Earth Sci. 2017, 60, 733–744. [Google Scholar] [CrossRef]
- Chou, M.D.; Wu, C.H.; Kau, W.S. Large-Scale Control of Summer Precipitation in Taiwan. J. Clim. 2011, 24, 5081–5093. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, R.H.; Wen, M.; Rong, X.Y.; Li, T. Impact of Indian summer monsoon on the South Asian High and its influence on summer rainfall over China. Clim. Dyn. 2014, 43, 1257–1269. [Google Scholar] [CrossRef]
- Ning, L.; Liu, J.; Wang, B. How does the South Asian High influence extreme precipitation over eastern China? J. Geophys. Res.-Atmos. 2017, 122, 4281–4298. [Google Scholar] [CrossRef]
- Zhang, S.B.; Meng, L.X.; Zhao, Y.; Yang, X.Y.; Huang, A.N. The Influence of the Tibetan Plateau Monsoon on Summer Precipitation in Central Asia. Front. Earth Sci. 2022, 10, 771104. [Google Scholar] [CrossRef]
- Li, J.J.; Chen, J.H.; Lu, C.S.; Wu, X.Q. Impacts of TIPEX-III Rawinsondes on the Dynamics and Thermodynamics Over the Eastern Tibetan Plateau in the Boreal Summer. J. Geophys. Res.-Atmos. 2020, 125, e2020JD032635. [Google Scholar] [CrossRef]
- Sivan, C.; Kottayil, A.; Legras, B.; Bucci, S.; Mohanakumar, K.; Satheesan, K. Tracing the convective sources of air at tropical tropopause during the active and break phases of Indian summer monsoon. Clim. Dyn. 2022, 59, 2717–2734. [Google Scholar] [CrossRef]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.X.; Powell, K.A.; Liu, Z.Y.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Song, Q.Q.; Zhang, Z.B.; Yu, H.B.; Ginoux, P.; Shen, J. Global dust optical depth climatology derived from CALIOP and MODIS aerosol retrievals on decadal timescales: Regional and interannual variability. Atmos. Chem. Phys. 2021, 21, 13369–13395. [Google Scholar] [CrossRef]
- Yu, H.B.; Yang, Y.; Wang, H.L.; Tan, Q.; Chin, M.; Levy, R.C.; Remer, L.A.; Smith, S.J.; Yuan, T.L.; Shi, Y.X. Interannual variability and trends of combustion aerosol and dust in major continental outflows revealed by MODIS retrievals and CAM5 simulations during 2003–2017. Atmos. Chem. Phys. 2020, 20, 139–161. [Google Scholar] [CrossRef] [PubMed]
- Gelaro, R.; McCarty, W.; Suarez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.R.; Che, H.Z.; Gui, K.; Wang, Y.Q.; Zhang, X.Y. Can MERRA-2 Reanalysis Data Reproduce the Three-Dimensional Evolution Characteristics of a Typical Dust Process in East Asia? A Case Study of the Dust Event in May 2017. Remote Sens. 2020, 12, 902. [Google Scholar] [CrossRef]
- Randles, C.A.; da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Holben, B.; Ferrare, R.; Hair, J.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation. J. Clim. 2017, 30, 6823–6850. [Google Scholar] [CrossRef]
- Buchard, V.; Randles, C.A.; da Silva, A.M.; Darmenov, A.; Colarco, P.R.; Govindaraju, R.; Ferrare, R.; Hair, J.; Beyersdorf, A.J.; Ziemba, L.D.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies. J. Clim. 2017, 30, 6851–6872. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP-DOE AMIP-II reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef]
- Nan, Y.; Wang, Y.X. De-coupling interannual variations of vertical dust extinction over the Taklimakan Desert during 2007–2016 using CALIOP. Sci. Total Environ. 2018, 633, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.Q.; Huang, Z.W.; Li, W.R.; Li, Z.; Song, X.D.; Liu, W.T.; Wang, T.H.; Bi, J.R.; Shi, J.S. Polarization Lidar Measurements of Dust Optical Properties at the Junction of the Taklimakan Desert-Tibetan Plateau. Remote Sens. 2022, 14, 558. [Google Scholar] [CrossRef]
- Wang, T.H.; Chen, Y.X.; Gan, Z.W.; Han, Y.; Li, J.M.; Huang, J.P. Assessment of dominating aerosol properties and their long-term trend in the Pan-Third Pole region: A study with 10-year multi-sensor measurements. Atmos. Environ. 2020, 239, 117738. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, R.G. Climatology of dust storms in northern China and Mongolia: Results from MODIS observations during 2000–2010. J. Geogr. Sci. 2015, 25, 1298–1306. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, T.L.; Yang, X.H.; Liu, F.; Han, Y.X.; Luan, Z.P.; He, Q.; Rood, M.; Yuen, W.K. Observational study of formation mechanism, vertical structure, and dust emission of dust devils over the Taklimakan Desert, China. J. Geophys. Res.-Atmos. 2016, 121, 3608–3618. [Google Scholar] [CrossRef]
- Yang, X.H.; Shen, S.H.; Yang, F.; He, Q.; Ali, M.; Huo, W.; Liu, X.C. Spatial and temporal variations of blowing dust events in the Taklimakan Desert. Theor. Appl. Climatol. 2016, 125, 669–677. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, R.H.; Yang, S.; Li, W.H.; Wen, M. Quasi-Biweekly Oscillation of the South Asian High and Its Role in Connecting the Indian and East Asian Summer Rainfalls. Geophys. Res. Lett. 2019, 46, 14742–14750. [Google Scholar] [CrossRef]
- Banerjee, P.; Satheesh, S.K.; Moorthy, K.K. The Unusual Severe Dust Storm of May 2018 Over Northern India: Genesis, Propagation, and Associated Conditions. J. Geophys. Res.-Atmos. 2021, 126, e2020JD032369. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Wang, T.; Han, Y.; Dong, Y.; He, S.; Tang, J. Summer Extreme Dust Activity in the Taklimakan Desert Regulated by the South Asian High. Remote Sens. 2023, 15, 2875. https://doi.org/10.3390/rs15112875
Wang C, Wang T, Han Y, Dong Y, He S, Tang J. Summer Extreme Dust Activity in the Taklimakan Desert Regulated by the South Asian High. Remote Sensing. 2023; 15(11):2875. https://doi.org/10.3390/rs15112875
Chicago/Turabian StyleWang, Chengyun, Tianhe Wang, Ying Han, Yuanzhu Dong, Shanjuan He, and Jingyi Tang. 2023. "Summer Extreme Dust Activity in the Taklimakan Desert Regulated by the South Asian High" Remote Sensing 15, no. 11: 2875. https://doi.org/10.3390/rs15112875
APA StyleWang, C., Wang, T., Han, Y., Dong, Y., He, S., & Tang, J. (2023). Summer Extreme Dust Activity in the Taklimakan Desert Regulated by the South Asian High. Remote Sensing, 15(11), 2875. https://doi.org/10.3390/rs15112875